

FACULTAD DE DISEÑO ARQUITECTURA Y ARTE ESCUELA DE DISEÑO DE OBJETOS

DISEÑO DE OBJETOS PARA EL HOGAR CON LA APLICACIÓN DE FIBRA DE ABACÁ

TRABAJO DE GRADUACIÓN PREVIO A LA OBTENCIÓN DE TITULO DE

DISEÑADOR DE OBJETOS

AUTOR:

JONATHAN RAÚL CUJI SALINAS

TUTOR:

ING. JOSÉ LUIS FAJARDO SEMINARIO, MGST

CUENCA - ECUADOR 2020

ESCUELA DE DISEÑO DE OBJETOS

DISEÑO DE OBJETOS PARA EL HOGAR CON LA APLICACIÓN DE FIBRA DE ABACÁ

TRABAJO DE GRADUACIÓN PREVIOALA OBTENCIÓN DE TITULO DE

DISEÑADOR DE OBJETOS

AUTOR:

RAÚL CUJI SALINAS

TUTOR:

ING. JOSÉ LUIS FAJARDO SEMINARIO, MGST

CUENCA - ECUADOR 2020

AUTOR: Jonathan Raúl Cuji Salinas

TUTOR: Ing. José Luis Fajardo Seminario, Mgst

> Cuenca - Ecuador 2020

DEDICATORIA

A mis padres abuelita y a toda mi familia por apoyarme en cada paso

AGRADECIMIENTO

Agradezco a todos los que hicieron posible este logro

R E S U M E N

El Ecuador es el segundo exportador de fibra de abacá a nivel global. Sin embargo, esta fibra se comercializa sólo como materia prima, quitando la posibilidad de un mayor aprovechamiento de la misma. Mientras que la producción objetos con la fibra de abacá está limitada a la elaboración de suvenires y artesanías, dejando de lado otras áreas productivas. El Ecuador puede beneficiarse abriendo nuevos campos de trabajo y nuevas oportunidades de negocio a nivel internacional agregando valor a la fibra. Conociendo esto se diseñó objetos para el hogar utilizando de la fibra de abacá.

Palabras clave:

Ecodiseño, Fibras Naturales, Identidad, Manufactura, Materia prima, Valor agregado.

A B S T R A C T

Ecuador is the second largest exporter of abaca fiber worldwide. However, this fiber is marketed only as a raw material, removing the possibility of making better use of it. While the production of objects with abaca fiber is limited to the production of souvenirs and handicrafts, leaving aside other productive areas. Ecuador can benefit from the opening of new fields of work and new business opportunities at an international level adding value to fiber. Knowing this, home objects were designed using abaca fiber.

Keywords

Added Value, Eco Design, Identity, Natural fibers, Manufacture, Raw Material

VER ANEXO 4.14

ÍNDICE DE CONTENIDO

DEDICATORIA	6
AGRADECIMIENTO	8
RESUMEN	10
ABSTRACT	12
INTRODUCCIÓN	20
PROBLEMÁTICA	23
JUSTIFICACIÓN	24
OBJETIVOS	25
CAPÍTULO 1	27
CONTEXTUALIZACIÓN	
1.1 ANTECEDENTES	2 9
1.2 ESTADOS DEL ARTE	3 4
1.3 HOMOLOGOS	4 6
1.4. CONCLUSIONES	5 0
CAPÍTULO 2	51
PROGRAMACIÓN	
2.1 INTRODUCCIÓN	5 3
2.2 FIBRAS	5 4
2.3 PRODUCTOS PARA EL HOGAR	63
2.4 CRAFTS REVIVAL	66
2.5 DISEÑO ORIENTADO A LA IDENTIDAD	67
2.6 TENDENCIAS	70
CAPÍTULO 3	75
DESARROLLO DE LA PROPUESTA	
3.1 INTRODUCCIÓN	77
3.2 BRIEF DE INVESTIGACIÓN	78
3.3 PERFIL DE USUARIO	8 0
3.4 PARTIDAS DE DISEÑO	8 2
3.5 IDEACIÓN	8 3
3.6 CONCRECIÓN DE IDEAS	8 5
3 7 DEFINICIÓN DE PRODUCTOS	8.6

ÍNDICE DE CONTENIDO

CAPITULO 4	91
OCUMENTACIÓN TÉCNICA	
.1 INTRODUCCIÓN	93
.2 BOCETACIÓN	9 4
.3 DOCUMENTACIÓN TÉCNICA	9 6
.4 RENDERS	107
.5 COSTES	117
.6 VALIDACIÓN	123
.7 EMPAQUE	124
.8 AMBIENTACION	130
.9 CONCLUSIÓN GENERAL	133
.10 BIBLIOGRAFIA	134
.11 BIBLIOGRAFIA DE IMAGENES	136
.12 BIBLIOGRAFIA DE FIGURAS	138
.13 BIBLIOGRAFIA DE TABLAS	139
.14 ANEXOS	140

ÍNDICE DE IMAGENES

Img. 1 / Título: Taller Quinuaca	30
Img. 2 / Título: Taller Quinuaca	30
Img. 3 / Tratamiento de Sosa	32
Img. 4 / Fibra sin tratamiento	32
Img. 5 Algodon	38
Img. 8 Ácido Poliláctico	38
Img. 6 Lino	38
Img. 9 PLA	38
Img. 7 Yute	38
Img. 10 Toyota en su modelo SAI 2009.	40
Img. 11 Modelos como el Mercedes-Benz Clase S.	41
Img. 12 Modelos como el Mercedes-Benz Clase S.	41
Img. 12.1 Proceso manufactura mobiliario.	44
Img. 13 Proceso manufactura mobiliario.	45
Img. 14 / Título: Vista lateral del Escúter eléctrico Be.e	46
Img. 15 / Título: Detalles en crudo y pintados del Be.e	46
Img. 16 / Título: Cuatro vistas de la monosilla Hemp	47
Img. 17 / Título: Wener Aisselinger y la silla hemp	47
Img. 18 / Título: Vista lateral del cayac Flaxland	48
Img. 20 / Título: Diferentes diseños de la TIPU lamp	49
Img. 19 / Título: Detalles de la lampara TIPU y sus formas orgánicas	49
Img. 21 / Título: Fibra Sintetica	54
Img. 22 / Fibras Vegetales	56
Img. 23 / Arbol de Abacá	58
Img. 25 Productos para hogar	63
Img. 26 / Zonificación de casa habitación.	64
Img. 27 / Crafts Revival	66
Img. 28 / Diseño e identidad.	67
Img. 29 / Gestion	68
Img. 30 / Economía	68
Img. 31 / Cultura	69
Img. 32 / Investigación de mercados.	70
Img. 33 / Productos Artesanales	71
Img. 34 / Identidad local	72
Img. 35 / Diferencias de edad.	73
Img. 36 / Consumidor	74
Img. 37 / Trabajo de campo.	78
Img. 38 / Artesanias de abacá	79
Img. 39 / Usuario	80
Img. 40 / Partidas de Diseño	82

ÍNDICE DE IMAGENES

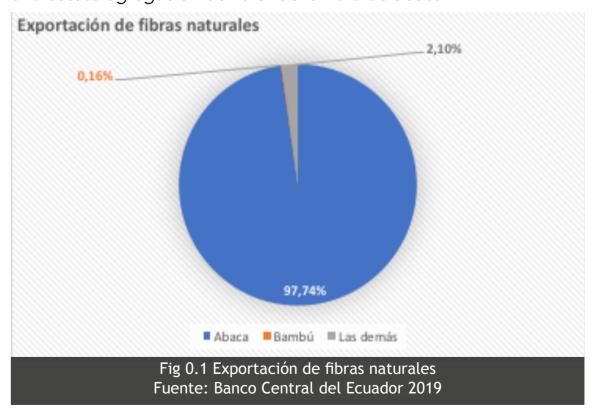
j. 417 lucación	03
g. 42 / Objetos de Fibra	86
g. 43 / Bocetos	94
g. 44 / Bocetos 2	95
g. 45 / Bocetos 3 detalles	95
g. 46 / Render frontal recibidor	107
g. 47 / Render de axonometria recibidor	108
g. 48 / Render detalle recibidor	109
g. 49 / Render detalle 2 recibidor	110
g. 50 / Render Lampara de piso	111
g. 51 / Render Lampara de piso 2	112
g. 52 / Render Lampara de piso detalle	113
g. 53 / Render Espejo detalles	114
g. 54 / Render Espejo frontal	115
g. 55/ Render Espejo axonometria.	116
g. 56 / Render empaque recibidor.	125
g. 57 / Render empaque lamapara de piso.	127
g. 58 / Render empaque para espejo.	129
g. 59 / Ambientación de productos en conjunto.	130
g. 60 / Ambientación de productos en conjunto 1.	131
g. 61 / Ambientación de productos en conjunto 2.	132

ÍNDICE DE FIGURAS

Fig. 1.1 Exportadores de Abaca	29
ig 1.2 Tensible Load	33
Fig 1.3 Esfuerzo máximo a la tracción	35
ig 1.4 Módulo de elasticidad	35
Fig 1.4 Esfuerzo máximo a la flexion	36
ig 1.5 Módulo de flexión	36
ig 1.6 Módulo de Elasticidad	43
ig 1.7 Módulo de Deflexión	43
Fig 2.1 Proceso de obtencion de la Fibra	60
Fig 2.2 Proceso de obtencion de la Fibra	61
Fig 3.1 Objetos de Diseño	85
DOCUMENTOS TÉCNICOS LAMPARA DE PIE	96
DOCUMENTOS TÉCNICOS RECIBIDOR	100
DOCUMENTOS TÉCNICOS ESPEJO	103
DOCUMENTO TÉCNICO EMPAQUE RECIBIDOR	124
DOCUMENTO TÉCNICO EMPAQUE LAMPARA PISO	126
DOCUMENTO TÉCNICO EMPAQUE ESPEJO	128

ÍNDICE DE TABLAS

ola 1.1 Experimentacion por Compuestos	31
ola 1.2 Fibras Características	35
ola 1.3 Fabricación de otras fibras.	37
ola 2.1 Fibras mas Utilizadas	55
ola 2.2 Origen y características de la fibra.	57
ola 2.3 Resistencia mecánica de diferentes fibras.	62
ola 3.1 Perfil de usuario femenino.	81
ola 3.2 Perfil de Usuario Masculino	81
ola 3.3 Zona de Servicio	87
ola 3.4 Zona de Social	88
ola 3.4 Zona privada	89
ola 4.1 Materia prima Recibidor.	117
ola 4.2 Costos variables Recibidor.	117
ola 4.3 Costos mano de obra Recibidor.	118
ola 4.4 Totales Recibidor.	118
ola 4.5 Materia prima de lampara de pie.	119
ola 4.6 Costos variables de lampara de pie.	119
ola 4.7 Costos mano de obra de lampara de pie.	120
ola 4.8 Totales de lampara de pie.	120
ola 4.9 Materia utilizada espejo.	121
ola 4.10 Mano de Obra espejo.	121
ola 4.11 Materia prima espejo	122
ola 4.12 Totales espejo.	122



INTRODUCCIÓN

La intención de esta tesis es de producir objetos utilizando la fibra de abacá y de esta manera otorgar valor agregado a la misma, debido a que el ecuador es el segundo exportador a nivel global de esta fibra, la misma que es procesada en los países desarrollados y mientras que en el Ecuador, solamente ha servido como materia prima para exportación.

PROBLEMÁTICA

El abacá es una planta familia de las musáceas es valorada por su resistencia a condiciones climáticas tales como los ambientes marinos donde la sal se encuentra en abundancia, por su resistencia mecánica y flotabilidad. En Ecuador ocupa el 97.7% de exportaciones de fibras naturales según datos del banco central del Ecuador (Banco Central del Ecuador, 2019), y a nivel mundial es el segundo exportador de acuerdo a la FAO (Organización de las Naciones Unidas para la Agricultura y la Alimentación) (FAO, 2009). En la entrevista realizada al Ing. Julio Sánchez, ex-presidente de la Cooperativa Abacá informó que la mayor parte de la fibra de abacá está destinada para la exportación a países como Inglaterra, Estados Unidos, china, incluso a las Filipinas que el principal exportador de la fibra, y solamente una pequeña fracción se queda en el país, para la elaboración de productos artesanales, principalmente en el cantón Monterrey, lo cual deriva en una escasa agregación de valor de la fibra de abacá.

JUSTIFICACIÓN

Esta tesis está dirigida a otorgar valor a la fibra de abacá diseñando objetos para el hogar utilizando la fibra, eso debido a que el Ecuador es el segundo exportador a nivel mundial, la misma que es procesada a los países de destino, pero debido a diversos factores esta fibra en el Ecuador se ha limitado como materia prima y no como un producto con un valor agregado.

OBJETIVOS

Objetivo general

Diseño de objetos para el hogar, tomando como base la fibra de abacá

Objetivos específicos

- 1. Describir las características física y mecánicas de la fibra de abacá
- 2. Establecer las aplicaciones en objetos para el hogar
- 3. Diseñar productos para el hogar primando el uso de la fibra de abacá

1.1 ANTECEDENTES

Importancia de la fibra de abacá en la cadena de valor

En la tabla siguiente se muestra la distribución global de la fibra de abacá tomada del estudio realizado por la CADE (Cooperativa de abacaleros del ecuador), el ecuador se encuentra con el 17% de la producción y distribución, las filipinas son los más grandes proveedores de la fibra, pero a diferencia de las filipinas en el Ecuador se utiliza maquinaria especializada para su obtención, llegando a producir fibras de mejor calidad, mientras que en las Filipinas el proceso de extracción de la fibra es en su mayoría manual.

La fibra Ecuatoriana es mayormente vendida a los exportadores, mientras que una pequeña parte es comercializada por terceros, la fibra es almacenada en bodegas con un 8% de humedad y el porcentaje de celulosa varía entre el 70 y 80% su clasificación se la hace por color y por el diámetro de la fibra, las fibras tiene una longitud de 1.8m a 6m, esta clasi-

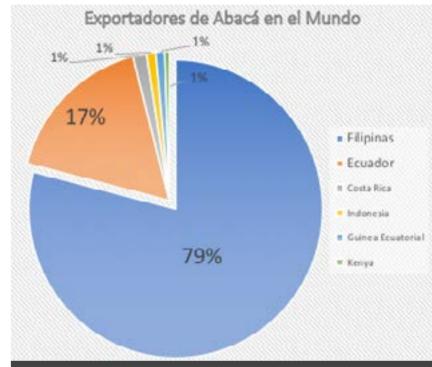
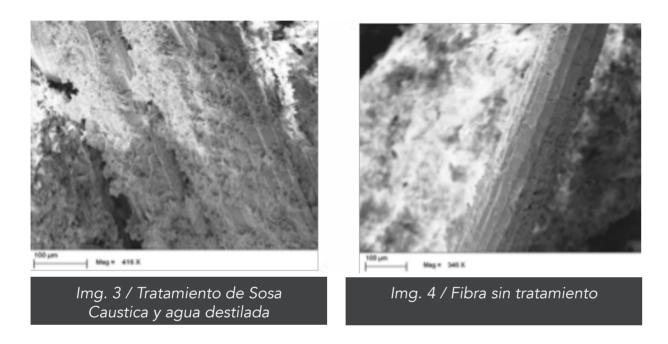


Fig. 1.1 Exportadores de Abaca Fuente: Corporación Abacá Del Ecuador

ficación nos da 6 tipos de fibras que varían desde los colores marrón a blanco siendo la fibra más clara y de menor diámetro la de mejor calidad (Corporación Abacá Del Ecuador, 2007).

La falta de conocimiento sobre la fibra y la ausencia de una industria que manufacture productos especializados en la utilización del abacá deriva la carencia de valor agregado de este recurso natural ecuatoriano, en el caso de las productoras de este recurso durante los años 2018 y 2019 se exportaron fibras valoradas en 29 millones de dólares.

Experimentación con abacá en materiales compuestos


duada de la UDLA(Universidad De Las Americas) de este nuevo material para la creación de objetos

En Ecuador, dar valor a esta fibra ha sido una in- en Quito-Ecuador, cuyo emprendimiento llamado quietud reciente, debido a esto se han desarrollado Quinuaca, el cual utiliza la fibra de abacá creando emprendimientos como resultado de proyectos de un material compuesto parecido a un tablero agloinvestigación de estudiantes universitarios, como merado, cuya mezcla es con harina de quinua, en es la empresa creada por Daniela Quevedo, gra- un taller de la UDLA el cual ha implementado el uso

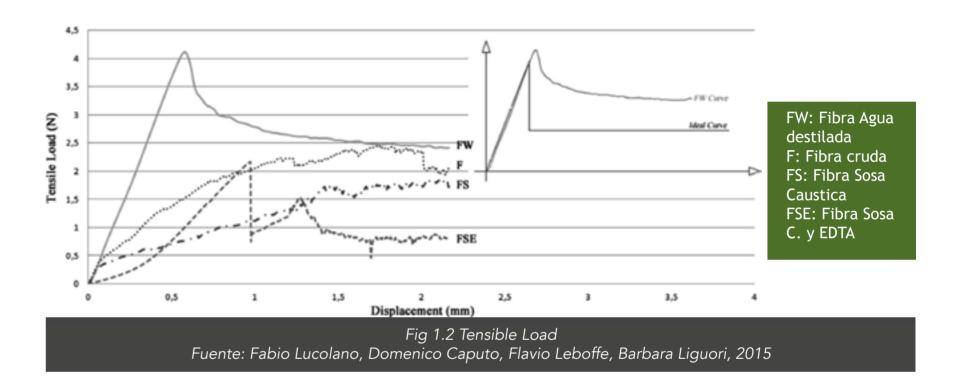

Spec.	Tipo de compues- to	Carga de fibra (wt.%)	Resistencia a la tensión (MPa)
1	Capa sim- ple	2.6	21.67
2	Doble Capa	5.26	22.89
3	Triple Capa	7.9	29.87

Tabla 1.1 Experimentacion por Compuestos Fuente: A. K. Sinha, H. K. Narang, S. hattacharya, 2018

Por otra parte, en la India se han realizado experimentos para comprobar la fuerza del abacá combinado con una matriz de resina epoxi, cuya resistencia a la tensión según los resultados del estudio es de 29.87 MPa utilizando una triple capa de fibra y resina. Para realizar este experimento la fibra se tuvo que someter a un tratamiento que consiste en lavar la fibra con agua, luego hervir en una solución al 5% de sosa caustica durante dos horas para obtener un nivel del ph de 7 es decir un ph neutro y luego es secada al aire. En la tabla se muestran los resultados obtenidos para los distintos especímenes que fueron sometidos a pruebas de tensión. (Kumar Sinha, A., Narang, H. K., & Bhattacharya, S., 2018)

Estudios combinando abacá con yeso se han realizado en Italia, para crear una alternativa al gypsum, en esta experimentación la fibra fue tratada de manera similar al estudio en la india, sin embargo, también se hicieron pruebas con agua destilada el cual, según sus resultados, se obtuvo una mejor adherencia entre la matriz de yeso y la fibra. (F. Lucolano, D. Caputo, F. Leboffe, B Liguori., 2015)

En el grafico se puede observar que para este caso el tratamiento de fibra con agua destilada mejora las propiedades del material compuesto por yeso y fibra de abacá mientras que la aplicación de sosa caustica reduce su resistencia a la tensión.

1.2 ESTADOS DEL ARTE

Obtención de Materiales Compuestos de Matriz Poliéster reforzados con Fibra de Abacá mediante Estratificación manual

En las pruebas realizadas por P. Pontón y V.H Guerrero (2010) sobre una matriz poliéster reforzado con fibra de abacá. Los especímenes fabricados fueron sometidos a ensayos de tracción y flexión. Los resultados obtenidos mostraron que el compuesto mejora las propiedades mecánicas. Es decir que existen potenciales aplicaciones de la fibra de abacá en la producción de nuevos materiales, y este trabajo sirve como guía para la aplicación de dicho material. Como en los estudios realizados en otros países, la fibra es tratada para obtener un ph neutro. En este caso se realizaron varias probetas con la misma fibra de abacá cortada en distintas longitudes y la matriz poliéster en este caso fue diluida con estireno monómero y se obtuvo una solución al 10% v/v para así reducir la viscosidad de la resina, una vez diluida se agregó octoato de cobalto a la solución en una concentración volumétrica del 0.5%, a esto se adiciono la fibra en sentido longitudinal en el caso de la fibra larga mientras que la fibra corta y media fue orientada al azar, a esto se agregó de MEKP como lo muestra la tabla. (Pontón, P., & Guerrero, V. H., 2010)

Configuración del re- fuerzo	Sistema catalítico	Longitud de fibra (mm)	Fracciones volumétri- cas nominales de fibra
Fibra corta al azar	Octoato de cobalto: 0.5 % v/v MEKP: 1.5% v/v MEKP: 1.5% v/v	5 10	0.20 0.25
Fibra continua longitu- dinal	Octoato de cobalto: 0.5 % v/v MEKP: 0.75% v/v	250	0.20 0.25 0.30 0.35

Tabla 1.2 Fibras Características Fuente: Pontón, P., & Guerrero, V. H., 2010

Posterior a su curado, las probetas fueron sometidas a ensayos de tracción y flexión obteniendo los siguientes resultados:

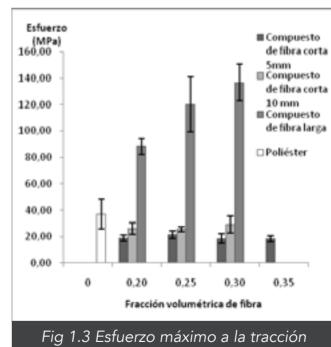


Fig 1.3 Esfuerzo máximo a la tracción Fuente: Pontón, P., & Guerrero, V. H.

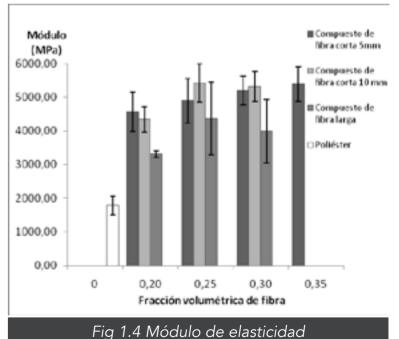
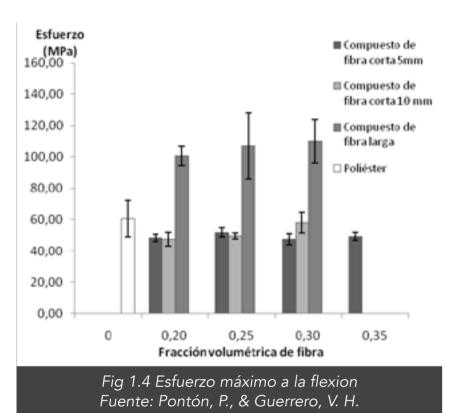
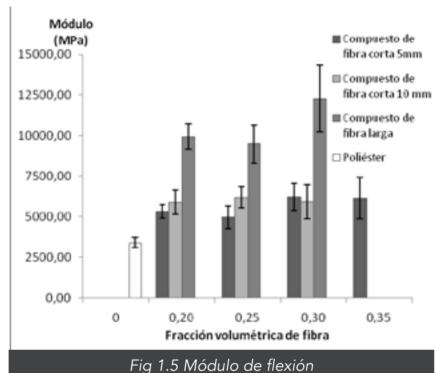




Fig 1.4 Módulo de elasticidad Fuente: Pontón, P., & Guerrero, V. H.

Fuente: Pontón, P., & Guerrero, V. H.

Los resultados concluyentes de este trabajo demuestran que la aplicación de la fibra de abacá a la resina poliéster mejoro sus propiedades mecánicas tanto en flexión como en tracción en un 270%, lo cual para la aplicación resulta muy útil en la creación de superficies curvas o planas ya que tienen una resistencia aceptable para la fabricación de productos.

Nuevos materiales: aplicaciones estructurales e industriales

En el capítulo 3 y 4 del libro Nuevos materiales: aplicaciones estructurales e industriales (2011), se realiza un estudio a profundidad materiales compuestos por fibras naturales, en el cual se hace énfasis en la combinación de fibras vegetales y biopolímeros, debido a que partir de polímeros biodegradables y fibras naturales se pueden desarrollar materiales completamente ecológicos, ya que desde el punto de vista medioambiental al no ser productos derivados del petróleo generan grandes expectativas, estas propuestas ecológicas tendrían una mayor aceptación debido a la tendencia hacia la protección medioambiental. Para el uso de biopolímeros los estudios se han centrado en su mayoría al uso de matrices de PLA que es un polímero biodegradable sintético.

Tipo de fibra y conteni- do	Tipo de PLA	Metodo de fabricación	Resisten- cia a la traccion (MPa)	Modulo de Young (GPa)	Resistencia al impacto (KJ/cm2)
Lino (30%)	PLLA	Ácido poliláctico	70	8.4	17,8
Lino (40%)	Ácido poli- láctico	Extrusión + modificacion por fusión	68	7.2	N/E
Lino (40%)	Ácido poli- láctico	Moldeo por inyección	45	7.2	11
Lino (50%)	Ácido poli- láctico	Moldeo por compresión	99	60	N/E
Algodon (30%)	PLLA	Extrusion + modificación por fusión	30	68	58
Yute (40%)	PLLA	Moldeo por compresión	100	94	14,3

Tabla 1.3 Fabricación de otras fibras. Fuente: Nuevos materiales: aplicaciones estructurales e industriales 2011

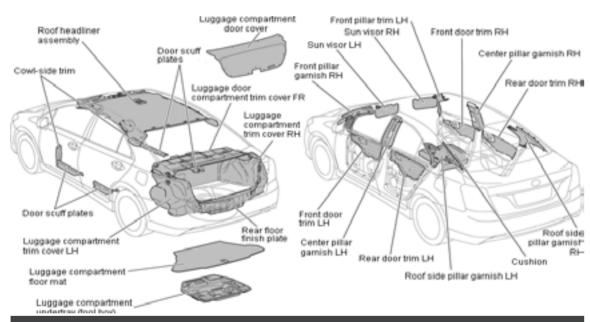
Aquí se puede evidenciar como se está aprovechando las fibras naturales en conjunto con biopolímeros tanto en la investigación como en la fabricación de productos, estas incursiones en el área ecológica ha sido en gran medida debido a las políticas internacionales sobre el uso de plásticos, incentivando la aplicación de materiales amigables con el medioambiente, tal es el caso de la fabricación de envases donde países como Alemania, Canadá, Estados Unidos y China han podido cooperar de manera productiva para impulsar el desarrollo de plásticos biodegradables reforzados con fibras naturales, para reducir así el volumen de dichos residuos.

Img. 5 Algodon Fuente: https://www.pinterest.at

Ima. 6 Lino Fuente:https://tapiceriachihuahua.com

Img. 7 Yute Fuente:http://agriculturadecafeargelia.blogspot.com

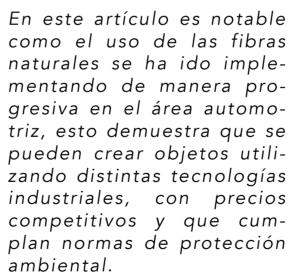
Img. 8 Ácido Poliláctico Fuente: https://www.pngwing.com


Img. 9 PLA Fuente: https://tresde.pe

Plásticos reforzados con fibras naturales en el sector automotriz

En el artículo de Tadeusz Ma- téticas, tales como la fibra de jewski v Andrzej Błędzki (2015) vidrio o fibra de carbono. Sin autopartes tienen algunas pro- estableció la Directiva 2000/53/ piedades que pueden dar cum- CE con modificaciones M1-M9, plimiento a nuevos reglamentos el cual establece que los resiambiente.

Los plásticos reforzados por fibras fundamental exige que los resipor la aparición de las fibras sin- común en el sector automotriz.


los plásticos reforzados con fibras embargo, debido a los cambios naturales y sus aplicaciones, prin- en la política sobre gestión de cipalmente en la producción de residuos el Parlamento Europeo establecidos para proteger el duos deben ser gestionados correctamente y cuyo principio tienen muchas aplicaciones en duos se reutilicen y valoricen y sectores como el doméstico, au- que se conceda prioridad a la tomotriz y aeronáutica. En el sec- reutilización y al reciclado, estor automotriz la compañía Ford tas medidas fueron tomadas en desde el año de 1930 se utilizó gran parte debido a que el área por primera vez este concepto automotriz genera en Europa de plástico reforzado con figuras anualmente de ocho a nueve naturales aplicado a la produc- millones de toneladas de resición de la defensa delantera de duos. Otro de los motivos para sus vehículos. Durante el periodo introducir fibras naturales al posquerra la utilización de plás- sector automotriz es la reducticos reforzados con fibras natu- ción del 10% de la masa con lo rales se popularizo en el campo que se obtiene mejores propieautomotriz reemplazando a las dades mecánicas, con una usapartes metálicas cuya resistencia bilidad y manejabilidad mucho mecánica no era de mayor impor- mejor que la fibra de vidrio, en tancia, posteriormente las fibras tanto a la matriz el uso de ternaturales fueron reemplazadas moplásticos es la opción más Los fabricantes de vehículos cooperan con compañías especializadas en la fabricación de autopartes, Johnson Controls, Lear International y Magna son los proveedores a nivel mundial de componentes para automóviles, estos componentes deben ser competitivos tanto en precio como en funcionamiento y también deben cumplir con las normas medioambientales. Las aplicaciones comunes usadas de plásticos con fibras naturales en un automóvil se encuentran en paneles de las puertas delanteras (1.2 − 1.8 kg), paneles de las puertas traseras (0.8 − 1.5 kg), respaldos de asientos (1.6-2.0 kg), cubierta de cajuela (1.5-2.5 kg), cabeceras (≈2.5 kg) y se espera que haya cada vez más componentes reforzados con fibras naturales.

lmg. 10 Toyota en su modelo SAI 2009 aumentó el uso de los bioplásticos hasta 60% para las partes interiores Fuente:

En cuanto a la técnica de fabricación de dichos componentes es similar a la de plásticos reforzados con fibra de vidrio, igualmente cada tecnología de producción automotriz tiene sus limitaciones y posibilidades. Y se ha demostrado en experimentos que algunos polímeros reforzados por fibras naturales pueden ser reutilizados hasta siete veces.

Jonhson Controls usa fibras naturales como madera, lino, yute, sisal, abacá, kenaf, ramio, malla de lana y también celulosa sintética las que se juntan para obtener un material compuesto con resina de acrilato, melanina, fenol, epoxi poliuretano, fenol poliéster, látex, termoplásticos como PP o Co-PES, acetato de celulosa, ácido poliláctico, resina natural, lactato.

Img. 11 Modelos como el Mercedes-Benz Clase S, tiene 45 piezas de plástico reciclable y 27 partes de materias primas y es el primer coche con certificado ambiental.

mg. 12 Modelos como el Mercedes-Benz Clase S, tiene 45 piezas de plástico reciclable y 27 partes de materias primas y es el primer coche con certificado ambiental.

Caracterización mecánica a flexión de materiales compuestos con matriz foto-polimérica reforzados con fibras de abacá y cabuya mediante impresión 3d

En el estudio realizado por Llanes, Peralta, Pucha y Rocha (2019) propone que los materiales compuestos y la fabricación por impresión 3D son una alternativa factible para la producción de autopartes, aquí se realizan pruebas de laboratorio para medir su resistencia mecánica y simulación computacional para su aplicación, utilizando una matriz foto polimérica reforzada con fibra de abacá y otra con fibra de cabuya.

En este estudio se ha planteado reemplazar la rejilla de ventilación de un automóvil que, debido a su manipulación esta tiene a romperse, debido a ello la alternativa de la impresión 3D reforzada con fibras naturales resulta atractiva, para este caso se utiliza una proporción volumétrica de la fibra del 20% y utilizando la tecnología de impresión 3D aditiva PolyJet, esta tecnología consiste en ir inyectando fotopolímeros sobre una superficie, depositada capa por capa, para este estudio se ha detenido la impresión capa por capa para ir agregando un 20% de fibra de la fracción volumétrica.

Los resultados de todo el proceso demostraron que se incrementó el módulo de elasticidad en el material compuesto por fibra de abacá y la resina foto polimérica, sin embargo, los esfuerzos de flexión disminuyeron en comparación a la matriz Los resultados de este ensayo demuestran que la fabricación de una rejilla para la ventilación mediante impresión 3d con una resina foto polimérica reforzada con una fibra natural es viable, debido a que al realizar un análisis de esfuerzo en la simulación computacional de las rejillas de aire acondicionado sometidas a una carga, permitió verificar que no existe mucha diferencia significativa entre los materiales simulados, por lo tanto cabe la posibilidad de que esta tecnología sea utilizada para la fabricación de otro tipo de objetos de uso cotidiano.

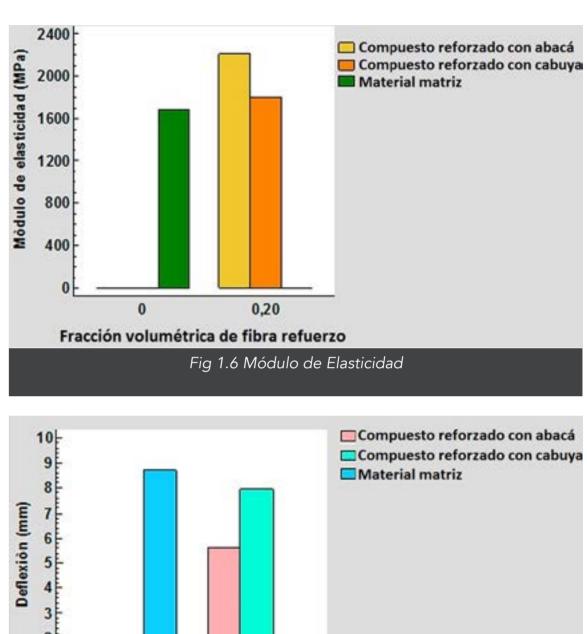


Fig 1.7 Módulo de Deflexión

0.20

Fracción volumétrica de fibra refuerzo

Abaca Furniture Manufacturer

En el video se muestra parte del proceso de manufactura de mobiliario utilizando como parte de su materia prima la fibra de abacá, realizando tejidos para aplicarlos en el mobiliario, Abaca Furniture es una empresa ubicada en Panamá, se demuestra que se puede fabricar mobiliario usando la fibra como materia prima, es posible dar valor a la fibra natural como parte del mobiliario generando nuevas propuestas en el contexto local. Desde el punto de vista productivo se puede decir que la obtención de la fibra de abacá como materia prima para la fabricación de mobiliario generaría una cadena de valor nueva creando nuevas plazas de trabajo.

Este video sirve para demostrar el uso productivo del abacá en artículos del hogar utilizando la fibra como materia prima en forma de tejidos, es de suma importancia tomar en cuenta que la fibra de abacá es producida en el Ecuador, y es de mejor calidad que el de las filipinas, su demanda en el exterior es alta, pues esta fibra de abacá local, en su mayoría es para la exportación. Observando el video, puede existir la posibilidad de utilizar nuestra fibra para producir artículos para el hogar y tengan la capacidad de ser más valorados y tengan una mejor aceptación tanto en el extranjero como en la localidad debido a la fibra de abacá ecuatoriana es de mejor calidad.

1.3 HOMOLOGOS

Be.e E-Scooter

Este escúter eléctrico diseñado por Maarten Heijltjes & Simon Akkaya Waarmakers Studio, Amsterdam en colaboración con Compositelab INHolland, Delft NPSP & Van Eko, fue fabricado a partir de fibra de lino en combinación con una bioresina.

Img. 14 / Título: Vista lateral del Escúter eléctrico Be.e

Su cuerpo es un monocasco similar a una cáscara de huevo sin embargo es resistente y debido a su material es altamente sustentable, elimina la necesidad de una estructura interna y de plásticos adicionales, haciéndola más ligera y fuerte

Img. 15 / Título: Detalles en crudo y pintados del Be.e

Hemp Chair

Img. 16 / Título: Cuatro vistas de la monosilla Hemp

Img. 17 / Título: Wener Aisselinger y la silla hemp

Esta silla es fabricada a partir de la fibra de cáñamo y kenaf en conbinación con una resina acrílica termoestable a base de agua.

Esta silla diseñada por el arquitecto Wener Aisselinger, es la primera monosilla realizada con tecnología de moldeado bajo presión y calor, utilizando materiales completamente ecológicos

La delgada capa y el uso de un nuevo material resulto ser un problema de ingeniería, para poder estructurar esta silla que es sumamente ligera.

Flaxland Kayak

Este cayac esta hecho de fibra de lino combinado con resina acrílica a base de aceite diseñada por Simon Cooper, esta canoa fue hecha para armonizar con el ambiente, introduce materiales ecológicos eliminando las resinas petroquímicas o la fibra de vidrio, es un cayac ligero y con una excelente maniobrabilidad

TIPU Lamp

Creada por el reconocido diseñador de iluminación David Trubridge, estas lámparas de dos metros de diámetros fueron realizadas a partir de harakeke o lino de nueva Zelanda, combinándola con PLA.

Tipu es la palabra maorí para brotar o crecer, y el diseño de David Trubridge está inspirado en los patrones orgánicos e irregulares que reflejan el crecimiento de la naturaleza.

1.4. CONCLUSIONES

Realizando el análisis teórico de lo aquí expuesto se puede conocer y evidenciar el uso de diferentes fibras naturales para la producción de varios objetos, también se ha demostrado que la fibra de abacá tiene muchos posibles usos si es combinada con otro material para obtener un material compuesto sustentable.

También se ha expuesto el creciente interés global por reducir el impacto medioambiental, al reemplazar productos que antes eran hechos con derivados del petróleo, en varios ámbitos de la producción.

La aplicación de fibras naturales en materiales compuestos brinda resistencia con lo que se puede ampliar el uso de distintos materiales en varias aplicaciones utilizando varias tecnologías, tanto artesanales como tecnología de punta como la impresión 3D.

Se ha observado en este capitulo que se puede agregar valor a la fibra de abacá si se crea una industria la cual aproveche las bondades de la fibra aplicándola en la fabricación de productos, no solo a nivel de souvenirs, sino también creando objetos utilitarios.

VOLVER ÍNDICE

2.1 INTRODUCCIÓN

En este capítulo se analizará conceptos del marco teórico con la finalidad de tener una comprensión más clara del tema, para posteriormente definir el tipo de producto para el hogar que se va a diseñar y entender sobre el material y el proceso por el que tiene que pasar antes de obtener la fibra, también se indagara sobre algunas tendencias que servirán como guía para establecer el perfil de usuario.

VOLVER

ÍNDICE

2.2 FIBRAS

Fibra: filamento de origen natural, artificial o sintético, apto para ser hilado y tejido, que generalmente presenta gran finura y buena flexibilidad. (Languages Oxford, 2020)

Se puede decir que son materiales policristalinos o amorfos, tienen diámetros pequeños y poseen gran longitud. Los materiales de las fibras son generalmente polímeros o cerámicos. También se tiene la utilización de fibras naturales como abacá, cabuya y coco, incorporados como elementos de refuerzo en una matriz polimérica. Este tipo de materiales ofrecen muchas ventajas, entre las cuales cabe resaltar la reducción de costo de manufactura y su menor impacto ambiental. Las fibras tienen resistencia a la fatiga y rigidez, estas fibras se pueden hilar, trenzar, tejer, con la finalidad de obtener una estructura que conforme un objeto, tanto usando técnicas de hilado, trenzado, tejido, o puede ser usada como refuerzo en un material compuesto. (Pontón, P., & Guerrero, V. H., 2010)

Existen dos tipos de fibras, que son utilizadas como refuerzo en materiales compuestos y en la industria textil, estas son las fibras sintéticas y las fibras naturales

Fibras Sintéticas

Img. 21 / Título: Fibra Sintetica

Son hechas por el hombre y pueden ser obtenidas de polímeros naturales o de polímeros sintéticos. Las fibras químicas fueron creadas inicialmente. Se emplean debido a la posibilidad de adaptar sus características a cada uso específico, creando nuevas fibras para responder las exigencias del mercado, mientras que las fibras naturales deben ser utilizadas con sus características inherentes e inmutables. (Lockuán, 2013, pp. 59-60)

Entre las mas utilizadas en la industria textil están:

Fibra	Resistencia	Resistencia a la abra- sión	Resiliencia	Resistencia al desgaste
Rayón-vis- cosa	Mediana	Mediana	Pobre	Buena
Acetato	Pobre	Pobre	Pobre	Buena
Triacetato	Pobre	Pobre	Buena	Buena
Acrílico	Mediana	Pobre	Buena	Mediana
Vidrio	Excelente	Pobre	Excelente	Excelente
Nylon	Excelente	Excelente	Excelente	Pobre
Poliéster	Excelente	Excelente	Excelente	Pobre
Spandex	Pobre	Pobre	Excelente	Excelente

Tabla 2.1 Fibras mas Utilizadas

Fibras Vegetales

Las fibras vegetales son filamentos lignocelulósicos compuestos de células largas y delgadas de esclerénquima, que se encuentran formando parte de las plantas y que cumplen funciones específicas dentro de ellas, como las de dar soporte, dureza y rigidez a los tejidos vegetales. Dependiendo de la parte de la planta de donde se extraiga la fibra, existen fibras duras, blandas y de superficie, el abacá es considerada una fibra dura ya que esta es extraída del tallo como extensión de sus hojas. (Pontón, P., & Guerrero, V. H., 2010)

Tipo de fibra	Origen	Fibra	Características
Las fibras vege- tales blandas	Provienen del tallo	Lino, ramio, yute, cáñamo	Suavidad al tac- to, flexibilidad, elasticidad y por su finura
Las fibras duras	Provienen de las hojas	Abacá, plátano, cabuya, formó	Diámetro grue- so y por ser ás- peras al tacto y son más rígidas que las fibras blandas.
Las fibras de superficie	Provienen de los pelos de las epidermis	Algodón	Son suaves, muy finas y flexibles

Tabla 2.2 Origen y características de la fibra.

Por otro lado, las fibras también se pueden clasificar de acuerdo a su uso, en cestería, cordelería, techado de casas, fabricación de escobas, material para relleno, textil, construcción de embarcaciones, uso comercial. (Macía, 2006)

En el caso del abacá, esta fibra natural se utiliza para la fabricación de cordelería principalmente, sin embargo, como se mencionó en el capítulo anterior, esta fibra se la exporta como materia prima.

Fibra de Abacá (Musa textilis)

La fibra de abacá, es una fibra dura debido a que esta proviene de la vaina de las hojas que componen al pseudotallo de la planta y están compuestas por células largas y delgadas que brindan a las hojas soporte estructural También conocido como cáñamo de Manila, el abacá es una planta de estructura herbácea perteneciente a la familia de las musáceas. Es nativa de las Filipinas y su producción se acopla muy bien a los trópicos húmedos. (Pontón, P., & Guerrero, V. H., 2010) La fibra de abacá es de color claro, fina y brillante. Utilizada en gran medida en la industria textil

gracias a sus propiedades físicas, flotabilidad, resistencia al daño por agua salada y al poseer una gran longitud puede ser aprovechada de mejor manera.

El abacá fue usado en los aparejos de barcos, y sobres resistentes de papel manila. Se emplea para hacer cuerdas, bramantes, cordeles, líneas de pesca y redes, así como tela basta para sacos. También está creciendo el nicho de mercado especializado en ropa, cortinas, pantallas y tapicería de abacá. El papel hecho de la pulpa de abacá es usado en papel para esténciles, para filtros de cigarrillos, bolsas de té y pieles de salchichas, y también en papel moneda (los billetes del yen japoneses contienen hasta un 30% de abacá). Es ampliamente usado en el campo automotriz para la fabricación de partes de interiores de los autos. En la elaboración de cabos, el abacá es usado de preferencia a cualquier otra fibra;

Img. 24 / Illustracion fibra de abacá

porque, además de su enorme resistencia a la tensión, difícilmente se deteriora por la acción del agua dulce o salada y de otros elementos naturales, como el viento y el sol. (FAO, 2009).

Proceso de extracción de la fibra de abacá.

Para obtener la fibra, es un proceso mayormente manual, realizado por agricultores dedicados a la extracción de la misma, en el proceso de limpieza esta fibra es clasificada en cinco tipos de fibra de abacá, dependiendo de parámetros tales como el color, suavidad al tacto y longitud como se muestra a continuación

Fig 2.1 Proceso de obtencion de la Fibra

Tipos de fibra de abacá y sus características

En el siguiente cuadro se compara la clasificación de los tipos de fibra de abacá, estos son clasificados según su color finura y del lugar de donde sean obtenidos, para la exportación los de tipo uno y dos se han agrupado en un solo tipo ya que no existe una mayor diferencia.

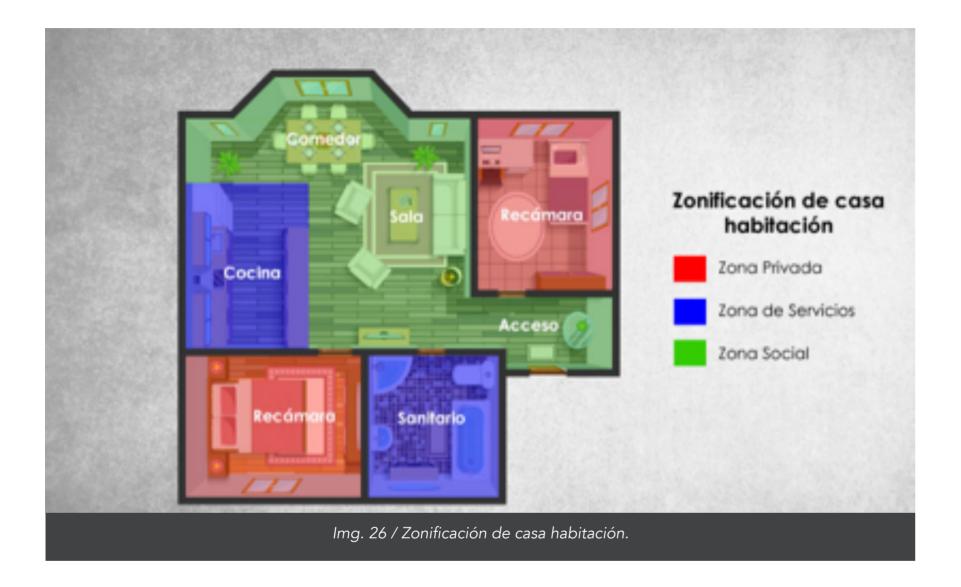
Estructura y propiedades físicas de la fibra de abacá

La fibra de abacá tiene forma de filamento, constituida por muchas fibrillas individuales, que se encuentran unidas entre sí por gomas naturales. La fibra posee buen lustre natural, es fuerte y lo suficientemente flexible. La fibra no es afectada por el agua salada, tiene una ligera acidez natural, la cual puede causar corrosión cuando es usada como núcleo en cuerdas de alambres. (Cook, 1964)

La resistencia mecánica de la fibra de abacá comparada con las otras fibras naturales se demuestra en la siguiente tabla

Fibra	Densida- d(g/cm3)	Resistencia a la trac- ción(MPa)	Módulo de elasticidad (GPa)	Elongación a la fractu- ra (%)	Absorción de hume- dad(%)
Cabuya	1,3	305,15	7,5	4,96	
Yute	1,3	393-773	26,5	1,5-1,8	12
Сосо	1,2	175-220	4 - 6	15 - 30	10
Abacá	1,3	400-1289	45	2,7	8-10
Sisal	1,5	511-635	9,4 -22,0	2,0 - 2,5	
Algodón	1,5	393-773	27,6	7 - 8	8 - 25
Ramio	1,5	400-938	61,4 - 128	3,6 - 3,8	12 - 17
Lino	1,5	345-1035	27,6	2,7-3,2	7
Cáñamo	1,4	690	35	1,6	8

Tabla 2.3 Resistencia mecánica de diferentes fibras.


2.3 PRODUCTOS PARA EL HOGAR

El concepto de hogar si bien se refiere al lugar donde se habita, se debe definir que es un objeto para el hogar y que afectos nos genera, para esto Baudrillard (1969) afirma:

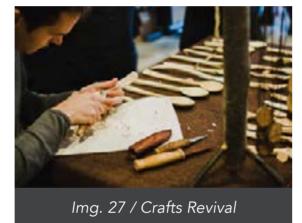
Este hogar es un espacio específico, que no se preocupa mucho de un ordenamiento objetivo, pues los muebles y objetos, tienen como función, en primer lu-

gar, personificar las relaciones humanas, poblar el espacio que comparte, y poseer un alma (por lo demás pueden tener gusto y estilo, así como no poseerlo). Seres y objetos están ligados, los objetos cobran en esta una complicidad, un valor. Estos objetos dejan una impresión y un recuerdo en la estructura del hogar. (p14)

Zonificación de casa

El espacio interior de una casa se divide en tres zonas fundamentales, estas son la zona privada, la zona de servicios, y la zona social

Zona Privada


En la zona privada se realizan las actividades de dormir, descansar, estar, vestirse, estudiar, leer. Aquí se conserva la privacidad y comodidad mediante la una distribución adecuada de luz y ventilación (SoyArquitectura, 2020). Estas zonas pueden ser los dormitorios, cuartos de estudio.

Zona de Servicios

Dentro de la zona de servicios se realizan las actividades de aseo, lavado, planchado y almacenamiento, preparación de alimentos, trabajo, circulación (SoyArquitectura, 2020). Estas zonas, son los baños, lavandería, garaje, corredores, oficina en casa.

2.4 CRAFTS REVIVAL

El carácter difuso de la distinción entre artesano y diseñador tiene un paralelo en la concepción del Nuevo Diseño de Andrea Branzi o los diseños de Jhon Makepeace, donde se hace escasa distinción entre el diseño en series o la producción de piezas únicas Este movimiento se originó en los años 50s en Estados Unidos origi-

nado de algún modo por el reconocimiento al diseño escandinavo, el cual se caracteriza por una tradición artesanal, donde la mano de obra de calidad y terminados naturales son parte del diseño de dichos objetos, esto se percibe como un antídoto a los objetos producidos en masa, y a la globalización (Blanco, 2016).

Con esto se pretende exponer que el objeto no es un objeto industrializado sino un objeto el cual se incluirá la mano de obra artesanal con el fin de integrar al sector artesanal.

2.5 DISEÑO ORIENTADO A LA IDENTIDAD

Con la intención de crear objetos que contengan un sentido de pertenencia e identidad es necesario introducir este concepto.

Para esto se debe comprender que lo diferente en un mercado globalizado, a pasado a ser un tema de valor económico importante. Esto se refiere que la lógica de este mercado globalizado a dado la oportunidad de la inserción de productos diferentes en relación del modelo general.

Para que esta intención de frutos todos los actores del diseño deben estar involucrados, es decir debe ser una labor mancomunada como propone Ricardo Blanco, en un inicio es una acción combinada de gestión, economía, y cultura (Blanco, 2016).

Desde la gestión

Desde la gestión, un diseño con identidad no se genera solamente con la intención de hacerlo, la reiteración de ciertas condiciones puede ir generando un criterio de identidad e identificación de dichos objetos, estas condiciones pueden ser a través de la recu-

peración de costumbre, utilización de materiales, o técnicas propias. La creación de una marca o sello de origen, puede ser un objetivo estratégico, pero la identidad como tal debe nacer de manera espontánea por la presión que se ejerza desde la práctica profesional, de tal manera que sea beneficioso para todos, es decir, para los que producen, comercializan y para los consumidores que buscan objetos especiales.

Blanco recomienda que, para desarrollar una gestión orientada a la identidad, es ideal tener una comunicación con los organismos que agrupen a los productores, que permita la coordinación de esfuerzos para lograr un beneficio mutuo y en otra etapa una forma de colaboración con los fabricantes, de tal manera que se pueda racionalizar la producción en medida que los micro emprendimientos puedan especializarse en la fabricación de cierto tipo de piezas permitiendo así la asociación estratégica empresas(Blanco, 2016).

Desde la economía

Desde la economía, el beneficio se deriva desde la estrategia planteada que se manifiesta en el reconocimiento o identificación de la producción local por parte de los consumidores (Blanco, 2016).

lmg. 30 / Economía

Desde la Cultura

Desde la cultura, al tratar de establecer una estrategia de diseño identificable culturalmente, Blanco dice que se debe considerar ciertos aspectos tales como que:

- •El diseño es y debe ser visto como una herramienta de la cultura.
- •El diseño es un factor de posicionamiento cultural en la globalidad.
- •El diseño como elemento cultural adquiere valor económico Los objetos pasan a ser parte de la historia de un lugar, entonces

Img. 31 / Cultura

los nuevos productos que a ese lugar refiera pasan a ser parte de la cultura local. (Blanco, 2016)

Pensar en lograr una identidad cultural a través del diseño de productos de uso no está alejado de las pautas económicas, pues si los productos tienen éxito comercial, es posible que los miembros de esa comunidad lean ese éxito como una valoración positiva de los conceptos identitarios que presentan los productos. Este hecho va a fortalecer el camino del diseño al ir construyendo estratos estéticos de pertenencia, lo que potenciará el sentido de comunidad de esa sociedad.

2.6 TENDENCIAS

Las tendencias se basan en datos históricos que proporcionan al diseñador información sobre temas recurrentes que cuentan con la aceptación del gran público. Esta información se recopila y analiza para determinar tendencias potenciales en proceso de desarrollo. El color y el estilo son los principales sectores para pronosticar tendencias. (Lau, 2013)

A continuación, se considerarán algunas de las mega-tendencias para ser tomadas en investigadas por Euromonitor International, empresa dedicada a la investigación de mercados.

Regresar a lo básico por un tema de status

De acuerdo a Euromonitor International esta es una mega tendencia que se ha extendido desde el 2019 y la cual va a continuar en los siguientes años, esta tendencia explica que los consumidores están rechazando los productos genéricos fabricados en masa, están en búsqueda de productos elaborados de manera artesanal, que ha de más les permita expresar su individualidad, el consumidor está encontrando más valor en ofertas de mayor calidad, únicas y diferenciadas que aporten cierto nivel de status. (A. Angus, G. Westbrook, 2020)

Orgullo local, en camino a ser global

Esto se refiere a que el consumidor está apelando a la individualidad en coordinación con la identidad local, esta tendencia según Euromonitor, se definirá de manera más precisa y relevante durante el 2020 y los años posteriores, estas predicciones se deben a un estudio realizado en el 2019 a nivel internacional, donde el 27% se han trasladado desde las cadenas más grandes, lo cual representa un movimiento sutil pero significativo hacia las marcas locales. (A. Angus, G. Westbrook, 2020)

Agnósticos respecto a la edad

Se refiere a las personas mayores que desean ser tratadas como más jóvenes, en las investigaciones de Euromonitor se reflejan que el 46% de las personas entre los 54 a los 74 años creen que pueden hacer una diferencia positiva en el mundo y la sociedad que los rodea con sus decisiones y acciones al momento de compra, esto también señala que los límites de la vejez se están extendiendo, en los países desarrollados se ha evidenciado que las personas ya no toman una postura pasiva con respecto a la vejez, estas cuidan más de su apariencia se preocupan más sobre problemas y temas de actualidad, también tienen una capacidad adquisitiva más amplia con respecto a los millenials (A. Angus, G. Westbrook, 2020)

Consumidor consciente

El consumidor consciente busca la manera de tomar decisiones positivas sobre lo que compra, y una solución al impacto negativo sobre el consumismo global, Euromonitor dice que este enfoque respetuoso y compasivo involucra la consciencia sobre otros seres humanos, animales y el medio ambiente. (A. Angus, G. Westbrook, 2020).

3.1 INTRODUCCIÓN

Se analizará las entrevistas realizadas al Ing. Julio Sánchez gerente de la Cooperativa Abacá empresa dedicada a la extracción de la fibra de abacá, y también a la artesana Silvia Mangui artesana que se dedica a elaborar productos con esta fibra en el Ecuador. Por otra parte, se establecerá un perfil de usuario al cual estarán dirigidos los productos a realizarse, y finalmente a través de una metodología de diseño y tomando en cuenta a los conceptos del marco teórico, las entrevistas realizadas y el perfil de usuario se establecerá el tipo de producto a realizarse, finalmente se establecerán las ideas que deberán plasmarse en el prototipo del producto hecho con fibra de abacá.

VOLVER ÍNDICE

3.2 BRIEF DE INVESTIGACIÓN

Descripción

A través de una investigación de campo, se dará a conocer a los involucrados en la cadena productiva y la realidad de la fibra en el mercado local, se abordarán las técnicas utilizadas para la fabricación de objetos de fibra de abacá para poder definir de mejor manera los tipos de objetos

que se diseñarán. De esta manera se podrá definir también un perfil de usuario y establecer propuestas más adecuadas debido a las limitaciones tecnológicas que dispone la fibra.

Objetivos

- Conocer los usos del abacá en el mercado local
- Entender las técnicas usadas para la elaboración de objetos con la fibra de abacá
- Determinar el mejor uso de la fibra

Metodología

Para recabar esta información se realizarán entrevistas, una al Ing. Julio Sánchez gerente de la cooperativa abacá, con el fin de conocer los involucrados en la cadena productiva y conocer sobre la cosecha de la fibra de abacá, otra a la Sra. Silvia Mangui, artesana en fibra de abacá en el Ecuador, la información obtenida servirá para conocer las técnicas usadas para la producción de objetos con la fibra de abacá y sus limitaciones tecnológicas.

Resultados

Se analizarán los resultados de las entrevistas tomando en cuenta los datos más relevantes para la generacion de un reporte.

Análisis y Conclusión de las entrevistas

Poniendo en consideración las respuestas de los entrevistados, se pudo determinar que existen varias organizaciones que se dedican a la exportación de fibra de abacá, también que el proceso de extracción es completamente manual, que la provincia que tiene la mayor producción de fibra es la provincia de Santo Domingo y el 95% de la fibra extraída es para la exportación. En el área artesanal, existen distintas técnicas para la elaboración de productos con la fibra de abacá Es importante resaltar que en el Ecuador esta fibra sigue siendo desconocida ya que solo en la provincia de Santo Domingo se realizan este tipo de artesanías, también es evidente que no existen empresas ecuatorianas que utilicen la fibra de abacá para alguno de sus procesos y que la mayoría de esta sirve solamente como materia de exportación. Por otro las, las técnicas utilizadas dependen del tipo de producto que se realice, lo cual servirá para definir el producto a diseñar en esta tesis, además la artesana Silvia Mangui dio a conocer que se ofrecen capacitaciones a comunidades sobre como elaborar artesanías con fibra de abacá, y por último sobre la realidad de la comercialización de estas artesanías.

3.3 PERFIL DE USUARIO

Para establecer el perfil de usuario se ha tomado en cuenta las tendencias descritas en el marco teórico, estas han sido tomadas como relevantes debido a que son las que más se adaptan con la intención de esta tesis, así el perfil de usuario será una herra-

Img. 39 / Usuario

mienta que sirva de la mejor manera posible para establecer personajes que describirán a las personas que estén predispuestas a adquirir este producto.

Nombre:	Tendencias predominantes	Gustos			
Cristina	*Regreso a lo básico por un tema de	*Artesanías	100		
Foto:	*Orgullo local, en camino a ser global	*Cultura local *Cultura internacional *Ejercicio regular *Senderismo			
8	*Consumidor Consciente				
Edad:	27	Personalidad	1		
Profesión:	Médico General		*Extrovertida		
Estado Civil	Soltera	*Exigente *Dinámica			

Tabla 3.1 Perfil de usuario femenino.

Nombre:	Tendencias predominantes	Gustos		
George	*Agnóstico respecto a la edad	*Arte *Cultura local *Artesanía		
Foto:	*Regreso a lo básico por un tema de status			
	*Consumidor Consciente	*Naturaleza		
Edad:	64	Personalidad		
Profesión:	Jubilado Extranjero		*Ambientalista	
Estado Civil	Casado	*Amable *Excéntrico		
Ciudad	Cuenca			

Tabla 3.2 Perfil de Usuario Masculino

3.4 PARTIDAS DE DISEÑO

Img. 40 / Partidas de Diseño

Partida de diseño formal

El uso de la fibra se evidenciará en el diseño final, también se tomará en cuenta el tema de diseño orientado a la identidad conjunto con el Crafts Revival con la intención de mostrar que es un producto de diseño con mano de obra artesanal y que muestre elementos con acabados naturales

Partida Funcional

Al ser un elemento para la sala de estar, deberá estar destinado para uno de los usos de esta área común, ya sea como organización, almacenamiento, confort, iluminación.

Partida tecnológica

Considerando el Crafst Revival, este producto para el hogar será producido de manera artesanal en madera, haciendo evidente el uso de la fibra de abacá en su composición

3.5 IDEACIÓN

Concluido el marco teórico, perfiles de usuario y partidas de diseño, se procede a generar distintas ideas para desarrollar el diseño de un artículo para el hogar utilizando la fibra de abacá, mismo que tendrá una utilidad en la cotidianidad.

Ecológico

Que utilice materiales que estén acordes a los intereses de cuidar el medioambiente.

Plegable

Se trata de que el producto tenga elementos plegables para que puedan aumentar o reducir su tamaño.

Transportable

Al tratarse de un elemento que se puede transportar con facilidad es posible que el articulo sea utilizado en diferentes áreas que conforman el hogar.

Multifuncional

Ofrezca al usuario múltiples usos en el mismo objeto.

Desarrollo Sostenible

Esto se refiere a que se organizara de tal manera que la comunidad de artesanos se desarrolle utilizando la fibra de abacá, mismo que es un recurso natural renovable.

Modular

El producto pueda ser recombinado de diferentes formas por las partes que lo componen.

Desmontable

Es decir que los productos se puedan montar y desmontar con facilidad por el usuario.

Rústico

Que tenga un estilo rústico, es decir que proyecte los rasgos distintivos de su construcción y materiales

Economía circular

Que los desechos de la materia prima sean gestionados correctamente para reducir el impacto ambiental.

Tipológicos

Es decir que los objetos tengan una coherencia formal

3.6 CONCRECIÓN DE IDEAS

Fig 3.1 Objetos de Diseño

Se han tomado las propuestas más relevantes que formaran parte de nuestras propuestas de diseño **Ecológico**, para esto se utilizarán materiales que reduzcan su impacto negativo sobre su consumo.

Tambien vamos a considerar el **Desarrollo Sostenible**, estableciendo alianzas estratégicas con las asociaciones de artesanos de la fibra de abacá y sus productores.

Finalizando el proceso de ideación, en los objetos de diseño tenemos los **Tipológicos**, desarrollando relación de en la forma de los objetos.

3.7 DEFINICIÓN DE PRODUCTOS

Después de analizar los puntos mencionados anteriormente, tomando en cuenta el proceso de ideación y el área del hogar seleccionada, se ha decidido optar por dos elementos que se encuentran en esta área en común, una consola que sirva para organizar y almacenar ele-mentos que se encuentren en la sala de estar, y elementos de iluminación para la sala de estar, estos deberán evidenciar el uso de la fibra de abacá, dando protagonismo a la misma.

En el siguiente capítulo establecerá las propuestas para la realización de estos objetos.

Zona de Servicio

		M	lobiliario		
Baño	Lavandería	Garaje	Corredor	Oficina	Cocina
Mueble de baño	Perchero	Gabinete	Estante	Escritorio	Gabinete
Aparatos sanitarios	Estante	Estante		Librero	Taburete
Gabinete	Armario	Banco de trabajo		Silla	Estante
	Gabinete			Archivero	Alacena
		llu	minación		
Baño	Lavandería	Garaje	Corredor	Oficina	Cocina
Lámparas	Lámparas	Lámparas	Lámparas	Lámparas de	Lámparas
de techo	de techo	de techo	de pie	pie	de techo
			Lámparas	Lámparas de	
			de mesa	mesa	
			Lámparas	Lámparas de	
			de techo	techo	
			Lampara		
			de pared		
		Mi	sceláneos		
Baño	Lavandería	Garaje	Corredor	Oficina	Cocina
Portarrollos	Planchador	Repisa	Repisa	Organizador	Utensilios
				de escritorio	de cocina
Toalleros	Cesto de			Papelera	Porta
	ropa				cubierto
Canastilla				Portalápices	Panera
				Soporte para	Porta
				laptop	cuchillos
				Caballete	Especiero
				Reloj de pared	Porta salsas
				Reloj de mesa	Servilletero
				Bandeja de	Mesón de
				documentos	cocina

Zona Social

	Mobili	ario	
Acceso	Sala de estar	Comedor	Jardín
Recibidor	Sofá	Vajillería	Silla
Perchero	Sillón	Mesa	Mesa
	Mesa de centro	Silla	Butaca
	Mesa auxiliar		Fogón
	Centro de entretenimiento		
	Butaca		
	Esquinero		
	Estante		
	Diván		
	llumina	ción	
Acceso	Sala de estar	Comedor	Jardín
Lámparas de pie	Lámparas de pie	Lámparas de techo	Lámparas de pie
Lámparas de techo	Lámparas de mesa		
	Lámparas de techo		
	Miscelá	neos	
Acceso	Sala de estar	Comedor	Jardín
Elementos	Revistero	Elementos	Elementos
decorativos		decorativos	decorativos
Sombrillero	Elementos decorativos	Servilletero	
		Porta salsa	

Zona Privada

Mobiliario		llun	ninación	Misceláneos	
Dormitorio	Estudio	Dormitorio	Estudio	Dormitorio	Estudio
Cama	Escritorio	Lámparas de pie	Lámparas de pie	Joyero	Organizador de escritorio
Cajonera	Librero	Lámparas de mesa	Lámparas de mesa	Zapatero	Papelera
Velador	Silla	Lámparas de techo	Lámparas de techo	Repisa	Portalápices
Tocador				Cesto para ropa	Soporte para laptop
Ropero					Caballete
Baúl					Reloj de pared
Silla					Reloj de mesa
					Pizarrón

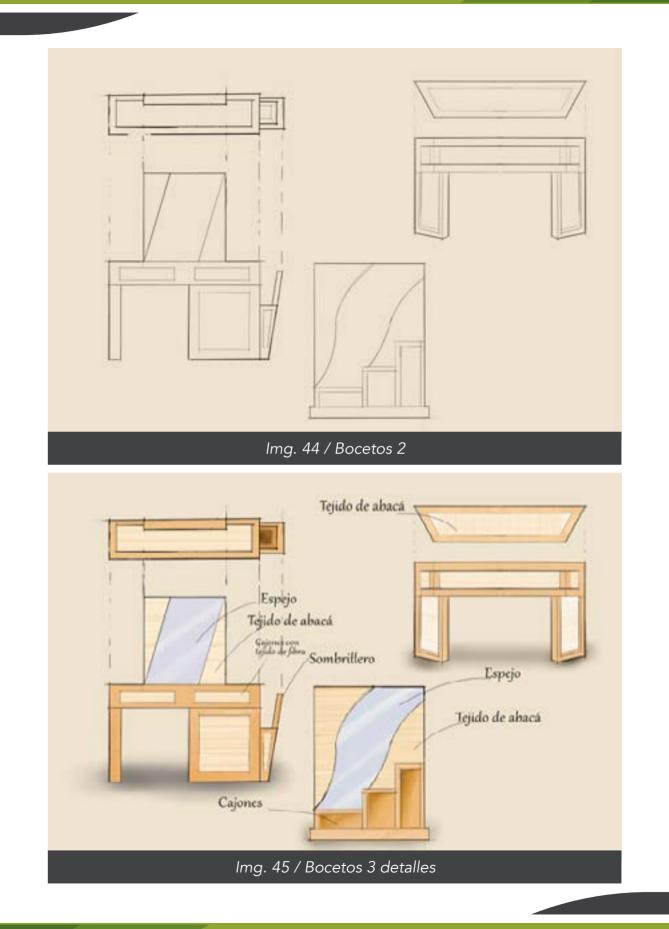
Tabla 3.4 Zona privada

Una vez revisado algunos de los objetos enumerados, los elementos de iluminación son el común denominador en varios de los espacios, en especial las lámparas de pie y las de techo, por otro lado en la zona social del hogar en la que se encuentra el acceso, como mobiliario que predomina en este espacio está el recibidor y perchero lo cual según la revista de decoración Look4deco el recibidor es la carta de presentación de toda la casa, de ahí la importancia de otorgarle el protagonismo que merece, pero no sólo cumple la función de "carta de presentación" de la vivienda, sino que su función va mucho más allá, el recibidor funciona también como elemento conector entre la vida exterior y la vida interior (Look4deco, 2020), debido a esto se ha tomado este elemento del hogar como otra de las propuestas para el diseño aplicando la fibra de abacá.

Al haber analizado la información de este capítulo, es evidente que la fibra de abacá aun es desconocida como material para generar objetos, por otra parte se ha definido el perfil de usuario a quien va a estar dirigido este tipo de productos y se ha definido el tipo de productos que se va a realizar.

4.1 INTRODUCCIÓN

En este capítulo se desarrollará las propuestas de diseño tomando en cuenta los conceptos planteados tanto en la ideación como en los capítulos anteriores desde sus bocetos hasta llegar a los prototipos digitales, también se describirán los costos de los productos, se establecerá el protocolo de validación, y por ultimo las conclusiones finales de esta tesis

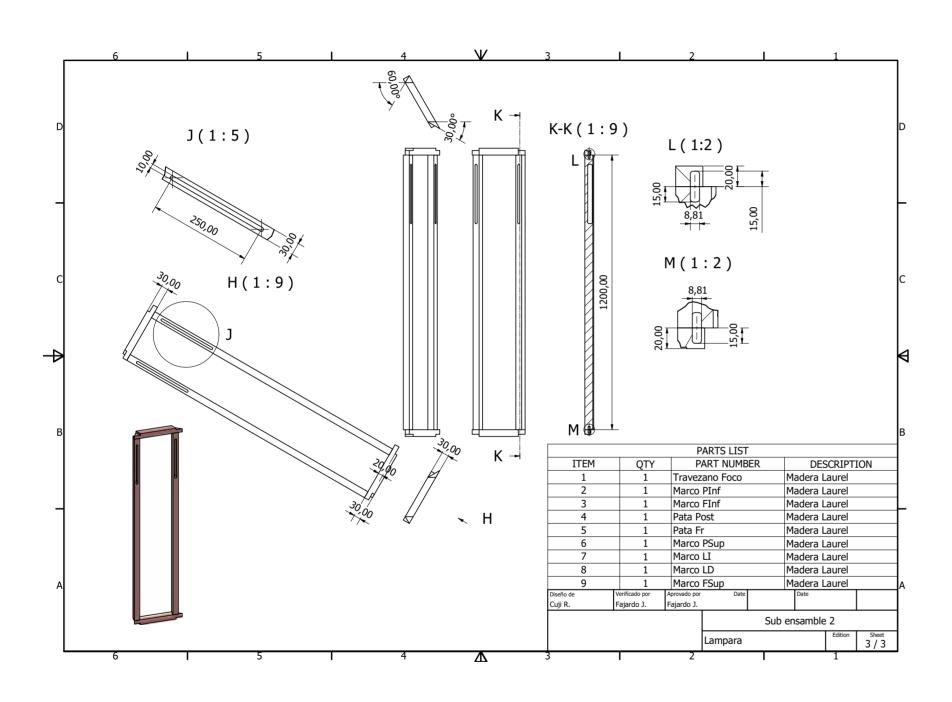

VOLVER

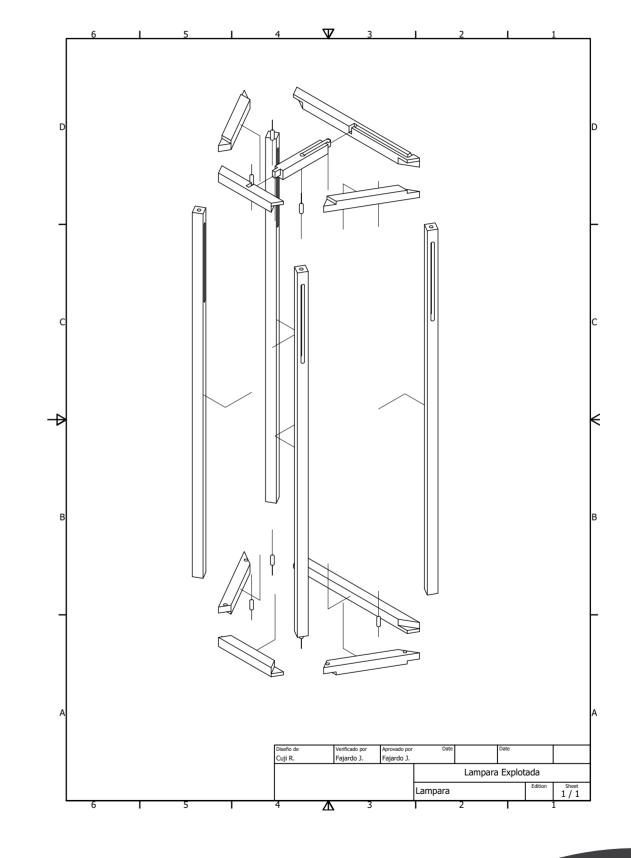
ÍNDICE

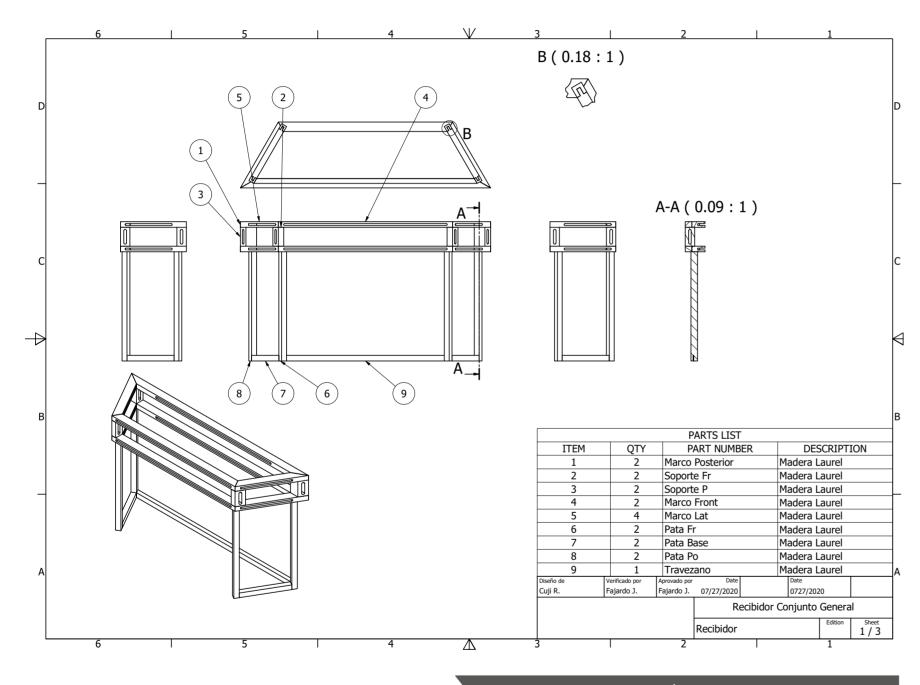
4.2 BOCETACIÓN

En esta primera etapa se selecciono 3 de los bocetos de primera fase para luego ser desarrollados con mas detalle.

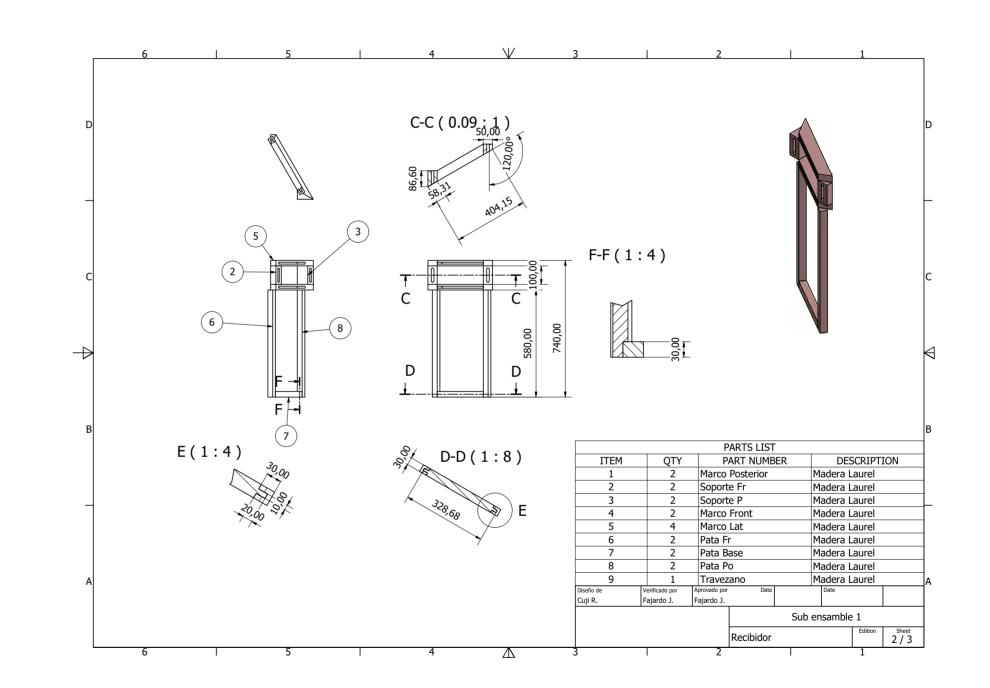
4.3 DOCUMENTACIÓN TÉCNICA

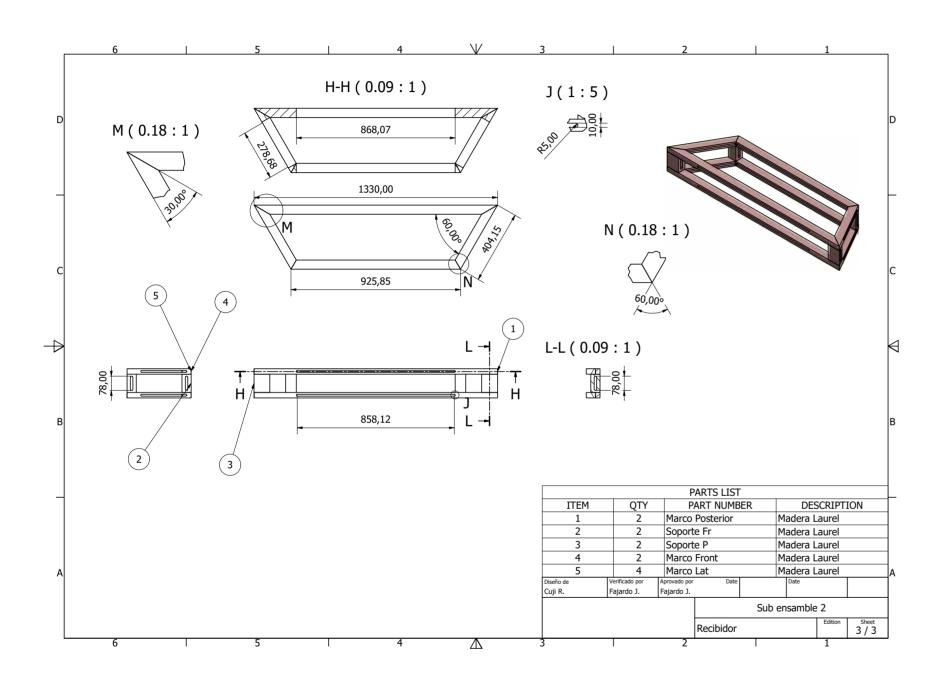


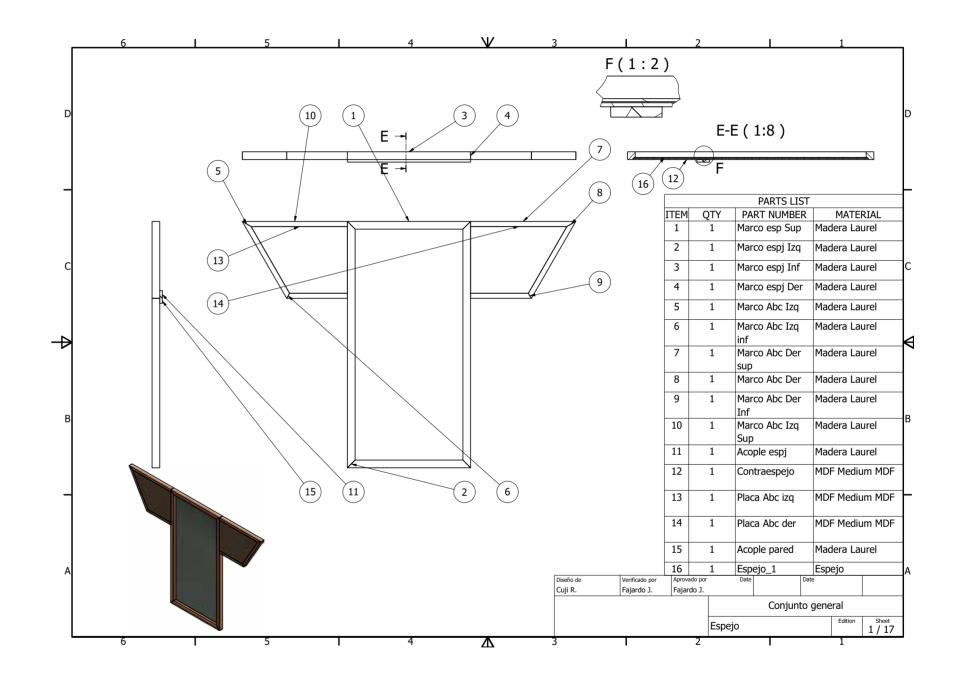

G-G (1:5) F(1:5) 💸 👵 467,32 PARTS LIST PART NUMBER DESCRIPTION Madera Laurel Travezano Foco Marco PSup Madera Laurel Marco LI 1 Marco LD 1 Marco FSup Madera Laurel Madera Laurel Sub ensamble 1

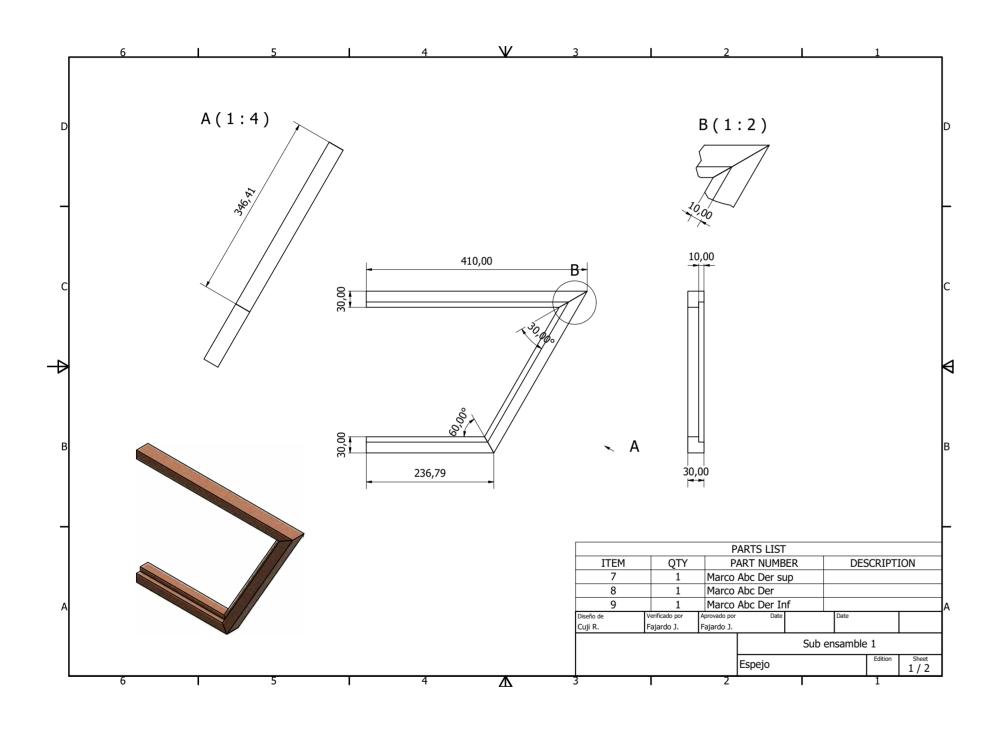

DOCUMENTOS TÉCNICOS LAMPARA DE PIE

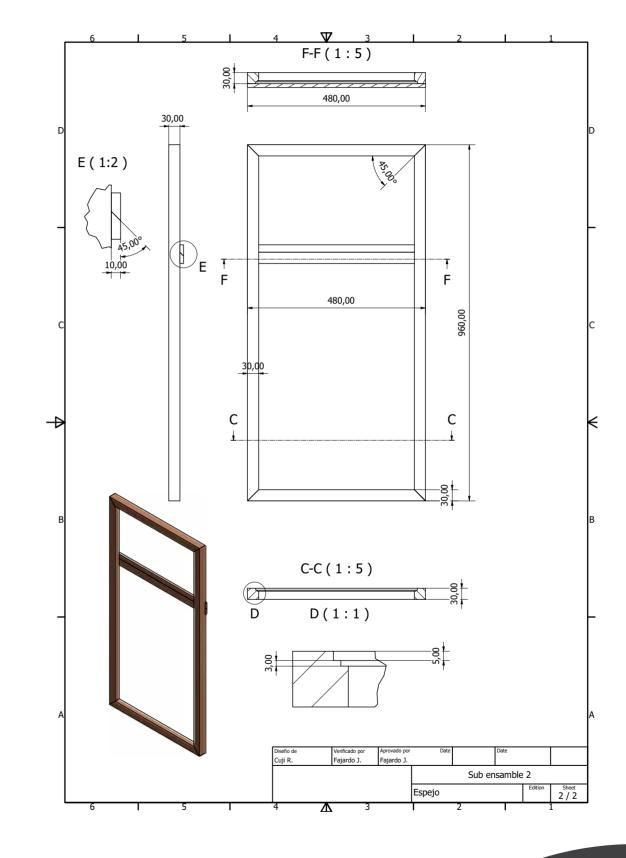
VOLVER

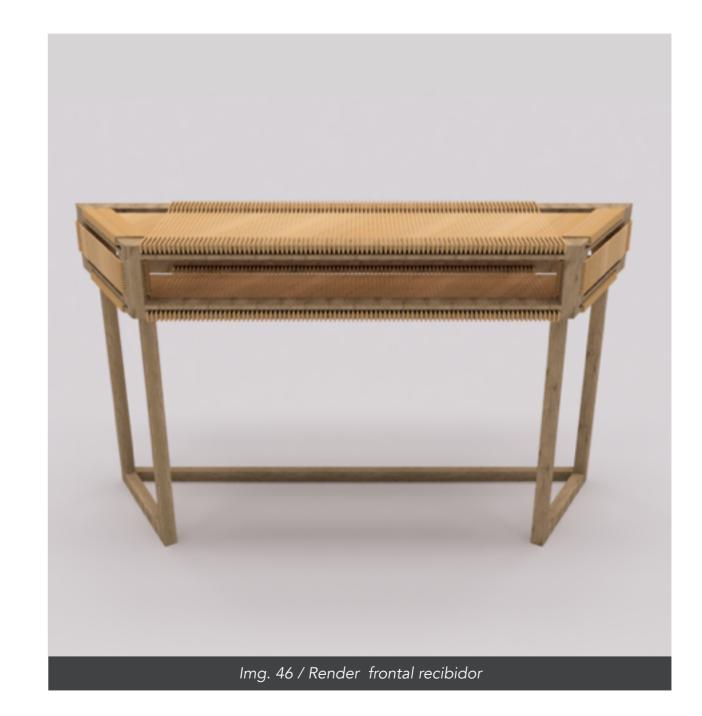

ÍNDICE






DOCUMENTOS TÉCNICOS RECIBIDOR





DOCUMENTOS TÉCNICOS ESPEJO

4.4 RENDERS

VOLVER Índice

4.5 COSTES

MATERIA PRIMA RECIBIDOR							
Cant.	Decrp.	Largo	Anch	Esp.	Madera		
2	Marco Posterior	1330	50	30	Laurel		
2	Soporte Fr	100	57	50	Laurel		
2	Soporte P	87	57	50	Laurel		
2	Marco Front	926	50	30	Laurel		
4	Marco Lat	220	50	40	Laurel		
4	Pata Fr	580	30	30	Laurel		
2	Pata Base	329	30	30	Laurel		
Total D	e Tablones	4					

Tabla 4.1 Materia prima Recibidor.

COSTOS VARIABLES RECIBIDOR							
M.prima	Cantidad	Unidad	Costo/Unidad	Costo Total			
Tablones de Laurel	4	Unidades	11.2	\$	44.80		
Tarugos	8	Unidades	0.05	\$	0.40		
Fibra de Abacá	5	Atados	4	\$	20.00		
Laca y sellador	1	Unidades	2.5	\$	2.50		
Aditivos y varios	1	Unidades	2.5	5	2.50		
Costo total Variable				\$	70.20		

Tabla 4.2 Costos variables Recibidor.

		Fecha:	07/31/2019
Seccion	V. Hora	Tiempo/Hora	Valor
Preparacion	4.15	1	\$ 4.15
Maquinado	4.15	2	\$ 8.3
Lijado Inicial	4.15	1	\$ 4.15
Armado	4.15	0.5	\$ 2.08
Lijado Final	4.15	1	\$ 4.15
Tinte y Sello	4.15	1	\$ 4.15
Lijado en Sello	4.15	1	\$ 4.15
Lacado	4.15	1	\$ 4.15
Montage	4.15	1	\$ 4.15
Tejido	4.15	24	\$ 99.6
	Suma		\$ 139.03

M. Prima	70.2
Mano de Obra	139.3
Total	209.5

Tabla 4.4 Totales Recibidor.

Cant.	Decrp.	Largo	Anch	Esp.	Madera
1	Travezano Foco	172	30	30	Laurel
1	Marco PInf	468	30	30	Laurel
1	Marco Finf	235	30	30	Laurel
2	Pata Post	1200	30	30	Laurel
2	Pata Fr	1200	30	40	Laurel
1	Marco PSup	468	30	30	Laurel
2	Marco LI	267	30	30	Laurel
2	Marco LD	267	30	30	Laurel
1	Marco FSup	235	30	30	Laurel
	Total, Tablones	2	V.		

Tabla 4.5 Materia prima de lampara de pie.

COSTOS VARIABLES LAMPARA DE PIE								
Mprima	Cantidad	Unidad	Costo/Unidad	Cos	to Total			
Tablones de Fernan Sanchez	2	Unidades	11.2	\$	22.40			
Tarugos	8	Unidades	0.05	5	0.40			
Fibra de Abacá	5	Mts	4	5	20.00			
Laca y sellador	1	Unidades	2.5	\$	2.50			
Aditivos y varios	1	unidades	2.5	5	2.50			
Costo total Variable				5	47.80			

Tabla 4.6 Costos variables de lampara de pie.

COSTOS DE MANO DE OBRA LAMPARA DE PIE				
		Fecha:	2/14/2019	
Seccion	v .	Tiempo/Hora	Valor	
	Hora			
Preparacion	4.15	1	\$ 4.15	
Maquinado	4.15	1	\$ 4.15	
Lijado Inicial	4.15	0.5	\$ 2.08	
Armado	4.15	0.5	\$ 2.08	
Lijado Final	4.15	0.5	\$ 2.08	
Tinte y Sello	4.15	0.5	\$ 2.08	
Lijado en	4.15	0.5	\$ 2.08	
Sello				
Lacado	4.15	1	\$ 4.15	
Montage	4.15	0.2	\$.83	
Tejido	4.15	24	\$ 99.6	
Tabla 4.7 Costos mano de obra de lampara de pie.				

M. Prima	47.8
Mano de Obra	126.23
Total	174.03

Tabla 4.8 Totales de lampara de pie.

Cant.	Descrp.	Largo	Ancho	Esp.	Madera
1	Acople espejo	480	30	10	Laurel
1	Acople pared	480	30	10	Laurel
2	Marco abc inf	237	30	30	Laurel
2	Marco abc sup	410	30	30	Laurel
2	Marco abc lat	347	30	30	Laurel
2	Marco esp sup	480	30	30	Laurel
2	Marco esp lat	960	30	30	Laurel

Tabla 4.9 Materia utilizada espejo.

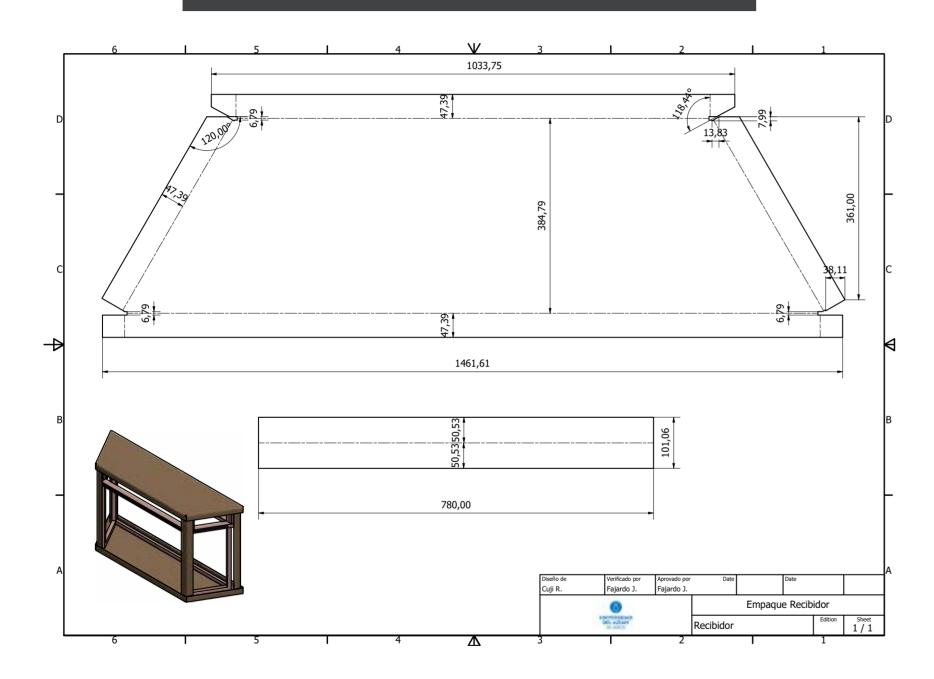
		Fecha:	31/07/2020
Sección	V. Hora	Tiempo	Valor
Preparación	4.15	0.5	\$ 2.08
Maquinado	4.15	1	\$ 4.15
Lijado Inicial	4.15	0.5	\$ 2.08
Armado	4.15	0.5	\$ 2.08
Lijado Final	4.15	1	\$ 4.15
Tinte y Sello	4.15	1	\$ 4.15
Lijado en Sello	4.15	0.5	\$ 2.08
Lacado	4.15	0.2	\$.83
Montaje	4.15	0.5	\$ 2.08
Tejido	4.15	8	\$ 33.2
S	uma		\$ 56.86

Tabla 4.10 Mano de Obra espejo.

	Unidad	Costo/Unidad	C	
-		Contol Ciliana	COS	to Total
2	Unidades	11.2	\$	22.40
5	atados	4	\$	20.00
0.5	Unidades	2.5	\$	1.25
0.5	Unidades	2.5	\$	1.25
			\$	44.90
	0.5	0.5 Unidades	0.5 Unidades 2.5	0.5 Unidades 2.5 \$ 0.5 Unidades 2.5 \$ \$ \$

M. Prima	\$ 44.90
Mano de Obra	\$ 56.86
Total	\$ 101.76
Tabla 4.12 Total	es espejo.

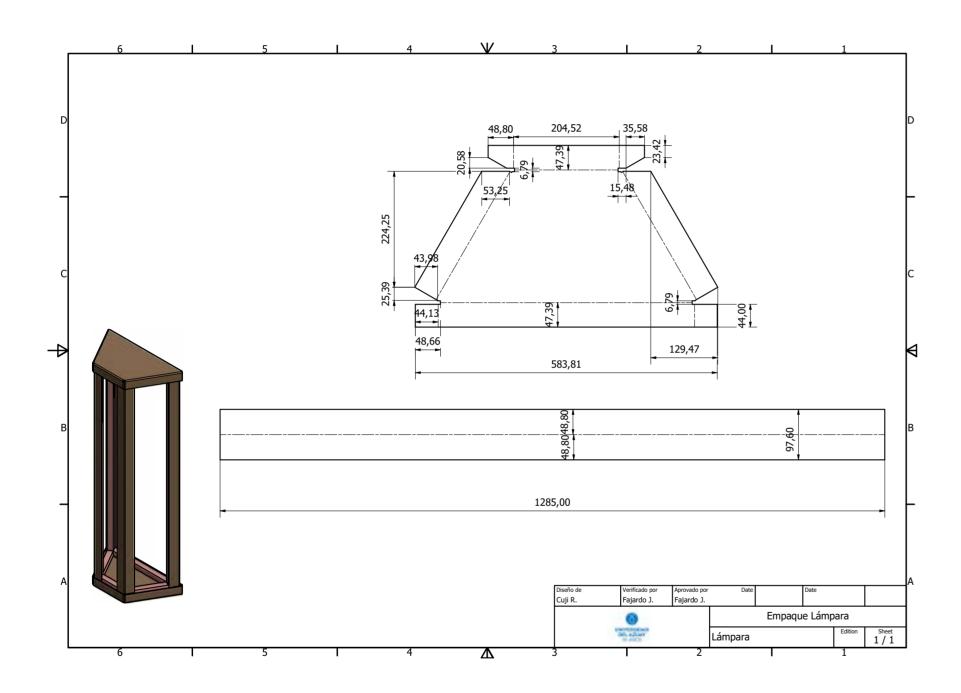
4.6 VALIDACIÓN


El siguiente estudio nos permitira validar las propuestas plasmadas en esta tesis, para ello se ha tomado como referencia los pasos que Karl Ulrich nos recomienda.

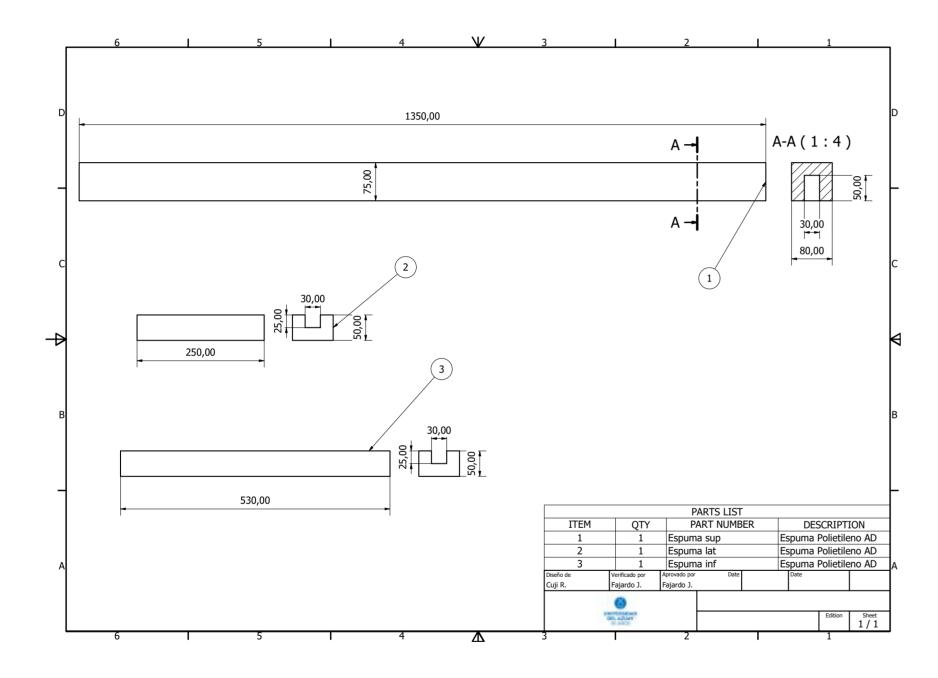
Paso 1: Definir el propósito de la prueba de concepto	El propósito de esta prueba es dar a conocer el producto y medir el nivel de aceptación del mismo, por otro lado demostrar dicho producto invo- lucra la participación de sectores artesanales, finalmente comunicar a los usuarios sobre los distintos usos del abacá para la realización de objetos del hogar.
Paso 2: Escoger una población a encuestar	Las encuestas se dirigirán a personas que tengan los rasgos descritos de nuestros perfiles de usuarios antes ya mencionados, es decir, personas entre los 27 y 65 años de edad, que sean económicamente activos, de un estrato económico medio/alto.
Paso 3: Seleccionar un formato de encuesta	Las encuestas por medios electrónicos parecen ser las más aptas debido a que se puede tener un alcance mayor, y se puede filtrar a los encuestados a través de las herramientas que ofrecen ciertas plataformas tales como Instagram o Facebook, de esta manera encontrar a los usuarios que se aproximan mas a los modelos de usuarios planteados.
Paso 4: Comunicación de concepto	Se comunicara a los usuarios sobre los usos del abacá en artículos para el hogar, y los actores involucrados en la creación de los mismos. Por otro lado, las encuestas estarán apoyadas por las ilustraciones y renders de los objetos para que los usuarios se aproximen más al producto.
Paso 5: Medir la respuesta del cliente	 En las encuestas se establecerá una valoración numérica en preguntas como: 1. ¿Preferiría adquirir un producto artesanal, frente a un producto industrializado que cumpla las misma funciones? 2. ¿Cree la estética de fibra de abacá puede ir acorde con las tendencias de diseño actuales? 3. ¿Piensa que la fibra de abacá puede resistir al paso del tiempo y a las condiciones medio ambientales? Las mismas, nos servirán para medir el índice de aceptación del producto, de esta manera se podrá saber si los prototipos expuestos en este estudio resultan o no como una opción viable para la compra.

177

VOLVER Índice VOLVER Índice

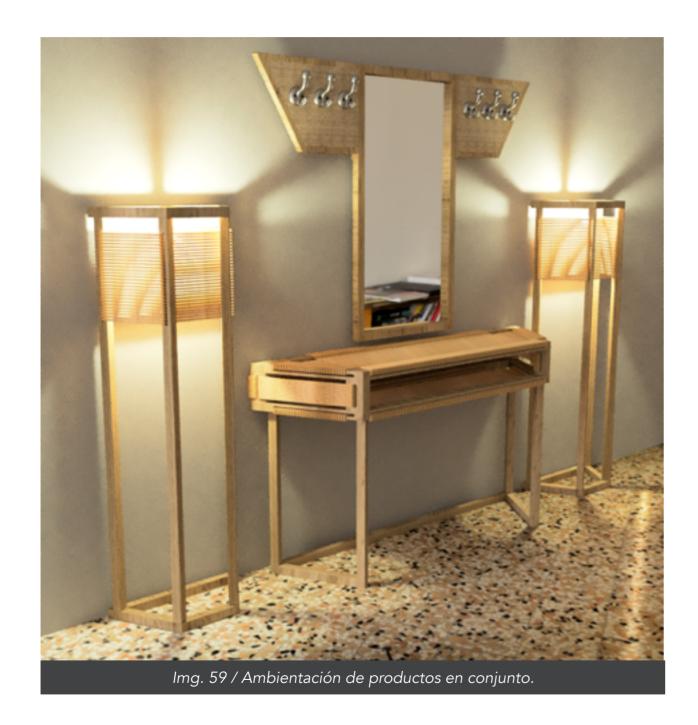

4.7 EMPAQUE

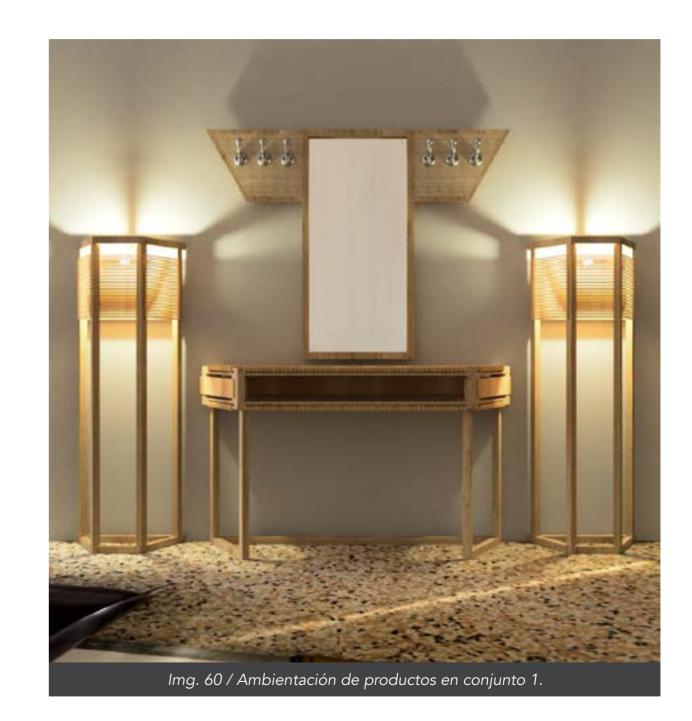
DOCUMENTO TÉCNICO EMPAQUE RECIBIDOR

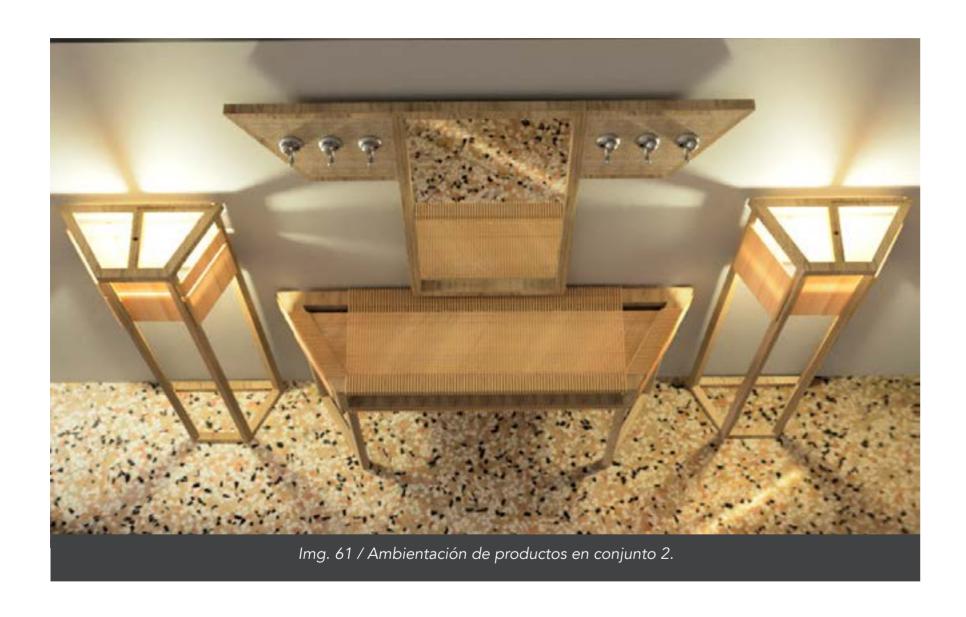

Se ha optado por realizar embalajes en cartón corrugado de doble cara, en el interior contendrá espuma de polietileno de alta densidad, para evitar daños en la madera y proteger de los golpes en general.

DOCUMENTO TÉCNICO EMPAQUE LÁMPARA PISO

De igual manera para la lámpara de piso, se ha realizado embalajes en cartón corrugado de doble cara con espuma de polietileno, adicionalmente se añadirá plástico de embalaje para facilitar su transporte.




DOCUMENTO TÉCNICO EMPAQUE ESPEJO



Se realizó embalajes de espuma de polietileno, con la intención de proteger el espejo y sus partes de madera, adicional a esto deberá ser envuelto en plástico de embalaje para su fácil traslado.

4.8 AMBIENTACION

4.9 CONCLUSIÓN GENERAL

El proyecto analizó las propiedades físicas y mecánicas del abacá, donde se pude evidenciar en la investigación de diversos estudios realizados en varias partes del mundo, lo cual permitió elaborar productos aplicando la fibra de abacá que sean resistentes a los climas húmedos y ambientes salinos.

Por otro lado, se pudieron establecer aplicaciones a la fibra de abacá para varios elementos del hogar, en esta tesis se realizaron tres objetos para el hogar, pero el potencial para producir mas objetos con la fibra es muy grande ya que existen distintas técnicas artesanales con la que se pueden elaborar una gran variedad de productos.

A través de un proceso de diseño, se logró generar productos con fibra de abacá otorgándole un protagonismo a la misma.

Finalmente mediante un análisis de las zonas del hogar se concluyó que es posible lograr diseños de objetos para el hogar tomando como base la fibra de abacá, tal como se demostró en esta tesis con tres objetos dotados de una tipología tanto en su forma como en el uso del material, de esta manera se puede llegar a obtener productos con un elemento diferenciador y como un beneficio adicional estos productos lograrían involucrar a grupos de artesanos generando empleo y nuevas oportunidades de negocio a través de las asociaciones estratégicas entre empresas y artesanos.

VOLVER

ÍNDICE

4.10 BIBLIOGRAFIA

A. Angus, G. Westbrook. (2020). Euromonitor International 2020. Euromonitor. Banco Central del Ecuador. (2019).

Base de datos de exportaciones. Obtenido de https://sintesis.bce.fin.ec/BOE/OpenDocument/1602171408/OpenDocument/opendoc/openDocument.faces?logonSuccessful=true&shareId=3

Blanco, R. (2016). Breviario: Estilos y tendencias. Buenos Aires, Argentina: Diseno Editorial.

Cook, J. G. (1964). Handbook of Textile Fibres. . Londres, Inglaterra.

F. Lucolano, D. Caputo, F. Leboffe, B Liguori. (2015). Construction and Building Materials. 184-191.

FAO. (2009). El año internacional de las fibras naturales 2009 ¿Por qué naturales? FAO.

Kumar Sinha, A., Narang, H. K., & Bhattacharya, S. (2018). Evaluation of Bending Strength of Abaca Reinforced Polymer Composites. Materials Today. doi:https://doi.org/10.1016/j.matpr.2017.11.396

Languages Oxford. (2020). www.lexico.com. Retrieved from https://www.lexico.com/es/definicion/fibra

Lau, J. (2013). Diseño de accesorios. Gustavo Gili, SL.

Lockuán, F. E. (2013). FIBRAS MANUFACTURADAS (QUÍMICAS). In La industria textil y su control de calidad (pp. 59-60). Creative Commons.

Look4deco. (2020, 07 30). https://look4deco.com/. Retrieved from Look4deco: https://look4deco.com/que-mobiliario-y-elementos-debe-tener-un-recibidor/

Macía, M. J. (2006). Las plantas de fibra. In P. Editores (Ed.), Botánica económica de los Andes centrales. La Paz, Bolivia: Universidad Mayor de San Andrés.

Noboa, A. (2017). Diseño de productos para el hogar con material de bajo impacto ambiental. Cuenca, Ecuador: Universidad del Azuay.

VOLVER

VOLVER ÍNDICE Pontón, P., & Guerrero, V. H. (2010). Obtención de Materiales Compuestos de Matriz Poliéster reforzados con Fibra de Abacá mediante Estratificación manual. Revista tecnológica ESPOL., 8.

SoyArquitectura. (2020, 07 29). Retrieved from Soyarquitectura Mx: https://soyarquitectura.mx/arquitectura/la-casa-ideal/

Ulrich, K. (2004). Diseño y desarrollo de productos: enfoque multidicplinario. Estados unidos : Mc-Graw Hill.

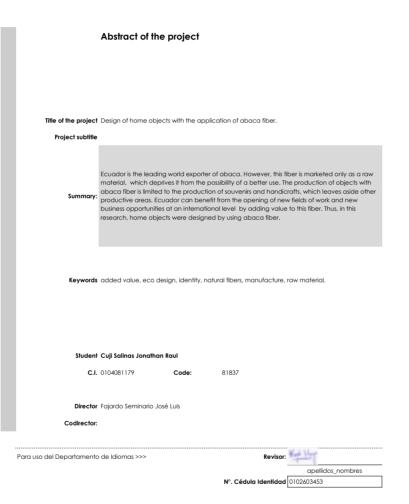
4.11 BIBLIOGRAFIA DE IMAGENES

Img. 1 / Título: Taller Quinuaca	
Fuente: Daniela Quevedo, UDLA 2019	30
lmg. 2 / Título: Taller Quinuaca	
Fuente: Daniela Quevedo, UDLA 2019	30
Img. 3 / Tratamiento de Sosa	
Caustica y agua destilada	
Img. 4 / Fibra sin tratamiento	32
Img. 5 Algodon	
Fuente: https://www.pinterest.at	38
Img. 6 Lino	
Fuente:https://tapiceriachihuahua.com	38
Img. 7 Yute	
Fuente:http://agriculturadecafeargelia.blogspot.com	38
Img. 8 Ácido Poliláctico	
Fuente: https://www.pngwing.com	38
lmg. 9 PLA	
Fuente: https://tresde.pe	38
lmg. 10 Toyota en su modelo SAI 2009 Fuente:www.toyota.com	40
Img. 11 Modelos como el Mercedes-Benz Clase S. Fuente: www.mercedesbenz.com	41
Img. 12 Modelos como el Mercedes-Benz Clase S. Fuente: www.mercedesbenz.com	41
Img. 12.1 Proceso manufactura mobiliario. https://www.scaparato.com/producto/	44
Img. 13 Proceso manufactura mobiliario. https://www.scaparato.com/producto/	45
lmg. 14 / Título: Vista lateral del Escúter eléctrico Be.e https://www.motorpasion.com	46
lmg. 15 / Título: Detalles en crudo y pintados del Be.e https://www.motorpasion.com	46
lmg. 16 / Título: Cuatro vistas de la monosilla Hemp. https://www.pinterest.at	47
lmg. 17 / Título: Wener Aisselinger y la silla Hemp. https://www.pinterest.at	47
Img. 18 / Título: Vista lateral del cayac Flaxland https://www.flaxland.co.uk	48
Img. 20 / Título: Diferentes diseños de la TIPU lamp. https://www.scionresearch.com	49
lmg. 19 / Título: Detalles de la lampara TIPU y sus formas orgánicas. https://www.scionresearch.com	49
Img. 21 / Título: Fibra Sintetica https://www.concretonline.com	54
Img. 22 / Fibras Vegetales https://www.definicionabc.com/	56
·	

mg. 23 / Arbol de Abacá https://lahora.com.ec/	58
lmg. 25 Productos para hogar https://www.euroresidentes.com/tecnologia/nanotecnologia	63
lmg. 26 / Zonificación de casa habitación. https://soyarquitectura.mx/arquitectura/la-casa-ideal/	64
Img. 27 / Crafts Revival https://www.thecraftrevivaltbay.com/	66
lmg. 28 / Diseño e identidad. https://www.elviejotopo.com/wp-content/uploads/	67
lmg. 29 / Gestion https://www.yunbitsoftware.com/blog	68
lmg. 30 / Economía https://www.hispantv.com/	68
lmg. 31 / Cultura. https://www.significados.com/	69
lmg. 32 / Investigación de mercados. https://www.questionpro.com/	70
Img. 33 / Productos Artesanales. https://infocentros.mintel.gob.ec	71
Img. 34 / Identidad local. https://manabinoticias.com/sombrero-de-paja-toquilla/	72
lmg. 35 / Diferencias de edad. https://es.dreamstime.com	73
Img. 36 / Consumidor https://www.esan.edu.pe/conexion/bloggers/	74
Img. 37 / Trabajo de campo. https://www.cronista.com	78
lmg. 38 / Artesanias de abacá. Silvia Mangui	79
lmg. 39 / Usuario www.freepik.com	80
lmg. 40 / Partidas de Diseño https://www.roastbrief.com.mx	82
lmg. 41 / Ideación http://itm.ucam.edu/noticias/como-surgen-las-ideas	83
lmg. 42 / Objetos de Fibra https://www.libertaddigital.com	86
lmg. 43 / Bocetos. Imagenes por parte del Autor	94
lmg. 44 / Bocetos 2. Imagenes por parte del Autor	95
lmg. 45 / Bocetos 3 detalles. Imagenes por parte del Autor	95
lmg. 46 / Render frontal recibidor. Imagenes por parte del Autor	107
lmg. 47 / Render de axonometria recibido. Imagenes por parte del Autor	108
lmg. 48 / Render detalle recibidor. Imagenes por parte del Autor	109
lmg. 49 / Render detalle 2 recibidor. Imagenes por parte del Autor	110
lmg. 50 / Render Lampara de piso. Imagenes por parte del Autor	111
lmg. 51 / Render Lampara de piso 2. Imagenes por parte del Autor	112
lmg. 52 / Render Lampara de piso detalle. Imagenes por parte del Autor	113
lmg. 53 / Render Espejo detalles. Imagenes por parte del Autor	114
lmg. 54 / Render Espejo frontal. Imagenes por parte del Autor	115
lmg. 55/ Render Espejo axonometria. Imagenes por parte del Autor	116
lmg. 56 / Render empaque recibidor. Imagenes por parte del Autor	125
lmg. 57 / Render empaque lamapara de piso. Imagenes por parte del Autor	127
lmg. 58 / Render empaque para espejo. Imagenes por parte del Autor	129
lmg. 59 / Ambientación de productos en conjunto. Imagenes por parte del Autor	130
lmg. 60 / Ambientación de productos en conjunto 1. Imagenes por parte del Autor	131
lmg. 61 / Ambientación de productos en conjunto 2. Imagenes por parte del Autor	132

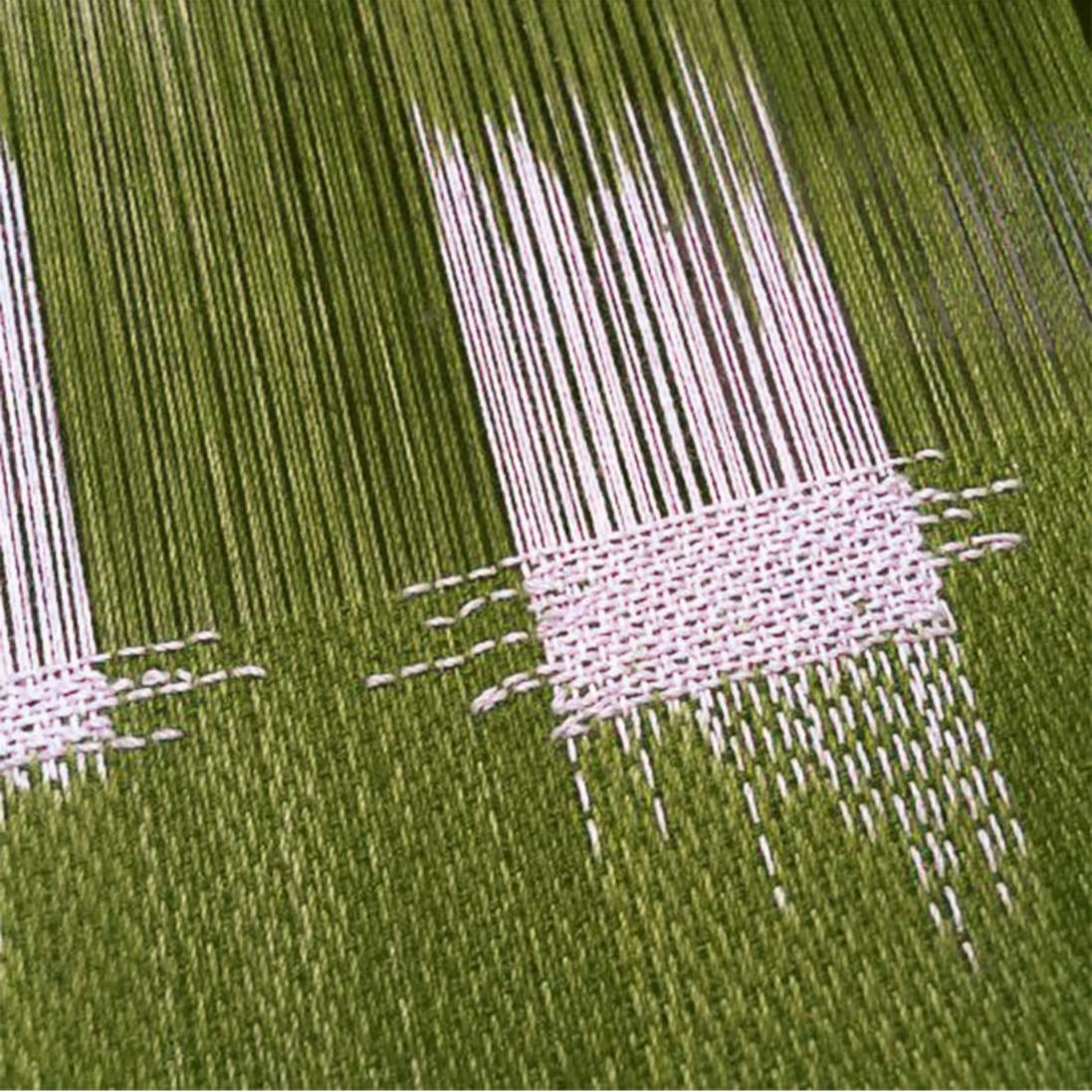
4.12 BIBLIOGRAFIA DE FIGURAS

Fig. 1.1 Exportadores de Abaca	
Fuente: Corporación Abacá Del Ecuador	29
Fig 1.2 Tensible Load	
Fuente: Fabio Lucolano, Domenico Caputo, Flavio Leboffe, Barbara Liguori, 2015	33
Fig 1.3 Esfuerzo máximo a la tracción	
Fuente: Pontón, P., & Guerrero, V. H.	35
Fig 1.4 Módulo de elasticidad	
Fuente: Pontón, P., & Guerrero, V. H.	35
Fig 1.4 Esfuerzo máximo a la flexion	
Fuente: Pontón, P., & Guerrero, V. H.	36
Fig 1.5 Módulo de flexión	
Fuente: Pontón, P., & Guerrero, V. H.	36
Fig 1.6 Módulo de Elasticidad	43
Fuente: Pontón, P., & Guerrero, V. H.	
Fig 1.7 Módulo de Deflexión	43
Fuente: Pontón, P., & Guerrero, V. H.	
Fig 2.1 Proceso de obtencion de la Fibra	60
Fuente: Terranova Papers	
Fig 2.2 Proceso de obtencion de la Fibra	61
Fuente: Raul Cuji	
Fig 3.1 Objetos de Diseño	85
Fuente: Raul Cuji	
DOCUMENTOS TÉCNICOS LAMPARA DE PIE	96
Diseño: Raul Cuji	
DOCUMENTOS TÉCNICOS RECIBIDOR	100
Diseño: Raul Cuji	
DOCUMENTOS TÉCNICOS ESPEJO	103
Diseño: Raul Cuji	
DOCUMENTO TÉCNICO EMPAQUE RECIBIDOR	124
Diseño: Raul Cuji	
DOCUMENTO TÉCNICO EMPAQUE LAMPARA PISO	126
Diseño: Raul Cuji	
DOCUMENTO TÉCNICO EMPAQUE ESPEJO	128


4.13 BIBLIOGRAFIA DE TABLAS

abla 1.1 Experimentacion por Compuestos. Fuente: A. K. Sinha, H. K. Narang, S. hattacharya, 2018	31
abla 1.2 Fibras Características. Fuente: Pontón, P., & Guerrero, V. H., 2010	35
abla 1.3 Fabricación de otras fibras. Fuente: Nuevos materiales: aplicaciones estructurales e industriales 2011	37
abla 2.1 Fibras mas Utilizadas. Fuente: Pontón, P., & Guerrero, V. H., 2010	55
abla 2.2 Origen y características de la fibra. Fuente: Pontón, P., & Guerrero, V. H., 2010	57
abla 2.3 Resistencia mecánica de diferentes fibras. Fuente: Pontón, P., & Guerrero, V. H., 2010	62
abla 3.1 Perfil de usuario femenino. Tabla realizada por parte del Autor	81
abla 3.2 Perfil de Usuario Masculino. Tabla realizada por parte del Autor	81
abla 3.3 Zona de Servicio. Tabla realizada por parte del Autor	87
abla 3.4 Zona de Social. Tabla realizada por parte del Autor	88
abla 3.4 Zona privada. Tabla realizada por parte del Autor	89
abla 4.1 Materia prima Recibidor. Tabla realizada por parte del Autor	117
abla 4.2 Costos variables Recibidor. Tabla realizada por parte del Autor	117
abla 4.3 Costos mano de obra Recibidor. Tabla realizada por parte del Autor	118
abla 4.4 Totales Recibidor. Tabla realizada por parte del Autor	118
abla 4.5 Materia prima de lampara de pie. Tabla realizada por parte del Autor	119
abla 4.6 Costos variables de lampara de pie. Tabla realizada por parte del Autor	119
abla 4.7 Costos mano de obra de lampara de pie. Tabla realizada por parte del Autor	120
abla 4.8 Totales de lampara de pie. Tabla realizada por parte del Autor	120
abla 4.9 Materia utilizada espejo. Tabla realizada por parte del Autor	121
abla 4.10 Mano de Obra espejo. Tabla realizada por parte del Autor	121
abla 4.11 Materia prima espejo Tabla realizada por parte del Autor	122
abla 4.12 Totales espejo. Tabla realizada por parte del Autor	122

138


4.14 ANEXOS

Título del Proyecto Diseño de objetos para el hogar con la aplicación de fibra de abacá. Subtítulo del Proyecto El Ecuador es el segundo exportador de fibra de abacá a nivel global. Sin embargo, esta fibra se comercializa sólo como materia prima, quitando la posibilidad de un mayor aprovechamiento de la misma. Mientras que la producción objetos con la fibra de abacá Resumen: está filintida a la elaboración de suvenires y artesanías, dejando de lado altras dress productivas. El Ecuador puede beneficiarse obriendo nuevos campos de trabajo y nuevos oportunidades de negocio a nivel internacional agregando valor a la fibra. Conociendo esto se diseñó objetos para el hogar utilizando de la fibra de abacá. Palabras clave Ecodiseño, Fibras Naturales, Identidad, Manufactura, Materia prima, Valor agregado. Alumno: Cuji Salinas Jonathan Raul C.I. 0104081179 Código: 81837 Director: Fojardo Seminario José Luis Codirector:

VOLVER VOLVER VOLVER 141

