

Departamento de Posgrados

"Evaluación de riesgo químico mediante los métodos INRS y COSHH Essentials en empresa minera Produmin S.A. Camilo Ponce Enríquez 2019."

Trabajo previo a la obtención del título de:

Magister en Salud ocupacional y

Seguridad en el Trabajo

Autor:

Ing. Quim. Augusto León V.

Director:

Ing. Quim. José Luis Saá Loor Mgtr.

Cuenca, Ecuador 2019

DEDICATORIA

El presente trabajo es dedicado a la Familia, pilar fundamental de la sociedad y motor principal para que los sueños se cumplan. Mirian, Xavier, Paula, Diego, por saber conllevar la disminución de tiempo con ellos y por las fuerzas brindadas cuando se veían disminuidas.

A mis padres, hermanos, y todo ese núcleo familiar que siempre estará presente.

A mis compañeros, docentes, personas más que profesionales amistades que se fueron desarrollando durante el tiempo ya pasado

AGRADECIMIENTO

A todas las personas que de uno y otra manera tuvieron una mano extendida para ayudar, fortalecer conocimientos académicos, de vital importancia no solo para realización de este trabajo sino para utilidad de vida.

RESUMEN

El presente estudio fue realizado en instalaciones de la empresa minera Produmin S.A.

usándose una amplia gama de productos químicos, para lo cual se usaron dos métodos de

evaluación de riesgo químico cualitativo, método INRS (Institut National de Recherche et de

y método COSHH Essentials (Control of Substances Hazardous to Health

Regulations), dicha evaluación parte de grados de peligrosidad como frases H y R,

propiedades de cada sustancia volatilidad y pulverulencia según sea el caso de su estado

físico, el estudio tiene a detalle características de las sustancias, correcta manipulación y

almacenamiento de las mismas, disminuyendo gastos económicos y materiales en el

tratamiento de las mismas.

En la minería metálica se usa un espectro muy amplio de compuestos con diferentes

características de manejo, que van desde un floculante hasta más complejos como oxidantes

fuertes.

El estudio dispuso a la empresa de la información necesaria para dar un correcto tratamiento

de los riesgos químicos que posee en todas sus etapas productivas.

PALABRAS CLAVES: INRS, COSHH Essentials, frase H, frase R

IV

ABSTRACT AND KEY WORDS

This study was conducted at the facilities of the mining company Produmin S.A. by using a wide range of chemicals. Two methods of qualitative chemical risk assessment, INRS method (Institut National de Recherche et de Sécurité) and COSHH Essentials method (Control of Substances Hazardous to Health Regulations) were used. The evaluation is based on degrees of danger such as H and R phrases, substance's properties, volatility and dust as the case of their physical state. The study detailed characteristics of the substances, correct handling and storage to reduce economic and material costs in their treatment. In the metallic mining, a very ample spectrum of compounds is used with different characteristics, which go from flocculants to more complex like strong oxidants. The study provided the company of the necessary information to give a correct treatment of the chemical risks that it has in its stages productive.

KEY WORDS: INRS, COSHH Essentials, phrase H. phrase R

Translated by

Leonardo León

ÍNDICE DE CONTENIDO

Dedicatoria	II
Agradecimientos	III
Resumen	IV
Abstract y keywords	V
Índice de contenido	VI
Índice de tablas	VIII
Índice de figuras	IX
Introducción	1
Problemática	1
Justificación	2
Marco teórico	3
Evaluación de riesgo químico	3
Metodologías cualitativas	4
Modelo de estimación.	5
Métodos control banding	5
Identificación de peligros	6
Identificación de agentes químicos	6
Variables de agentes químicos	6
Hojas de datos de seguridad de materiales peligrosos MSDS	7
Frases H y P	7
Límites de exposición profesional	3
Metodo INRS	9
Evaluación simplificada de riesgo por inhalación	g
Jerarquización de riesgo potencial	10
Clase de peligro	10
Clase de cantidad	10
Clase de frecuencia	11
Clase de exposcion potencial	11
Clase de riesgo potencial y puntuación	11
Determinación de pulverulencia y/o volatilidad	11
Determinación de procedimiento de trabajo	11
Determinación de protección colectiva	12
Corrección en función de VLA	12
Cálculo de puntuacion por riesgo de inhalación	12
Evaluación simplificada de riesgo por contacto y/o absorción por piel	13

Clase de peligro	13
Clase de superficie corporal expuesta	13
Frecuencia de exposición	13
Determinación de riesgo por contacto con la piel	
Metodo COSHH Essentials	
Descripción del método	14
Evaluación de sustancia química mediante lista de chequeo (check list)	14
Determinación de los grupos de peligro	15
Cantidad de producto utilizado durante la actividad	15
Determinación de volatilidad y/o pulverulencia (2C)	15
Determinación de riesgo potencial	15
Objetivo General	17
Objetivo específico	17
CAPITULO 1	
Materiales y Métodos	18
1.1 Población de estudio	18
1.1.1 Descripción de procesos en empresa minera Produmin S.A	18
1.1.2 Descripción de procesos interior mina.	19
1.1.3 Descripción de proceso Beneficio	19
1.1.4 Laboratorio químico metalúrgico	20
1.1.5 Medio ambiente	21
1.1.6 Mantenimiento	22
1.1.7 Distribución de reactivos químicos por áreas en empresa minera Produmin S.A	23
1.1.8 Descripción detallada de reactivos químicos	23
1.1.9 Condiciones de operación	23
1.2 Tipo de estudio	24
1.3 Aspectos éticos	24
1.4 Materiales	24
1.5 Métodos	26

CAPITULO 2

2.1 Aplicación de método COSHH Essentials	28
2.2 Aplicación de método INRS	35
2.2.1 Jerarquización	35
2.2.2 Aplicación de evaluación simplificada de riesgo por inhalación	41
2.2.3 Aplicación de evaluación simplificada de riesgo por contacto y/o absorción po	or piel46
CAPITULO 3	
Discusión	54
CAPITULO 4	
Recomendaciones	56
CAPITULO 5	
Conclusiones	58
CAPITULO 6	
Referencias bibliográficas	59
CAPITULO 7	
Anexos	
7.1 TABLAS	61
7.2 FIGURAS	
ÍNDICE DE TABLAS	
Tabla 1: Clase de peligro en función de frases de peligrosidad (frases	R, frases
H)	
Tabla 2: Clase de cantidad en función de las cantidades usadas por día	61
Tabla 2.A: Tabla usada para determinación de cantidad en una jerarquización de	riesgo para
la salud	61
Tabla 3: Determinación clase de frecuencia	62
Tabla 4: Determinación clase de exposición potencial	62
Tabla 5: Determinación riesgo potencial	63
Tabla 6: Puntuación de riesgo potencial	63

Tabla 7: Puntuación según pulverulencia	64
Tabla 8: Determinación de volatilidad en presión de vapor	64
Tabla 9: Puntuación de volatilidad o pulverulencia	65
Tabla 10: Factor de corrección según VLA (valor limite ambiental).	65
Tabla 11:Prioridad de acción según punutación de riesgo por inhalación	66
Tabla 12:Puntación por clase de peligro "Evaluación de riesgo por contacto de la piel	método
INRS"	66
Tabla 13: Determinación de superficie expuesta	67
Tabla 14: Determinación de puntuación por frecuencia de exposición	67
Tabla 15: Determinación de caracterización de riesgo y prioridad de acción	68
Tabla 16: Determinación grupos de peligro en función frases R COSHH Essentials	
Tabla 17: Determinación de la cantidad de producto utilizado	69
Tabla 18: Determinación tendencia a formar polvos	69
Tabla 19: Determinación nivel de riesgo potencial	70
Tabla 20: Acciones a tomar dado nivel de riesgo potencial	70
Tabla 21: Reactivos distribuidos por áreas y propiedades requeridas para	
evaluaciones	71
ÍNDICE DE FIGURAS	
ÍNDICE DE FIGURAS	
ÍNDICE DE FIGURAS Figura 1: Secciones de información de una Hoja de seguridad de productos químicos	74
Figura 1: Secciones de información de una Hoja de seguridad de productos químicos	74
Figura 1: Secciones de información de una Hoja de seguridad de productos químicos Figura 2: Puntuación en método INRS según temperatura de utilización	74 75
Figura 1: Secciones de información de una Hoja de seguridad de productos químicos Figura 2: Puntuación en método INRS según temperatura de utilización Figura 3: Puntuación en procedimiento de trabajo método INRS	74 75
Figura 1: Secciones de información de una Hoja de seguridad de productos químicos Figura 2: Puntuación en método INRS según temperatura de utilización	74757576 atura de
Figura 1: Secciones de información de una Hoja de seguridad de productos químicos Figura 2: Puntuación en método INRS según temperatura de utilización Figura 3: Puntuación en procedimiento de trabajo método INRS Figura 4: Puntuación para clase de protección colectiva método INRS Figura 5: Lista de chequeo (Check list) método COSHH Essentials Figura 6: Determinación de nivel de volatilidad de líquidos en función de la tempera	747576 atura de
Figura 1: Secciones de información de una Hoja de seguridad de productos químicos Figura 2: Puntuación en método INRS según temperatura de utilización Figura 3: Puntuación en procedimiento de trabajo método INRS Figura 4: Puntuación para clase de protección colectiva método INRS Figura 5: Lista de chequeo (Check list) método COSHH Essentials Figura 6: Determinación de nivel de volatilidad de líquidos en función de la tempera trabajo método COSHH Essentials	747576 atura de77
Figura 1: Secciones de información de una Hoja de seguridad de productos químicos Figura 2: Puntuación en método INRS según temperatura de utilización Figura 3: Puntuación en procedimiento de trabajo método INRS Figura 4: Puntuación para clase de protección colectiva método INRS Figura 5: Lista de chequeo (Check list) método COSHH Essentials Figura 6: Determinación de nivel de volatilidad de líquidos en función de la tempera trabajo método COSHH Essentials Figura 7: Ubicación geográfica empresa minera Produmin S.A	747576 atura de7777
Figura 1: Secciones de información de una Hoja de seguridad de productos químicos Figura 2: Puntuación en método INRS según temperatura de utilización	747576 atura de7777

AUGUSTO LEÓN VILLÓN

TRABAJO DE GRADUACIÓN

JOSÉ LUIS SAÁ LOOR

DICIEMBRE 2019

EVALUACIÓN DE RIESGO QUÍMICO MEDIANTE LOS MÈTODOS INRS Y COSHH ESSENTIALS EN EMPRESA MINERA PRODUMIN S.A. CAMILO PONCE ENRIQUEZ 2019.

INTRODUCCIÓN

En la actualidad la industria minera-metalúrgica ha ido avanzando rápidamente en nuestro país y con ello la mejora en la gestión en seguridad y salud ocupacional, dando énfasis a riesgos mecánicos y físicos por el número elevado de accidentes que ocurren relacionados a estos, sin embargo los riesgos químicos presentes en esta industria son igual o más peligrosos que los descritos anteriormente, problemática que aumenta por la falta de conocimiento de características de las sustancias con las que se tiene exposiciones prolongadas acompañadas del desconocimiento de las personas que trabajan con estas.

Adicional a esto las exposiciones combinadas a numerosos agentes químicos, el uso simultáneo de muchas sustancias en pequeñas cantidades, la falta de valores límite de exposición, falta de estudios toxicológicos y la necesidad de facilitar a las empresas la gestión del riesgo químico han llevado al desarrollo de metodologías para afrontar estos retos.

En la industria minero metalúrgica existen una cantidad alta de reactivos que no son fabricados en Ecuador por lo que en algunas casos se dispondrá de poca información, lo cual llevó a realizar investigación sobre principios activos de reactivos los cuales solo presentan nombres comerciales mas no la composición química completa del mismo.

PROBLEMÁTICA

En el Ecuador y más puntualmente en el área minera existe guías y evaluaciones de factores de riesgo tanto físicos como mecánicos, ya que son las principal causa de accidentes de trabajo. Sin embargo se carece de información relevante a evaluaciones de riesgos químicos algo contraproducente ya que el uso de sustancias en esta industria es de amplia variedad.

El desconocimiento hace que se realicen mediciones ambientales de reactivos que se "supone" existe en el puesto de trabajo como plomo por poner un ejemplo, mas no se ha

hecho una jerarquización o grado de peligrosidad de los mismos quizás se están midiendo una sustancia que no es necesaria y se está obviando sustancias que si necesitan una gestión por parte de la empresa.

La mayoría de empresas del sector de Camilo Ponce Enríquez tienen en sus labores plantas de beneficio donde se realizan procesos en los cuales se usan productos químicos altamente tóxicos como cianuro de sodio, oxidantes fuertes como ácido nítrico, incluso productos que se importan desde países como Perú y China que vienen con nombres comerciales sin conocer su composición química exacta.

JUSTIFICACIÓN

En las diferentes empresas minera del sector Camilo Ponce Enríquez no se han realizado análisis de riesgo químico, y si los hay son muy generalizados como solo el estudio y difusión de hojas de seguridad de sustancias químicas y su correcto almacenamiento, ya que se da un gran énfasis a los riesgos mecánicos que son los más habituales en este sector, en Produmin S.A. la realidad es igual, por ende se inicia este estudio para tener herramientas que permitan realizar una gestión de los riesgos químico completa con el fin de beneficiar tanto al trabajador como al empresario.

En esta empresa se tiene áreas totalmente ajenas al beneficio del mineral que van desde voladura en interior mina, laboratorio de análisis químicos y planta de agua, encontrándonos con una amplia gama de sustancias químicas las cuales no han sido jerarquizadas.

Para esto se va a utilizar los métodos d evaluación química INRS (Institut National de Recherche et de Sécurité) y método COSHH Essentials (Control of Substances Hazardous to Health Regulations), usados para pequeñas y medianas empresas donde el factor económico es de suma importancia ya que en las mismas no se pueden hacer mediciones ambientales a todos los reactivos químicos usados en sus procesos productivos, por lo cual se debe tener una eficiencia tanto en el aspecto humano como el material, para lo cual es necesario evaluar estos riesgos derivados del uso y manipulación para garantizar un buen estado de salud de los trabajadores, así, en función de los resultados obtenidos en las evaluaciones, aplicaremos medidas de prevención y protección necesarias para tener controlado el riesgo.

Al hacer énfasis en el plano económico está por demás acotar que se estima alrededor de 40 sustancias químicas en Produmin S.A. las cuales tienen un amplio espectro, donde las mediciones serian costosas y en algunos casos inútiles ya que al no tener una evaluación de jerarquización, riesgos por inhalación ni dérmicos se haría uso de recursos innecesarios cuando los podríamos enfocar a los reactivos problemas que si merecen una atención prioritaria en el sistema de Seguridad y Salud de la compañía.

En estos métodos descritos no se van a realizar mediciones ambientales, ya que su uso consiste en proporcionar información y clasificar a los agentes químicos controlando los de menor peligrosidad y detectando los más agresivos para su posterior tratamiento higiénico industrial según escoja la empresa.

MARCO TEORICO

EVALUACION DE RIESGO QUÍMICO

En el Ecuador no existe una cultura generalizada de evaluación de riesgo químico, existe legalidad en la que es amparada, según "Decreto Ejecutivo 2393 Reglamento de Seguridad y Salud de los trabajadores y mejoramiento del medio ambiente de trabajo" Articulo 53 numeral 4. En los procesos industriales donde existan o se liberen contaminantes físicos, químicos o biológicos, la prevención de riesgos para la salud se realizará evitando en primer lugar su generación, su emisión en segundo lugar, y como tercera acción su transmisión, y sólo cuando resultaren técnicamente imposibles las acciones procedentes, se utilizarán los medios de protección personal, o la exposición limitada a los efectos del contaminante" de igual forma en el mismo decreto se establece en el "Articulo 176.- numeral 13 En los casos en que se presenten riesgos procedentes de agresivos químicos o sustancias tóxicas o infecciosas, se utilizarán ropas protectoras".

Si bien es cierto, en el Ecuador existe legislación referente a riesgo químico; esta es escasa y no presenta fuerza para realizarla como cumplimiento de normativa, existe la preocupación por las diferentes enfermedades profesionales que se están dando en empresas donde los riesgos químicos son elevados, y la industria minero metalúrgica no es la excepción.

Hay una generalización que la gestión de riesgo químico basta con hacer mediciones ambientales puntuales de los agentes que se suponen más nocivos para la salud , sin embargo estas mediciones carecen de guías correctas de muestreo, puntos equivocadas de muestreo que dan resultados incorrectos sobre el problema de exposición, basándose en la subjetividad del encargado del sistema de gestión, así mismo se cae en el error de realizar mediciones ambientales de un sin número de agentes químicos sin ser estos necesarios debido a su bajo riesgo potencial

Con las evaluaciones de riesgo químicos cualitativos se busca tener una estimación inicial en la cual se recopila información detallada de todos los agentes químicos en los procesos de producción de Produmin S.A., basándose en variables condicionantes de la exposición tales como tiempo de exposición, peligrosidad de las sustancias, con estas estimaciones cualitativas se podrá determinar si el riesgo es aceptable o de lo contrario se necesita acción inmediatas para determinado agente químico, la subjetividad disminuye y existe otras herramientas que facilita el tomar decisiones de las medidas de prevención como las metodologías cualitativas las cuales se va a desarrollar.

METODOLOGIA CUALITATIVAS

Este tipo de metodologías esta dirigidos a las pequeñas y medianas empresas en las cuales los recursos tanto humanos como económicos no son bastos y se tiene que aumentar la eficiencia del recurso que es designado para realizar una correcta gestión de seguridad, ...a pesar de parecer relativamente reciente, venía ya usándose en los años 70 y 80 del siglo XX en la industria química "Herramientas para la gestión de Riesgo químico" (INSHT 2001)..., en aquel momento eran usados para evaluar riesgos de incendio, o explosión de agentes químicos, fueron desarrollados para eliminar o reducir fallos de accidentes, se describían algún tipo de matriz e índices a partir de dos variables bien definidas, el tipo de peligro (propiedad intrínseca de cada agente químico en relación a la salud de una persona)y la probabilidad de que ocurriera el accidente, obteniéndose un nivel de riesgo que según el método correspondiente se determinaba la medida de prevención para ese agente.

El primer método documentado fue el usado por la...Royal Society of Chemistry (RSC) (1989) COSHH in laboratories London RSC... dirigido a laboratorios, desarrollándose por la necesidad de realizar una gestión de sustancias químicas originado en el marco normativo que aparecía en Reino Unido: "Control of Substances Hazardous to Health Regulation" (Control de sustancias peligrosas para la regulación sanitaria) y en el cual obligaba a realizar una evaluación de riesgo en el lugar donde había manipulación y/o almacenaje de sustancias peligrosas, debido a la poca información toxicológica que se manejaba en aquel tiempo se desarrolló un modelo sencillo.

La RSC desarrolló una matriz que, categorizaba los peligros de las sustancias según frases R (frases de Riesgo), la magnitud de la exposición y daba hasta cierto punto una solución operacional según el nivel de riesgo encontrado, posteriormente a estas matrices se añaden los límites de exposición,... basados en los efectos farmacológicos mas no en los toxicológicos y se propone medidas de control (R.J Gardner y P.J Oldershaw 1991)... describen un estudio realizado para establecer concentraciones límite que puedan servir de guía para compuestos orgánicos volátiles a partir de la clasificación de las frases R20, R23 y R26. Explican que sólo se dispone de un determinado número de valores límite frente al elevado número de sustancias comercializadas.

La clasificación de frases R se encuentra en las etiquetas, fácilmente accesible y que además existe para un mayor número de sustancias. Teniendo esto en cuenta, establecen una correlación entre las sustancias que sí disponen de valor límite y aquellas que no lo tienen pero que también están clasificadas con las mismas frases R (20, 23 y 26), para así disponer de una concentración en aire aproximada que no se debiera sobrepasar y aplicar la medidas de control acorde con este criterio práctico.

Con estas bases ya en los años 90 las medidas de control en relación del peligro son consideradas y desarrolladas en investigaciones, los riesgos por vía inhalatoria y también por

vía dérmica son citados por...Money CD "A structured approach to occupational hygiene in the design and operation of fine chemical plant. Ann. Occ. Hyg.36 (6):601-607"... luego de realizar un estudio en aminas aromáticas y determinar su efecto en estas dos vías en los trabajadores de estas empresas, Money utiliza un potencial carcinógeno de las aminas para relacionar su estado de peligrosidad.

Actualmente los modelos que se tienen están basados en la toxicología del agente químico y los factores relacionados a su exposición, así como a las cantidades de sustancias usadas en cada proceso a evaluar estableciéndose los niveles de riesgo y su control operacional.

MODELOS DE ESTIMACION

Tienen como principal objetivo determinar el nivel o grado de riesgo por exposición a agentes químicos en un determinado proceso sin realizar una medición ambiental, todos estos modelos son basados en la asignación de puntuaciones a las variables establecidas para cada método por lo general peligrosidad intrínseca de los agente químicos, frecuencia de exposición, cantidad de agente químico usado, duración de la exposición, propiedades físicas del agente, su forma de uso y los tipo de medidas de control existentes.

El resultado dado es una categorización y/o jerarquización del nivel de riesgo determinando si es aceptable o no y que medidas preventivas de control necesita, se puede diferenciar dos tipos de modelos, el primero que estima el riesgo potencial sin tomar en cuenta las medidas preventivas de control (método COSHH Essentials del sistema Health, Security and Environment), y el segundo estima el riesgo final de exposición es decir considerando las medidas de control ya existentes en la organización (Méthodologie d'evaluation simplifiée du risque chimique INRS del Institut National de Recherche et de Sécurité del Institut).

METODOS DE CONTROL BANDING

Los métodos de control de banda "control banding", son herramientas que se desarrollaron inicialmente para un usuario no experto, para ayudar principalmente a las PYMES a la gestión del riesgo químico. Con los años algunas de las estrategias cualitativas han evolucionado a mecanismos más complejos.

Existe un sin número de métodos de control de banda (control banding) para este caso se usó el método (INRS del Institut National de Recherche et de Sécurité) y método COSHH Essentials (Control of Substances Hazardous to Health Regulations) del sistema Health, Security and Environment que son los más usados; las principales ventajas son relativamente rápido y económico, pero tiene sus limitaciones, ayuda a definir prioridades de actuaciones preventivas (múltiples escenarios),y de gran utilidad para sustancias químicas sin límites de exposición profesional.

IDENTIFICACIÓN DE PELIGROS

Todos los métodos descritos tienen como punto de inicio una distribución en bandas (grupos), basándose en la peligrosidad intrínseca del agente químico, en función de la clase y categoría asociada a los efectos que producen en el ser humano como criterios toxicológicos y consideraciones de higiene industrial se establecen dichas bandas.

El método COSHH Essentials establece cinco bandas: A, B, C, D y E., cada banda representa intervalos de concentración de distribución logarítmica que se alcanzaría cuando se emplean los métodos de control adecuados y por tanto será el rango objetivo. Por ejemplo: la banda de peligro B representa un rango objetivo de 0,1 a 1 mg/m3 para polvo, que sería el rango de exposición si se empleara un sistema de extracción localizada, banda de control 2. Después, las frases R (ahora indicaciones de peligro H) se distribuyen dentro de esas cinco bandas o intervalos de concentración.

Las bases que se establecen para la distribución en bandas que figura en el método COSHH Essentials vienen descritas en la publicación de I.M Brooke (1998) que tiene en consideración tres factores clave:

- Que el parámetro toxicológico tenga un umbral de dosis identificable y por tanto un nivel identificable potencialmente "seguro" de exposición.
- La gravedad del efecto resultante para la salud. Serían más graves efectos cancerígenos o mutágenos comparados con una irritación leve.
- El nivel potencial de exposición al cual ocurre el efecto, es decir, la potencia toxicológica para un determinado parámetro.

IDENTIFICACION DE AGENTES QUIMICOS

En este punto se debe de tener en claro todos los agentes químicos en la empresa Produmin S.A. a evaluarse, su estado físico, y demás propiedades propias de cada uno de ellos, distribución por áreas de estos agentes, el origen de los mismos, además de establecer ubicación, toxicidad, tiempo de contacto con el trabajador, en que actividades se encuentran, estas pueden ser desde mantenimiento hasta en limpiezas de instalaciones, elaborando una base de datos de los mismos

Una vez recopilada la información se procede con los siguientes pasos de la evaluación.

VARIABLES DE AGENTES QUIMICOS

- Cantidades.
- Propiedades fisicoquímicas y toxicológicas

- Estado físico (sólido, líquido o gas).
- Vías de entrada en el organismo, principalmente, la inhalatoria y la dérmica.
- · Valores límite ambiental y biológico
- Etiqueta del producto
- Hojas de datos de seguridad de materiales peligrosos (MSDS).

HOJAS DE DATOS DE SEGURIDAD DE MATERIALES PELIGROSOS (MSDS)

Una hoja de seguridad es un documento de suma importancia que permite comunicar, en forma muy completa, los peligros que ofrecen los productos químicos tanto para el ser humano como para la infraestructura, informa acerca de las precauciones requeridas y las medidas a tomar en casos de emergencia, según norma técnica INEN 2266 transporte, almacenamiento y manejo de productos químicos puntualiza el uso de las hojas de seguridad de materiales peligroso dándonos incluso un formato para su elaboración en caso de que no existiera uno. Una hoja de seguridad de material peligroso es diferente de una "ficha técnica" ya que la misma tiene mayor información acerca de las especificaciones exactas e instrucciones para el uso del producto. Cada producto químico o mezcla de ellos, debe tener su hoja de seguridad; por ello quien la elabora debe ser el fabricante del producto. Para construir este documento puede ser necesario enviar muestras de los productos a entidades especializadas según NORMA TECNICA ECUATORIANA INEN ISO 11014 donde realizan las respectivas pruebas toxicológicas, propiedades fisicoquímicas, etc.

Es muy importante entonces observar la fuente de la información para mayor confiabilidad. Los fabricantes que emiten sus hojas de seguridad confían la administración y suministro de las mismas a centros de información que existen en diferentes países y en los cuales se acopla la información en bancos de datos, en todas las empresas los trabajadores son quienes deben de manejar esta información utilizan las hojas de seguridad para consultar sobre la peligrosidad de las sustancias que manejan; el personal de las brigadas al presentarse una emergencia, médicos y profesionales de la salud ocupacional y la seguridad, o a nivel directivo para tomar medidas de prevención y control a partir de los datos que aparecen en la hoja de datos de seguridad de materiales peligrosos.

Una hoja de datos de seguridad de materiales peligrosos elaborada correctamente tiene 16 secciones, según fig. 1

FRASES P Y FRASES H

Las Indicaciones de peligro o Frases H son frases que, son asignadas a una clase o categoría de peligro, describen la naturaleza de una sustancia o mezcla peligrosas, incluyendo, cuando proceda el grado de peligro.

Actualmente se cambió esta nomenclatura y pueda que en algunas sustancias no se encuentren como H sino como frase R denominada así anteriormente, de la misma manera

las frase P describe los consejos de prudencia que se debe tener con las sustancias, remplaza a la frase S.

La información viene suministrada en las hojas de seguridad de materiales peligrosos de la sustancia, o se puede encontrar en el etiquetado.

LIMITES DE EXPOSICION PROFESIONAL

Los Límites de Exposición Profesional según cita la INSST (Instituto Nacional de Seguridad y Salud del Trabajo) 2019...son valores de referencia para la evaluación y control de los riesgos inherentes a la exposición, principalmente por inhalación, a los agentes químicos presentes en los puestos de trabajo y, por lo tanto, para proteger la salud de los trabajadores. No constituyen una barrera definida de separación entre situaciones seguras y peligrosas. Los Límites de Exposición Profesional se establecen para su aplicación en la práctica de la Higiene Industrial y no para otras aplicaciones. Así, por ejemplo, no deben utilizarse para la evaluación de la contaminación medioambiental de una población, de la contaminación del agua o los alimentos, para la estimación de los índices relativos de toxicidad de los agentes químicos o como prueba del origen, laboral o no, de una enfermedad o estado físico existentes...

Los Límites de Exposición Profesional son valores de referencia para la evaluación y control de los riesgos de agentes químicos según presentes en el puesto de trabajo que solo consideran como **vía de entrada la respiratoria**. Dichos valores no son utilizables para la evaluación de la contaminación medioambiental ni como prueba del origen laboral de una enfermedad.

Los límites de exposición vienen dados en VLA (valores limites ambientales)...Son valores de referencia para las concentraciones de los agentes químicos en el aire, y representan condiciones a las cuales se cree, basándose en los conocimientos actuales, que la mayoría de los trabajadores pueden estar expuestos día tras día, durante toda su vida laboral, sin sufrir efectos adversos para su salud. INSST 2019...

Es el valor de referencia para la Exposición Diaria (ED), VLA-ED representan condiciones a las cuales se cree, basándose en los conocimientos actuales, que la mayoría de los trabajadores pueden estar expuestos 8 horas diarias y 40 horas semanales durante toda su vida laboral, sin sufrir efectos adversos para su salud.

Valor Límite Ambiental-Exposición de Corta Duración (VLA-EC)... Es el valor de referencia para la Exposición de Corta Duración (EC), que es la concentración media del agente químico en la zona de respiración del trabajador, medida o calculada para cualquier período de 15 minutos a lo largo de la jornada laboral, excepto para aquellos agentes químicos para los que se especifique un período de referencia inferior, en la lista de Valores Límite. INSST 2019

METODO INRS

Este método fue desarrollado en Francia por el Institut National de Recherche et de Sécurité en 2005 con el objetivo de ayudar a empresas pequeñas a gestionar su riesgo químico cuando tenían una amplia variedad de productos usados y los problemas que enfrentan al hacer una evaluación a cada una de ellas, la metodología consiste en una manera simplificada de evaluar los riesgos para la salud, la seguridad y el medio ambiente.

...Este método consiste en establecer, para cada variable, una serie de clases y una puntuación asociada para obtener, de este modo, un índice semicuantitativo que es el que indica el nivel de riesgo. El INRS propone además una etapa previa de jerarquización o establecimiento de prioridades que permite ordenar los riesgos en función de su importancia, aspecto importante sobre todo cuando están presentes un gran número de agentes químicos en el lugar de trabajo. El método del INRS, con una modificación del mismo cuyo objetivo es hacer la evaluación más completa y versátil, se detalla el texto publicado por el INSHT "Riesgo químico. Sistemática para la evaluación higiénica", y en la NTP 937. Este método tiene la limitación de que no se puede utilizar para valorar la exposición a productos de descomposición térmica ni a medicamentos. Para estos últimos realmente ninguno de los procedimientos anteriormente citados es el adecuado, si bien es cierto que los procedimientos de "control banding" fueron desarrollados al principio por la industria farmacéutica para evaluar la exposición a los productos utilizados en ella. Es algo similar a lo que sucede con el caso de la evaluación de la exposición a nanopartículas, donde los métodos de "control banding" adecuados son específicos para ello...Guía técnica para la evaluación de los riesgos relacionados con los agentes químicos presente en los lugares de trabajo INSHT 2001...

EVALUACION SIMPLIFICADA DE RIESGO POR INHALACION

Este método consta de tres fases, siendo la primera levantar un inventario de productos químicos usados en la empresa, la segunda en realizar un levantamiento de la jerarquización de los riesgos potenciales y tercero la evaluación de los riegos que estas sustancias representan

VARIABLES

Esta evaluación simplificada de riesgo por inhalación tiene las siguientes variables:

- · Riesgo potencial.
- Propiedades físico-químicas (la volatilidad o la pulverulencia, según el estado físico).
- Procedimiento de trabajo.
- Medios de protección colectiva (ventilación).

• Un factor de corrección (FCVLA), cuando el valor límite ambiental (VLA) del agente químico (AQ) sea muy pequeño, inferior a 0,1 mg/m3.

Para cada variable se establecen unas clases y una puntuación asociada a cada clase. La puntuación del riesgo se hace a partir de la puntuación obtenida para estas cuatro variables y el factor de corrección que sea aplicable.

JERARQUIZACION DE RIESGO POTENCIAL

La etapa de jerarquización del riesgo potencial permite una clasificación de agentes químicos peligrosos además de priorizar en grupos de exposición homogéneos que necesitarían una evaluación de riesgos más exhaustiva.

CLASE DE PELIGRO

Las clases de peligro se establecen siguiendo los criterios de la tabla 1, para asignar una clase de peligro de una sustancia química se debe conocer sus frases P o H (antiguamente descritas como frases R y frases S) tomar en cuenta este acápite ya que una gran mayoría de las MSDS no han sido sujetas a la actualización, por lo que para siguientes criterios se debe tener en cuenta que:

Cuando un producto, sustancia o mezcla, no tiene asignadas frases R o H, la atribución a una clase de peligro u otra se puede hacer a partir de los VLA expresados en mg/m3

- Si se trata de una sustancia, se le asigna la clase de peligro 1.
- Si se trata de una mezcla o preparado comercial, se le asigna la clase de peligro 1.
- En el caso de mezclas no comerciales que vayan a ser empleadas se utilizarán las frases R o H de los componentes (el de mayor riesgo).

CLASE DE CANTIDAD

El método INRS continua en la determinación de la clase de cantidad, se calcula según la tabla 2, se debe de tener en cuenta las cantidades usadas en el día, en el caso de tratarse de un gas, se tomará el volumen en condiciones normales de presión y temperatura.

Para la determinación de la clase de cantidad también se usa otra variación del método, basado en las cantidades totales usadas, se calcula con el índice Qi/Qmax que resulta de dividir la cantidad consumida de agente químico (Qi) por la cantidad correspondiente al agente químico que tiene un mayor consumo (Qmax), expresado en porcentaje. La referencia temporal puede ser diaria, semanal, mensual, anual. Una vez calculado el índice se establece la clase de cantidad según la tabla 2A.

CLASE DE FRECUENCIA

La clase de frecuencia es determinada según las veces que se usada la sustancia química, se calcula basada en tabla 3.

CLASE DE EXPOSICION POTENCIAL

Una vez determinados la clase de cantidad y la clase de frecuencia estos valores son llevados a la tabla 4, para determinar la clase exposición potencial.

CLASE DE RIESGO POTENCIAL Y PUNTUACION

Una vez que se tiene la clase de peligro y la clase de exposición potencial se obtiene la clase de riesgo potencial de cada sustancia, según criterio de tabla 5, una vez obtenido esta es puntuada según criterio de tabla 6.

Con la determinación de la clase de riesgo potencial y su puntuación termina la primera fase del método (Jerarquización).

A continuación de esta evaluación, se continúa con el procedimiento de evaluación de riesgo por inhalación

DETERMINACIÓN DE PULVERULENCIA O VOLATILIDAD

Está basado en la facilidad de la sustancia química de pasar al medio ambiente, en el caso de sólidos es determinado por la pulverulencia, y de líquidos por la volatilidad

La puntuación de la pulverulencia viene dada según la tabla 7.

Para el caso de un líquido basado en su volatilidad, su puntuación viene dado según la fig. 2 (temperatura de utilización), también se puede determinar la volatilización según la presión de vapor (dato viene en hojas de seguridad de datos de seguridad de materiales peligrosos), con este dato se establece la clase volatilidad en la tabla 8.

Posteriormente se da puntuación según la tabla 9.

DETRMINACIÓN DE PROCEDIMIENTO DE TRABAJO

Hay que considerar en la evaluación el procedimiento de utilización del agente químico... Se establecen cuatro clases de procedimiento: dispersivo, abierto, cerrado con aperturas regulares y cerrado permanentemente, tomado de Sistema para evaluación higiénica INSHT 2010...a cada uno de estas clase nos da una puntuación como ejemplo la clase de procedimiento 4 pintado en aspersión nos da una puntuación de 1 según la fig. 3.

DETERMINACIÓN DE PROTECCION COLECTIVA

Se establecen 5 clases debidamente puntuadas según la protección que se tenga al momento del uso de cada sustancia, la puntuación más alta es de 10 y viene dada según el nivel de confinamiento donde se usa la sustancia, para este caso un espacio confinado con ventilación natural desfavorable como en interior mina,

Para la siguiente clase número 4, la puntuación es de 1, donde no hay ventilación mecánica, pero si espacio suficiente para una ventilación natural como ejemplo bodegas de insumos sin extractores.

Para la clase número 3 nos da un apuntación de 0.7, se identifican 3 tipos de protección colectiva como son trabajos en intemperie, alejados de punto de emisión y ventilación general mecánica como ejemplo un laboratorio donde hay un solo sistema de ventilación para toda el área de trabajo,

La clase número 2, nos refiere a una puntuación de 0.1 para este caso hay extracción localizada como en una campana de extracción de un laboratorio.

La clase número 1 nos da una puntación de 0.001, en la cual hay un sistema completo de captación con cierre hermético como una vitrina de laboratorio con cierre total.

El detalle de gráficos donde se detalla los sistemas de protección colectiva viene dado en la fig. 4

CORRECCION EN FUNCION DE VLA (Valores limites ambientales)

Es necesario aplicar un factor de corrección, FC, en función de la magnitud del VLA, en mg/m3. En la tabla 10 se dan los valores de estos FCVLA, en el caso de que el compuesto tenga VLA (información detallada en las hojas de seguridad). Si el compuesto no tiene VLA, se considerará que el FCVLA es igual a 1.

CALCULO DE PUNTUACION POR RIESGO DE INHALACION

Ya determinadas las clases de riesgo potencial, de volatilidad, de procedimiento de trabajo, y de protección colectiva junto a sus puntuaciones se calcula la puntuación del riesgo por inhalación (Pinh) aplicando la siguiente fórmula:

$$P_{inh} = P_{riesgo\ potencial}\ x\ P_{volatilidad}\ x\ P_{procedimiento}\ x\ P_{protección\ colectiva}\ x\ FC_{VLA}$$

Una vez determinada la puntuación se procede a verificar el grado acción a tomar según la tabla 11.

EVALUACION SIMPLIFICADA DE RIESGO POR CONTACTO Y/O ABSORCION POR PIEL

VARIABLES

Las variables a tomar en cuenta en la evaluación del riesgo por contacto con la piel son la clase de peligro, la superficie corporal expuesta y la frecuencia de exposición

CLASE DE PELIGRO

Para la determinación de la clase de peligro procedemos de igual manera que en la jerarquización, es decir usamos la tabla 1 basándonos en las frases H y frase R, luego determinaremos puntuación del peligro en tabla 12.

CLASE DE SUPERFICIE CORPORAL EXPUESTA

Según la superficie expuesta a la acción de sustancias químicas se determina una puntuación en la tabla 13, para este caso en especial se toman medidas incluso usando el equipo de protección personal (EPP) ya que no hay una protección absoluta de la piel.

FRECUENCIA DE EXPOSICION

La frecuencia de exposición dada en la tabla 14, puede ser ocasional, intermitente, frecuente, o permanente determinado para cada una de estas una puntuación.

DETERMINACION DE RIESGO DE CONTACTO CON LA PIEL

Una vez obtenido estos tres valores se procede a aplicar la siguiente formula:

P_{piel} = puntuación peligro x puntuación superficie x puntuación frecuencia

Con el resultado obtenido se dirige a la tabla 15 y se determina la caracterización del riesgo y el nivel de acción a tomar.

METODO COSHH ESSENTIALS

DESCRIPCION DE METODO

Es un método simplificado de control basado en el control de banda, para su aplicación se necesita información dada en los hoja de seguridad de materiales peligrosos de las sustancias problemas tales como frase de peligrosidad H o en su defecto frases R (definidas anteriormente), tendencia del producto al pasar al ambiente, adicional se necesita información de cómo es usada, datos encontrados en el levantamiento de puestos de trabajo.

Es un método sencillo de evaluación de riesgo químico, no es aplicable cuando:

La sustancia problema es generada en el proceso productivo como por ejemplo ácido cianhídrico en una lixiviación por cianuro o plomo gaseoso en la copelación para determinar cantidades de oro en una muestra mineral.

No es aplicable a gases

COSHH Essentials clasifica situaciones que las planteamos en cuatro grupos o niveles de riesgo, dándole un nivel correspondiente de control (control approaches). En cada grupo de control se tiene acciones con la finalidad de reducir la exposición a las sustancias químicas, el correcto diseño de planta y equipos, orden y limpieza regular y adecuada, mantenimiento, examen y comprobación de los equipos, formación de los operadores, y en ciertos casos el uso de equipos de protección personal y colectivo.

Los cuatro niveles de control son:

- 1) Ventilación general
- 2) Control de ingeniería (normalmente, extracción localizada).
- 3) Confinamiento. Sistemas cerrados.
- 4) Necesidad de buscar solución

EVALUACION DE SUSTANCIA QUIMICA MEDIANTE UNA LISTA DE CHEQUEO (CHECK LIST)

En la siguiente hoja (check list) se describe 5 pasos necesarios para realizar la evaluación y su consiguiente medida de control. Ver fig. 5

Paso 1: Datos generales

Nos solicita información general sobre la empresa o centro de trabajo, la sustancia utilizada, la operación que se realiza con la sustancia a evaluar.

Paso 2 nos solicita la información que requiere para determinar el Nivel de Riesgo y de control, esta información se obtiene de los MSDS y de la correcta evaluación del puesto de trabajo.

DETERMINACION DE LOS GRUPOS DE PELIGRO 2A

El COSHH Essentials determina 5 grupos de peligro según las frases R, los grupos van de la A hasta la E y una categoría de peligro debido a contacto con la piel llamada (S). El peligro de cada categoría va en aumento según el alfabeto A para la menos peligrosa y D para la más peligrosa, se da a un grupo la clasificación E las q constituyen casos especiales (sensibilizantes, cancerígenas, mutagénicas y reprotóxicas), tal como lo indica la tabla 16.

Los valores de VLA-ED (valor límite ambiental de exposición diaria) y LOAEL (índice de toxicidad) vienen dadas en las hojas de seguridad.

Reducción de peligro según la duración de la actividad.- si la actividad de exposición del producto dura un máximo de 30 minutos se aplica la reducción de C a B, o de B a A.

Para el caso de peligro por contacto dérmico la sustancia será clasificada dentro del Grupo de peligro S (que causa daño en contacto con la piel o los ojos) si tiene asignada alguna de las frases R.

El grupo S no interviene directamente en la valoración del riesgo. Se utiliza para obtener información sobre los Equipos de Protección individual a utilizar.

CANTIDAD DE PRODUCTO UTILIZADO DURANTE LA ACTIVIDAD (2B)

Esta información se obtiene de las instrucciones de trabajo o procedimientos de producción, se recomienda visitar planta para verificar la información.

El grupo de cantidad se determina según la tabla 17.

DETERMINACION DE VOLATITLIDAD Y/O PULVERULENCIA (2C)

Se determina en baja, mediana, o alta, para los líquidos se determina en función del punto de ebullición y la temperatura de trabajo determinación de la fig.6 mientras que para los sólidos, se valora su tendencia a formar polvo tabla 18.

DETERMINACION DEL NIVEL DE RIESGO POTENCIAL

A partir de las variables ya determinadas como son grado de peligrosidad, cantidad utilizada, y nivel de volatilidad o pulverulencia se calcula el riesgo potencial, según la tabla 19.

Paso 3: Una vez determinado el nivel de riesgo potencial se determina las medidas de control (acciones a tomar) basándonos en la tabla 20.

...Riesgo potencial 1: En estas situaciones el control de la exposición podrá lograrse, normalmente, mediante el empleo de ventilación general. Cuando la cantidad de agente químico utilizado o manipulado es baja, el riesgo siempre es leve para agentes del nivel de peligrosidad A y B. Para agentes de nivel de peligrosidad C también lo es cuando estos manifiestan poca tendencia a pasar al ambiente (baja volatilidad a la temperatura del proceso para líquidos, y pulverulencia baja o media para sólidos) figura 6. No es posible una situación de riesgo leve cuando se trata con agentes de nivel de peligrosidad D o E.

Riesgo potencial 2: En estas situaciones habrá que recurrir a medidas específicas de prevención para el control del riesgo (artículo 5 del RD 374/2001). El tipo de instalación más habitual para controlar la exposición a agentes químicos es la extracción localizada. Riesgo potencial 3: En estas situaciones habrá que acudir al empleo de confinamiento o de sistemas cerrados mediante los cuales no exista la posibilidad de que la sustancia química pase a la atmósfera durante las operaciones ordinarias. Siempre que sea posible, el proceso deberá mantenerse a una presión inferior a la atmosférica a fin de dificultar el escape de las sustancias. Riesgo potencial 4: Las situaciones de este tipo son aquéllas en las que, o bien se utilizan sustancias muy tóxicas o bien se emplean sustancias de toxicidad moderada en grandes cantidades y con una capacidad media o elevada de pasar a la atmósfera. Hay que determinar si se emplean sustancias cancerígenas y/o mutágenas reguladas por el RD 665/1997 y sus dos modificaciones. En estos casos es imprescindible adoptar medidas específicamente diseñadas para el proceso en cuestión recurriendo al asesoramiento de un experto. (Sánchez 2017)...

COSHH Essentials ha desarrollado un conjunto de hojas en las que para un determinado nivel de riesgo indica las medidas de control a aplicar en función de la operación que realicemos con este producto. Encontrar estas hojas guía es el paso 4 del método, el paso 5 y último se refiere a acciones de implementación y revisión, concluyendo al aporte de la lista de chequeos citada anteriormente.

OBJETIVOS:

OBJETIVO GENERAL

Evaluar el riesgo químico mediante los métodos INRS y COSHH Essentials en empresa minera Produmin S.A. Camilo Ponce Enríquez 2019.

OBJETIVOS ESPECIFICOS

Determinar el riesgo potencial por inhalación de las diferentes sustancias químicas usadas en el proceso productivo de empresa Produmin S.A.

Realizar la jerarquización de las sustancias químicas en empresa minera Produmin S.A.

Determinar si alguna de las sustancias químicas merece una evaluación cuantitativa.

Proponer controles y estrategias usando la jerarquización de control

Elaborar una matriz de riesgo químicos de la empresa Produmin S.A.

CAPITULO 1

MATERIALES Y METODOS

1.1 POBLACION DE ESTUDIO.-

El presente estudio se realizó en la empresa minera Produmin S.A. cantón Camilo Ponce Enríquez al total de sustancias químicas usadas en todo el proceso productivo, que van desde la extracción de mineral hasta su posterior comercialización como producto final.

1.1.1 DESCRIPCION DE PROCESOS EN EMPRESA MINERA PRODUMIN S.A.

La Empresa Produmin S. A., se ubica al sureste del Ecuador, en la parte más baja de la Cordillera de Los Andes y en la zona costanera de esta región. Políticamente, el Proyecto Minero Industrial, se encuentra en la Provincia de Azuay, Cantón Ponce Enríquez, Sector La López; mientras que el sitio donde se encuentra la relavera corresponde al sector Bellavista, parroquia Río Bonito, cantón El Guabo, provincia de El Oro.

La planta industrial e instalaciones auxiliares, se encuentra dentro de concesión minera Bella Rica, la planta industrial se asienta en una zona con topografía irregular, con pendientes leves a moderadas, entre las cotas 600 y 750 msnm. Los vértices referenciales de la propiedad donde se encuentra la planta industrial, piscinas de relaves, campamento y demás infraestructura complementaria, así como las nuevas piscinas, se ubican en las siguientes coordenadas UTM. X: 642503 E y Y: 9657524 N, tal como se muestra en la fig.7.

La caracterización mineralógica es de una roca huésped, comprende rocas de composición andesitica, de color verde producto de la propilitización, con relleno (vetillas) de clorita, epidota, cuarzo, carbonatos y sulfuros diseminados en algunas zonas. La granulometría de la roca varia de fino a muy fino, en muchas partes de ellas se puede observar claramente la silicificación, y carbonatación que está claramente marcada con una decoloración progresiva de la roca de verde oscura a verde blanquecina.

Los depósitos minerales son de tipo epitermal de baja sulfuración. La mineralogía en estos depósitos está dominada por pirita, esfalerita, malaquita, pirrotina, calcopirita, galena, cuarzo, oro y plata, en algunas partes existe también calcita, aragonito.

Las características morfológicas y texturales más destacadas de las muestras en los depósitos, es la presencia de depósitos de cristales de pirita, de tamaño que oscila entre 1 y 2 mm, bien formados, con numerosas fracturas, orientadas y aleatorias, rellenadas de calcopirita, con pequeños cúmulos de galena

Desde el nivel principal hacia la superficie la mena va cambiando su composición mineralógica de sulfuros a carbonatos con una relación de 1 a 3 aproximadamente.

La arsenopirita aparece en cristales idiomorfos inmersos en la mena, estos minerales primarios muestran inclusiones de oro. La esfalerita y calcopirita aparecen en algunas partes de forma masiva.

1.1.2 DESCRIPCION DE PROCESO INTERIOR MINA

Inicia con la verificación del terreno donde se realizan inspecciones tanto visuales como determinación de valores de oro con el fin de ver factibilidad de explotación de sectores, si los resultados dan elementos de factibilidad se inicia el proceso de desquinche y mojado (termino dado para inhabilitar el poder de detonación de dinamitas que no hayan sido detonadas).

Una vez terminado estos procesos se inicia con la perforación de la roca, usando máquinas de barrenar, existen distintas profundidad de perforación dependiendo de las características de mineralización de cada sector de trabajo, en cada orificio de perforación es puesto la carga detonante formada por dinamita, anfo y mecha previamente preparada.

Ya finalizada la detonación los gases producidos son evacuador mediante extracción mecánica (extractores) ubicados en varios sectores de interior mina, antes de comenzar a retirar el material de la voladura asegúrese de desquinchar y mojar el sector para evitar accidentes por explosiones de alguna parte que no fue detonada en la voladura. Se procede a retirar el material el cual es depositado en tolvas para su extracción. Flujograma de operación mina fig. 8.

1.1.3 DESCRIPCION DE PROCESO PLANTA DE BENEFICIO

La planta de beneficio (planta concentradora) se inicia con la recepción del mineral proveniente de interior mina para lo cual cuenta con un circuito de trituración, molienda, flotación, filtrado.

CIRCUITO DE TRITURACION

Consta de una tolva metálica con parrillas en la parte superior para clasificar mineral de tamaños que superen las 7". En la parte inferior tiene un chute de descarga el cual se conecta con un alimentador reciprocante, este a su vez descarga el mineral en un grizzly vibratorio el cual clasifica material fino y grueso, el fino es depositado en una faja transportadora y el grueso ingresa a una trituradora primaria de 10" x 16" donde el producto se une al material proveniente de los finos del grizzly y alimentan a una zaranda vibratoria provista de una malla de 3/4" x 3/4", el material pasante es almacenado en la tolva de finos y los gruesos pasan a una trituradora secundaria de 6"x 30" cuya descarga se junta con el material proveniente de trituración primaria lo que hace que se produzca el circuito cerrado de trituración.

CIRCUITO DE MOLIENDA

Esta etapa consta de una tolva de finos con dos chutes de descarga los cuales alimentan en forma constante mediante fajas transportadoras a seis molinos de 4 ruedas cada uno. La capacidad de molienda está en las 100 TM/Día.

El producto de molienda en forma de pulpa (mezcla de agua y mineral molido) pasan por unos canalones para realizar una concentración gravimétrica mediante bayetas, el material que no es captado por las bayetas se deposita en piscinas para su almacenamiento y posterior tratamiento en la etapa de flotación.

CIRCUITO DE FLOTACION

El mineral proveniente de las piscinas de almacenamiento son enviados a dos repulpadores de 10 " x 10" (tanques con agitación mecánica conocidos en otras industrias como agitadores de lodos), de estos pasan a 5 celdas circulares tipo torre de 6' x 6' las cuales trabajan en circuito en contracorriente es decir la pulpa es alimentada en un sentido y el producto (concentrado) producido por estas celdas es alimentada a su anterior con el fin de limpiar los concentrados, en esta parte del proceso son añadido los reactivos tales como Xantato amílico de potasio siendo el colector de más amplio uso en flotación de minerales, espumante ER-370 (usado para formar espumas en las cuales estarán impregnadas por concentrado), los promotores AF1242/FLOTTEC 2300, AR 1208, 1404/Flottec 2044 (tienen propiedades colectoras y espumantes las cuales ayudan a aumentar la eficiencia de concentración de los minerales), silicato de sodio líquido (dispersante de sílice), sulfuro de sodio (sulfurizante de minerales oxidados), bisulfito de sodio(colector de oro diseminado), sulfato de cobre pentahidratado (activador), reactivos añadidos dependiendo de la caracterización del mineral. El concentrado rougher (primer concentrado obtenido) es bombeado a una celda de limpieza tipo Denver sub A 18sp para mejorar la calidad del producto final. El concentrado obtenido es enviado a tanques para realizar un filtrado y hacer la separación solido-liquido de concentrado, y su posterior llenado en BIG BAG de aproximadamente 1 tonelada de capacidad para su posterior comercialización. fig. 9 Flujograma.

REFINACION

Las arenas provenientes de concentración gravimétricas son tratadas mediante una digestión acida (ácido nítrico) para aumentar su valor comercial, posterior a esto se hace una fundición (carbonato de sodio, bórax, nitrato de potasio) para obtener un oro metálico apropiado para su exportación.

1.1.4 LABORATORIO QUIMICO METALURGICO

En el área de laboratorio se determina los valores de oro en roca, en esta parte del proceso se usan varios reactivos químicos, los cuales tienen diferentes grados de toxicidad, el proceso de determinación de oro es el siguiente:

ENSAYO AL FUEGO

El método de ensayo al fuego consiste en producir una fusión de la muestra usando reactivos y fundentes adecuados para obtener dos fases líquidas: una escoria constituida principalmente por silicatos complejos y una fase metálica constituida por plomo, el cual colecta los metales de interés (Au y Ag); que posteriormente serán sometidos a análisis químico, según condiciones finales de la muestra.

PESADO DE MUESTRA

Proceso en el cual se pesan muestras de referencias certificadas y muestras aun no analizadas.

PREPARTACION DE MUESTRAS

Etapa en la que se pesa y adiciona el fundente (mezcla de carbonato de sodio, litargirio y bórax, sílice, nitrato de potasio), para luego homogenizarla y adición de nitrato de plata al 12%, a las muestras, estándares, blancos y muestras certificadas se adicionan una capa superior de bórax para disminuir el punto de fusión de los metales.

FUNDICION

Proceso en el cual las muestras son llevadas a temperaturas aproximadas de 1000 °C obteniéndose las fases liquidas y metálicas en tiempos que van entre 60 - 90min. Luego se hace la separación de escoria, donde se obtiene el regulo de plomo que contiene los metales de interés (Au y Ag), para luego darles forma de cubos (para facilitar su manipulación); usando un martillo

COPELACION

Se calientan las copelas por 60min, para luego fundir el regulo de plomo, con el fin de eliminar el Pb (a 920°C en 45min), el punto final de copelación es la obtención del botón de oro y plata, este botón es laminado con un martillo para facilitar su digestión acida posterior (debe hacerse con bastante cuidado con el fin de no romper ni contaminar la muestra).

DIGESTION ACDIDA

En crisoles de porcelana es depositado el botón laminado de oro y platas, es llevado a una plancha de calentamiento a 120°C, adicionando ácido nítrico al 15% para disolver la Ag, obteniendo una solución de nitrato de plata y Au, el lavado se realiza con agua cuatro o cinco veces, para obtener el Au libre de la solución de nitrato de Ag, para luego pasar al calcinado para darle el color característico y luego pesar. Flujograma fig. 10

1.1.5 MEDIO AMBIENTE

El departamento de medio ambiente engloba todo el ámbito de controles ambientales, de vectores, limpiezas de campamentos, relavera, y tratamiento de agua. En este departamento

se usan reactivos químicos en limpieza y desinfección tales como desinfectantes líquidos, detergente Sapolio para lavado de prendas de vestir, el glifosato usado como herbicida.

En la área donde se usan reactivos químicos con mayor recurrencia es en el de tratamiento de agua donde nos enfocaremos, el proceso inicia con la captación del agua cruda, obtenida desde una labor en interior mina, desde aquí es extraída mediante tubería de 2 pulgadas hasta la parte exterior donde es bombeada a una piscina de hormigón en parte alta de campamento, dando inicio el primer filtrado físico, luego es enviada al proceso de purificación microbiológica donde se adiciona hipoclorito de sodio al 10% (bactericida), para posteriormente ir a proceso de floculación, se adiciona policloruro de aluminio (coagulante y floculante).

En la siguiente etapa el agua ingresa por la canaleta parshall (Ralph Parshall), seguida de una torre de aireación formada por 3 platos, lo que permite que produzca una mezcla lenta formando flóculos.

La planta potabilizadora tiene en sus instalaciones un filtro lento que está formado por un lecho de grava y arena, el agua fluye a través de este lecho por acción de gravedad donde una parte de los flóculos es depositado, luego pasa a un segundo conformado por carbón activado donde atrapa una parte de cloro residual, olores y sabores indeseables en el agua, la siguiente unidad (ablandador), está formado por una capa de grava, arena silica, y resina, dándose un intercambio iónico entre calcio y magnesio productores de la dureza y el sodio de la resina, estos ablandadores son reactivados con cloruro de sodio con el fin de añadir sodio al sistema.

El almacenamiento del agua tratada tiene la función de compensar las variaciones horarias del consumo, tiene una capacidad de 45 m3 distribuidos en un tanque de 20 m3 y 5 tanques de 5 m3 cada uno, iniciando la distribución a todo campamento de Produmin S.A. fig. 11

1.1.6 MANTENIMIENTO

Este departamento es encargado de la parte tanto mecánica, eléctrica, electromecánica de toda la empresa Produmin S.A.

Los reactivos usados son usados en diferentes labores alrededor de toda la empresa, en diferentes equipos cambios de aceites, engrasado de transmisiones de los equipos, soldadura de maquinarias y demás trabajos, así mismo son usados los demás reactivos como removedor WD40, pinturas para proteger equipos y campamento.

1.1.7 DISTRIBUCION DE REACTIVOS QUIMICOS POR AREAS EN EMPRESA MINERA

PRODUMIN S.A.

La distribución de reactivos químicos se la realizo por áreas bien diferenciadas en procesos

productivos, fueron separadas en Área de mina, Planta de Beneficio, Medio ambiente que

incluye planta de tratamiento de agua potable, Mantenimiento, Campamento y laboratorio

químico metalúrgico, detalle de reactivos químicos señalados en la Tabla 21.

1.1.8 DESCRIPCION DETALLADA DE REACTIVOS QUIMICOS

La descripción está dada en las hojas de seguridad de reactivos peligrosos, vienen datos de

propiedades físicas como químicas de todas las sustancia, para nuestro caso desarrollaremos

una tabla con las propiedades que vamos a necesitar para realizar nuestra evaluación ya sea

mediante el método INRS o método COSHH Essentials, la descripción viene dada en la tabla

21.

1.1.9 CONDICIONES DE OPERACION

PUESTOS DE TRABAJO

Los puestos de trabajo directos que usan los reactivos son:

MINA:

Trabajador de campo polvorín: Nitrato de amonio, Mecha de seguridad, fulminante.

Perforista: Dinamita

MEDIO AMBIENTE:

Coordinador de planta de agua: Policloruro de aluminio polvo, Hipoclorito de sodio al 10%,

cloruro de sodio.

Ayudante auxiliar a servicios varios: Policloruro de aluminio polvo, hipoclorito de sodio al 10%,

cloruro de sodio, glifosato, soda caustica, desinfectante líquido, detergente Sapolio.

CAMPAMENTO

Bodeguero: gasolina y diésel

Operadores de maquinaria: gasolina y diésel

PLANTA DE BENEFICIO

Operador de flotación: Xantato amílico de potasio, espumante ER-370, Promotor

AF1242/FLOTTEC 2300, Promotor AR 1208, Promotor 404/Flottec 2044, silicato de sodio

líquido, sulfuro de sodio, bisulfito de sodio, sulfato de cobre pentahidratado.

23

Jefe de refinación: Carbonato de sodio, bórax, nitrato de potasio, ácido nítrico

LABORATORIO QUIMICO METALURGICO

Jefe de laboratorio: Carbonato de sodio, litargirio, bórax, nitrato de potasio, nitrato de plata, sílice, ácido nítrico.

Asistente de laboratorio: Carbonato de sodio, litargirio, bórax, nitrato de potasio, nitrato de plata, sílice, ácido nítrico.

MANTENIMIENTO

Mecánico en general y ayudante de mecánica: silicón rojo, WD40, cemento refractario, pintura naval, pintura anticorrosiva, diluyente, aceite SAE 15W40, aceite SAE 250, soldadura 6011, 7018, grasa.

1.2 TIPO DE ESTUDIO

Estudio cualitativo-cuantitativo

Cualitativo: ya que se determinara cuáles son las sustancias químicas con mayor riesgo a exposición.

Cuantitativo: se desarrollara a cuantos de las sustancias se debe continuar con la gestión del riesgo, todo eso basado en modelos matemáticos usados en las metodologías a usar.

1.3 ASPECTOS ETICOS

Toda la información que se desarrolló en este estudio se brindara exclusivamente al Jefe de unidad de Seguridad y Salud de Produmin S.A., información no se brindara terceros, cumpliendo con códigos de confidencialidad dados en la empresa Produmin S.A.

1.4 MATERIALES

La evaluación cualitativa mediante el método INRS y el método COSHH Essentials están basado en criterios toxicológicos de las sustancias a analizar y los efectos hacia la salud, con base en estos parámetros se establecen los distintos niveles de peligros y por consiguiente riesgos que puedan generar.

La evaluación del riesgo químico mediante COSHH Essentials es un modelo cualitativo que proporciona asesoramiento sobre la medida de control adecuada durante la exposición a agentes químicos, cuyas vías de entrada al organismo son la inhalatoria y dérmica, en la operación que se está evaluando.

24

- 1. Obtener una estimación inicial del nivel de riesgo potencial.
- 2. Realizar evaluaciones de riesgo en fase de diseño.
- 3. Discriminar una situación aceptable del resto de situaciones.
- 4. Discriminar una situación de riesgo potencial elevado

Se utiliza principalmente para determinar la medida de control más apropiada para la tarea que está siendo valorada y no específicamente para determinar el nivel existente de riesgo.

BREVE METODOLOGIA A USAR EN MODELO COSHH Essentials:

- 1. Determinar peligrosidad según frases R y H.
- 2. Tendencia a pasar al ambiente.
- 3. Determinar cantidad de sustancia utilizada en operación.
- 4. Determinar riesgo potencial. (1, 2, 3, y 4)
- 5. Determinar nivel de control requerido

De igual forma la metodóloga INRS es una guía para realizar una evaluación de riesgo químico método desarrollado en Francia para ayudar a las empresas a la gestión del riesgo especialmente diseñado para una gran cantidad y variedad de productos utilizados y la dificultad que presenta evaluar todas y cada una de ellas, revisa riesgos para la salud, la seguridad y el medio ambiente.

Esta metodología consta de tres fases:

- 1. Inventario de productos químicos y materiales utilizados.
- 2. Jerarquización de los riesgos potenciales.
- 3. Evaluación de los riesgos

Esta metodología consta de dos partes bien diferenciadas, iniciando con una jerarquización de riesgos potenciales que consiste en:

- 1. Determinar clase de peligro (Basado en frases R, H, y valores límites de exposición)
- Determinar clase de cantidad (Se calcula mediante la división entre la cantidad de reactivo consumido y la cantidad de reactivo que tiene un mayor consumo en una determinada área).
- 3. Determinar clase de frecuencia (Se debe tener la misma referencia temporal usada en determinación de clase de cantidad).
- 4. Determinación de exposición potencial (Se relaciona entre clase cantidad y clase de frecuencia usando tabla dada por la metodología).
- Determinación de riesgo potencial (la puntuación del riesgo potencial resulta de la combinación de la clase de peligro y la clase exposición potencial usando tabla dada en metodología).

- 6. Establecimiento de prioridades según puntuación de riesgo potencial (con esto se determina la jerarquización de reactivos).
- 7. Determinación de índice parcial acumulado (expresado en porcentaje respecto al sumatorio del total de las puntuaciones del Riesgo Potencial).

Riesgo por inhalación consiste en:

- 1. Determinar clase de peligro y puntuación (Ya establecida en jerarquización).
- 2. Determinar clase de volatilidad o pulverulencia (estado físico de reactivos) y se verifica puntuación en tabla dada por la metodología.
- Determinar puntuación según procedimiento (el método diferencia entre dispersivo, abierto, cerrado con aperturas regulares y cerrado permanentemente, puntuándolos según parámetros de utilización).
- 4. Determinar puntuación según protección colectiva (en este apartado el método solo considera la ventilación/extracción como medio de protección colectiva).
- 5. Se determina cálculo de riesgo por inhalación.
- 6. Determinación de prioridad de acción.

1.5 METODOS

- 1. Presentación de proyecto y autorización
- 2. Se presentara la propuesta de investigación al Gerente General, Jefe de Unidad de Seguridad y Salud de Produmin S.A., donde se solicitara permiso para realizar el estudio ya descrito.
- 3. Recolección de información
- 4. Se iniciara con la elaboración de una lista de todas las sustancias químicas usadas en la empresa, así como la distribución por áreas de trabajo de cada una de esta, luego se procederá a recopilar toda la información referente a cada una de las sustancias (cantidades de usos, hojas de seguridad, puestos de trabajo donde son usadas).
- Una vez que se tenga toda esta información posible se proseguirá a realizar la evaluación de riesgo químico mediante la metodología COSHH Essentials y metodología INRS.

BASE DE DATOS

Se desarrollara una base de datos con toda la descripción de las sustancias químicas como propiedades, almacenamiento, incompatibilidad química, de esta manera se dotara de la mayor cantidad de información referente a las mismas así como el lugar de la empresa donde son usadas.

ANALISIS DE ESTIMACION

Se usaran modelos de estimación de la exposición, para la presentación de los datos se usaran tablas dinámicas en Excel.

CRITERIOS DE EXCLUSION

- Medicamentos (Insumos en área médica).
- Productos formados por mezclas entre reactivos (Ejemplo: exclusión de agua regia formado por mezcla de ácido nítrico y ácido clorhídrico).
- Método COSHH Essentials excluye agentes en estado gaseoso.

RESULTADOS OBTENIDOS

2.1 APLICACIÓN DE METODO COSHH ESSENTIALS

Evaluación de riesgo químico método COSHH Essentials

AREA	PRODUCTO	FRASES H/R	PELIGROSIDA D	TENDENCIA A AMBIENTE	PASAR AL	CANTIDA D USADA	PUNTUACIO N	NIVEL DE RIESG O	MEDIDAS CORRECTIVAS
				Punto de ebullición/capacida d pulvigena	PUNTUACIO N	Kg			
Mina	Nitrato de amonio como (ANFO)	Frase H:272,319 (R:36/37/38)	С	Sustancia en forma de gransa, pellets, sin tendencia romperse ,no produce polvo	BAJA	Kg	MEDIANA	2	Controles de Ingeniería (generalmente Extracción Localizada).
Mina	Dinamita 1 1/8 x 7" boliviana RIODIN HM al 80%	Frase H: 330,373	D	Sustancia en forma de gransa, pellets, sin tendencia romperse ,no produce polvo	BAJA	Kg	MEDIANA	3	Medidas de Confinamiento/Sistema s Cerrados.
Mina	Mecha de seguridad FUSE SAFETY RIOFUSE	TLV: 3.5 mg/m3	А	Sustancia en forma de gransa, pellets, sin tendencia romperse ,no produce polvo	BAJA	Kg	MEDIANA	1	Medidas de Ventilación General y Buenas prácticas de trabajo.

Mina	Fulminante RIOCAP FANEXA	Frase R:61	D	Sustancia en forma de gransa, pellets, sin tendencia romperse ,no produce polvo	ВАЈА	Kg	MEDIANA	3	Medidas de Confinamiento/Sistema s Cerrados.
Medio Ambiente P.A.	Policloruro de aluminio en polvo	Frase H:302;(R 37/38)	С	Sustancia en forma de gransa, pellets, sin tendencia romperse ,no produce polvo	BAJA	gramos	PEQUEÑA	2	Controles de Ingeniería (generalmente Extracción Localizada).
Medio Ambiente P.A.	Hipoclorito de sodio al 10%	Frase R:31,34,50	С	110°C	MEDIA	mililitros	PEQUEÑA	2	Controles de Ingeniería (generalmente Extracción Localizada).
Medio Ambiente P.A.	Cloruro de sodio	Frase H:319;(R40)	D	Sustancia en forma de gransa, pellets, sin tendencia romperse ,no produce polvo	BAJA	gramos	PEQUEÑA	2	Controles de Ingeniería (generalmente Extracción Localizada).
Medio Ambiente	Glifosato	Frase H:350	Е	106°C	MEDIA	litros	MEDIANA	4	Especial/Se necesita el consejo de un experto.
Medio Ambiente	Soda Caustica (hidróxido de sodio)	Frase H:314	D	Solidos granulares o cristalinos, cuando se emplea se ve producción de polvo que se deposita rápidamente sobre superficies adyacentes	BAJA	gramos	MEDIANA	3	Medidas de Confinamiento/Sistema s Cerrados.
Medio Ambiente	Desinfectante liquido	Material y proceso	A	más de 200°C	ВАЈА	litros	MEDIANA	1	Medidas de Ventilación General y Buenas prácticas de trabajo.
Medio Ambiente	Detergente Sapolio	R36 (como carbonato de sodio)	А	Solidos granulares o cristalinos, cuando se emplea se ve producción de polvo que se deposita	MEDIA	Kg	MEDIANA	1	Medidas de Ventilación General y Buenas prácticas de trabajo.

				rápidamente sobre superficies adyacentes					
Campamento	Diésel	Frase R:22	В	175°C	BAJA	litros	MEDIANA	1	Medidas de Ventilación General y Buenas prácticas de trabajo.
Campamento	Gasolina	Frase R:21	В	35°C	ALTA	litros	MEDIANA	2	Controles de Ingeniería (generalmente Extracción Localizada).
Planta de Beneficio (Flotación)	Xantato amílico de potasio (Z-6)	Frase H:311,373	С	Solidos granulares o cristalinos, cuando se emplea se ve producción de polvo que se deposita rápidamente sobre superficies adyacentes	MEDIA	Kg	MEDIANA	3	Medidas de Confinamiento/Sistema s Cerrados.
Planta de Beneficio (Flotación)	Sulfuro de sodio	Frase H: 314 ;(R34)	С	Solidos granulares o cristalinos, cuando se emplea se ve producción de polvo que se deposita rápidamente sobre superficies adyacentes	MEDIA	gramos	PEQUEÑA	2	Controles de Ingeniería (generalmente Extracción Localizada).
Planta de Beneficio (Flotación)	Espumante ER-370 /D250	Función de etiquetado (corrosivo)	С	245°C	BAJA	Kg	MEDIANA	2	Controles de Ingeniería (generalmente Extracción Localizada).
Planta de Beneficio (Flotación)	Promotor AR1242/ FLOTTEC 2300	Frase H:311	С	103°C	MEDIA	litros	MEDIANA	3	Medidas de Confinamiento/Sistema s Cerrados.
Planta de Beneficio (Flotación)	Promotor AR1208	Frase H:314	С	103°C	MEDIA	litros	MEDIANA	3	Medidas de Confinamiento/Sistema s Cerrados.

Planta de Beneficio (Flotación)	Promotor 404/Flottec 2044 Colector	Frase :314	С	103°C	MEDIA	litros	MEDIANA	3	Medidas de Confinamiento/Sistema s Cerrados.
Planta de Beneficio (Flotación)	Silicato de sodio (liquido)	Frase H:314,318,332,335	В	102°C	MEDIA	mililitros	PEQUEÑA	1	Medidas de Ventilación General y Buenas prácticas de trabajo.
Planta de Beneficio (Flotación)	Bisulfito de sodio	Frase H:302(R22,31,58)	В	Solidos granulares o cristalinos, cuando se emplea se ve producción de polvo que se deposita rápidamente sobre superficies adyacentes	MEDIA	kg	MEDIANA	2	Controles de Ingeniería (generalmente Extracción Localizada).
Planta de Beneficio (Flotación)	Sulfato de cobre pentahidratad o	Frase R:22	В	Solidos granulares o cristalinos, cuando se emplea se ve producción de polvo que se deposita rápidamente sobre superficies adyacentes	MEDIA	gramos	PEQUEÑA	1	Medidas de Ventilación General y Buenas prácticas de trabajo.
Planta de Beneficio (Refinación- Fundición)	Carbonato de sodio	Frase R:36	С	Solidos granulares o cristalinos, cuando se emplea se ve producción de polvo que se deposita rápidamente sobre superficies adyacentes	MEDIA	kg	MEDIANA	3	Medidas de Confinamiento/Sistema s Cerrados.
Planta de Beneficio (Refinación- Fundición)	Bórax (Tetraborato de sodio)	Frase H:360	D	Solidos granulares o cristalinos, cuando se emplea se ve producción de polvo que se deposita rápidamente sobre	MEDIA	Kg	MEDIANA	3	Medidas de Confinamiento/Sistema s Cerrados.

				superficies adyacentes					
Planta de Beneficio (Refinación- Fundición)	Nitrato de potasio	Según TLV: 10 mg/m3	В	Solidos granulares o cristalinos, cuando se emplea se ve producción de polvo que se deposita rápidamente sobre superficies adyacentes	MEDIA	gramos	PEQUEÑA	1	Medidas de Ventilación General y Buenas prácticas de trabajo.
Planta de Beneficio (Refinación- Fundición)	Ácido nítrico	Frase H: 314; (R:35)	С	121	MEDIA	litros	MEDIANA	3	Medidas de Confinamiento/Sistema s Cerrados.
Laboratorio químico metalúrgico	Carbonato de Sodio	Frase R:36	С	Solidos granulares o cristalinos, cuando se emplea se ve producción de polvo que se deposita rápidamente sobre superficies adyacentes	MEDIA	Kg	MEDIANA	3	Medidas de Confinamiento/Sistema s Cerrados.
Laboratorio químico metalúrgico	Litargirio (Oxido de Plomo)	Frase H:301	E	Solidos granulares o cristalinos, cuando se emplea se ve producción de polvo que se deposita rápidamente sobre superficies adyacentes	MEDIA	Kg	MEDIANA	4	Especial/Se necesita el consejo de un experto.
Laboratorio químico metalúrgico	Bórax (Tetraborato de sodio)	Frase H:360	D	Sustancia en forma de gransa, pellets, sin tendencia romperse ,no produce polvo	BAJA	Kg	MEDIANA	3	Medidas de Confinamiento/Sistema s Cerrados.

Laboratorio químico metalúrgico	Nitrato de potasio	Según TLV: 10 mg/m3	В	Solidos granulares o cristalinos, cuando se emplea se ve producción de polvo que se deposita rápidamente sobre superficies adyacentes	MEDIA	gramos	PEQUEÑA	1	Medidas de Ventilación General y Buenas prácticas de trabajo.
Laboratorio químico metalúrgico	Nitrato de plata	Frase H:314	С	Sustancia en forma de gransa, pellets, sin tendencia romperse ,no produce polvo	BAJA	gramos	PEQUEÑA	1	Medidas de Ventilación General y Buenas prácticas de trabajo.
Laboratorio químico metalúrgico	Sílice	Frase R: 48/20	С	Sustancia en forma de gransa, pellets, sin tendencia romperse ,no produce polvo	BAJA	gramos	PEQUEÑA	1	Medidas de Ventilación General y Buenas prácticas de trabajo.
Laboratorio químico metalúrgico	Ácido nítrico	Frase R:35	С	121°C	MEDIA	litros	MEDIANA	3	Medidas de Confinamiento/Sistema s Cerrados.
Mantenimient o	Silicón rojo	Según TLV: 5 mg/m3	В	Sustancia en forma de gransa, pellets, sin tendencia romperse ,no produce polvo	BAJA	gramos	PEQUEÑA	1	Medidas de Ventilación General y Buenas prácticas de trabajo.
Mantenimient o	WD 40	Frase H:304	В	176°C	ALTA	mililitros	PEQUEÑA	1	Medidas de Ventilación General y Buenas prácticas de trabajo.
Mantenimient o	Cemento refractario	Frase R:36	С	Sustancia en forma de gransa, pellets, sin tendencia romperse ,no produce polvo	BAJA	gramos	PEQUEÑA	1	Medidas de Ventilación General y Buenas prácticas de trabajo.
Mantenimient o	PINTURA NAVAL AZUL	Frase H:351	D	137°C	MEDIA	litros	MEDIANA	4	Especial/Se necesita el consejo de un experto.

Mantenimient o	Pintura anticorrosiva	Frase H:351	D	137°C	MEDIA	litros	MEDIANA	4	Especial/Se necesita el consejo de un experto.
Mantenimient o	DILUYENTE	Frase R: 20	В	64°C	MEDIA	litros	MEDIANA	2	Controles de Ingeniería (generalmente Extracción Localizada).
Mantenimient o	Aceite SAE 15W - 40 Castrol	Frase H:304,303,315,318	В	403 °C	BAJA	mililitros	PEQUEÑA	1	Medidas de Ventilación General y Buenas prácticas de trabajo.
Mantenimient o	Aceite SAE 250	Frase H:304,303,315,318	В	300°C	BAJA	mililitros	PEQUEÑA	1	Medidas de Ventilación General y Buenas prácticas de trabajo.
Mantenimient o	Aceite para transmisión 250 GL	Frase H:304,303,315,318	В	403°C	BAJA	mililitros	PEQUEÑA	1	Medidas de Ventilación General y Buenas prácticas de trabajo.
Mantenimient o	Soldadura 6011	Frase H: 351,332,302, 413	D	Sustancia en forma de gransa, pellets, sin tendencia romperse ,no produce polvo	BAJA	Kg	MEDIANA	3	Medidas de Confinamiento/Sistema s Cerrados.
Mantenimient o	Soldadura 7018	Frase H: 351,332,302, 413	D	Sustancia en forma de gransa, pellets, sin tendencia romperse ,no produce polvo	BAJA	Kg	MEDIANA	3	Medidas de Confinamiento/Sistema s Cerrados.
Mantenimient o	Grasa multipropósito	No especificado	A	Sustancia en forma de gransa, pellets, sin tendencia romperse ,no produce polvo	ВАЈА	Kg	MEDIANA	1	Medidas de Ventilación General y Buenas prácticas de trabajo.

2.2 APLICACIÓN DE METODO INRS

2.2.1 JERARQUIZACION DE RIESGOS METODO INRS

				JERAF	RQUIZA	ACION D	E RIE	SGOS N	IETODO	INRS				
		Clase de Peligro		Clase de cantidad		I	Clase d	le frecuencia	à	Clase de exposici	Puntuaci ón de	PRIORID	RIESGO	JERARQUIZACI
Área de empresa	Nombre de reactivo	En función de frase R,H,valores limites ambientales	Puntuaci ón	Cantid ad usada Kg	Qi/Qm ax	Puntuaci ón	Tiemp o	Utilizació n	Puntuaci ón	on potencia	riesgo potencial	AD	POTENCI AL	ON DE REACTIVOS
Mina	Nitrato de amonio como (ANFO)	Frase H:272,319 (R:36/37/38)	2	150	100.0	5	7 horas	Permane nte	4	5	1000	MEDIA	0.045	Dinamita 1 1/8 x 7" boliviana RIODIN HM al 80%
Mina	Dinamita 1 1/8 x 7" boliviana RIODIN HM al 80%	Frase H: 330,373	5	98.4	65.6	5	1 hora	Intermiten te	2	5	1000000	ELEVAD A	45.230	Litargirio (Oxido de Plomo)
Mina	Mecha de seguridad FUSE SAFETY RIOFUSE	TLV: 3.5 mg/m3	3	106	70.7	5	7 horas	Permane nte	4	5	10000	MEDIA	0.452	Glifosato
Mina	Fulminante RIOCAP FANEXA	Frase R:61	4	13.5	9.0	3	7 horas	Permane nte	4	4	30000	ELEVAD A	1.357	Ácido nítrico Refinación
Medio Ambiente P.A.	Policloruro de aluminio en polvo	Frase H:302;(R 37/38)	3	1.7	3.4	2	45 minut os	Intermiten te	2	2	300	MEDIA	0.014	Xantato amílico de potasio (Z-6)

Medio Ambiente P.A.	Hipoclorito de sodio al 10%	Frase R:31,34,50	4	3.85	7.7	3	60 minut os	Intermiten te	2	3	10000	MEDIA	0.452	Soldadura AGA 6011
Medio Ambiente P.A.	Cloruro de sodio	Frase H:319;(R40)	2	7.14	14.3	4	90 minut os	Intermiten te	2	4	300	MEDIA	0.014	Soldadura AGA 7018
Medio Ambiente	Glifosato	Frase H:350	5	22.6	45.2	5	una vez al mes	ocasional	1	4	300000	ELEVAD A	13.569	Pintura naval
Medio Ambiente	Soda Caustica (hidróxido de sodio)	Frase H:314	4	12.5	25.0	4	una vez al mes	ocasional	1	3	10000	MEDIA	0.452	Pintura anticorrosiva
Medio Ambiente	Desinfectan te liquido	Material y proceso	2	40	80.0	5	todos los días (4 hr)	Permane nte	4	5	1000	MEDIA	0.045	Fulminante RIOCAP FANEXA
Medio Ambiente	Detergente Sapolio	R36 (como carbonato de sodio)	2	50	100.0	5	todos los días (4hr)	Permane nte	4	5	1000	MEDIA	0.045	Soda Caustica (hidróxido de sodio)
Campamen to	Diésel	Frase R:22	3	1615	100.0	5	5 días	Intermiten te	2	5	10000	MEDIA	0.452	Mecha de seguridad FUSE SAFETY RIOFUSE
Campamen to	Gasolina	Frase R:21	3	176	10.9	3	todos los días	Permane nte	4	4	3000	MEDIA	0.136	Hipoclorito de sodio al 10%
Planta de Beneficio (Flotación)	Xantato amílico de potasio (Z- 6)	Frase H:311,373	4	18	20.0	4	toda la jornad a	Permane nte	4	5	100000	ELEVAD A	4.523	Diésel

Planta de Beneficio (Flotación)	Espumante ER-370 /D250	Frase H: 314 ;(R34)	3	12	13.3	4	toda la jornad a	Permane nte	4	4	3000	MEDIA	0.136	Bórax (Tetraborato de sodio) Laboratorio químico metalúrgico
Planta de Beneficio (Flotación)	Promotor AR1242/ FLOTTEC 2300	Función de etiquetado (corrosivo)	4	3	3.3	2	toda la jornad a	Permane nte	4	2	3000	MEDIA	0.136	Aceite SAE 15W - 40 Castrol
Planta de Beneficio (Flotación)	Promotor AR1208 /	Frase H:311	4	3	3.3	2	toda la jornad a	Permane nte	4	2	3000	MEDIA	0.136	Aceite SAE 250
Planta de Beneficio (Flotación)	Promotor 404/Flottec 2044 Colector	Frase H:314	4	3	3.3	2	toda la jornad a	Permane nte	4	2	3000	MEDIA	0.136	Aceite para transmisión 250 GL
Planta de Beneficio (Flotación)	Silicato de sodio (liquido)	Frase :314	4	1.5	1.7	2	toda la jornad a	Permane nte	4	2	3000	MEDIA	0.136	Espumante ER- 370 /D250
Planta de Beneficio (Flotación)	Sulfuro de sodio	Frase H:314,318,332, 335	4	0.05	0.1	1	toda la jornad a	Permane nte	4	1	1000	MEDIA	0.045	Promotor AR1242/ FLOTTEC 2300
Planta de Beneficio (Flotación)	Bisulfito de sodio	Frase H:302(R22,31, 58)	3	1.5	1.7	2	toda la jornad a	Permane nte	4	2	300	MEDIA	0.014	Promotor AR1208 /
Planta de Beneficio (Flotación)	Sulfato de cobre pentahidrat ado	Frase R:22	3	0.05	0.1	1	toda la jornad a	Permane nte	4	1	100	BAJA	0.005	Promotor 404/Flottec 2044 Colector
Planta de Beneficio	Carbonato de sodio	Frase R:36	2	2	2.2	2	60 minut os	ocasional	1	2	30	BAJA	0.001	Silicato de sodio (liquido)

(Refinacion- Fundicion)														
Planta de Beneficio (Refinacion- Fundicion)	Bórax (Tetraborato de sodio)	Frase H:360	4	4	4.4	2	60 minut os	ocasional	1	2	3000	MEDIA	0.136	Gasolina
Planta de Beneficio (Refinacion- Fundicion)	Nitrato de potasio	Según TLV: 10 mg/m3	3	0.5	0.6	1	60 minut os	ocasional	1	1	100	ВАЈА	0.005	Bórax (Tetraborato de sodio) Refinación y fundición
Planta de Beneficio (Refinacion- Fundicion)	Ácido nítrico	Frase H: 314; (R:35)	4	90	100.0	5	240 minut os	intermiten te	2	5	100000	ELEVAD A	4.523	Nitrato de plata
Laboratorio químico metalúrgico	Carbonato de Sodio	Frase R:36	2	0.35	30.7	4	25 minut os	ocasional	1	3	100	BAJA	0.005	Ácido nítrico (laboratorio químico metalúrgico)
Laboratorio químico metalúrgico	Litargirio (Oxido de Plomo)	Frase H:301	5	1.14	100.0	5	25 minut os	ocasional	1	4	300000	ELEVAD A	13.569	DILUYENTE
Laboratorio químico metalúrgico	Bórax (Tetraborato de sodio)	Frase H:360	4	0.11	9.6	3	25 minut os	ocasional	1	3	10000	MEDIA	0.452	Grasa multipropósito
Laboratorio químico metalúrgico	Nitrato de potasio	Según TLV: 10 mg/m3	3	0.04	3.5	2	25 minut os	ocasional	1	2	300	MEDIA	0.014	Nitrato de amonio como (ANFO)
Laboratorio químico metalúrgico	Nitrato de plata	Frase H:314	4	0.028	2.5	2	25 minut os	ocasional	1	2	3000	MEDIA	0.136	Desinfectante liquido

Laboratorio químico metalúrgico	Sílice	Frase R: 48/20	3	0.14	12.3	4	25 minut os	ocasional	1	3	1000	MEDIA	0.045	Detergente Sapolio
Laboratorio químico metalúrgico	Ácido nítrico	Frase H: 314; (R:35)	4	0.042	3.7	2	5 minut os	ocasional	1	2	3000	MEDIA	0.136	Sulfuro de sodio
Mantenimie nto	Silicón rojo	Según TLV: 5 mg/m3	3	0.08	0.2	1	todos los días	Permane nte	4	1	100	BAJA	0.005	Sílice
Mantenimie nto	WD 40	Frase H:304	3	0.81	1.8	1	todos los días	Permane nte	4	2	300	MEDIA	0.014	Cemento refractario
Mantenimie nto	Cemento refractario	Frase R:36	2	10	22.2	4	tres veces al mes	Intermiten te	2	5	1000	MEDIA	0.045	Policloruro de aluminio en polvo
Mantenimie nto	Pintura naval	Frase H:351	4	15.4	34.2	5	una vez al mes	ocasional	1	4	30000	ELEVAD A	1.357	Cloruro de sodio
Mantenimie nto	Pintura anticorrosiv a	Frase H:351	4	15.4	34.2	5	una vez al mes	ocasional	1	4	30000	ELEVAD A	1.357	Bisulfito de sodio
Mantenimie nto	Diluyente	Frase R: 20	3	24	53.3	5	una vez al mes	ocasional	1	4	3000	MEDIA	0.136	Nitrato de potasio (Laboratorio químico metalúrgico)
Mantenimie nto	Aceite SAE 15W - 40 Castrol	Frase H:304,303,315, 318	3	20	44.4	5	cuatro veces al mes	Intermiten te	2	5	10000	MEDIA	0.452	WD 40

Mantenimie nto	Aceite SAE 250	Frase H:304,303,315, 318	3	18.2	40.4	5	cuatro veces al mes	Intermiten te	2	5	10000	MEDIA	0.452	Sulfato de cobre pentahidratado
Mantenimie nto	Aceite para transmisión 250 GL	Frase H:304,303,315, 318	3	13.3	29.6	4	cuatro veces al mes	Intermiten te	2	5	10000	MEDIA	0.452	Nitrato de potasio (refinación fundición)
Mantenimie nto	Soldadura AGA 6011	Frase H: 351,332,302, 413	4	45	100.0	5	más de 15 días al mes		4	5	100000	ALTA	4.523	Carbonato de Sodio (laboratorio químico metalúrgico)
Mantenimie nto	Soldadura AGA 7018	Frase H: 351,332,302, 414	4	10	22.2	4	más de 15 días al mes		4	5	100000	ALTA	4.523	Silicón rojo
Mantenimie nto	Grasa multipropósi to	según VLA 5.6 mg/m3	3	5.6	12.4	4	2 a 6 días	Intermiten te	2	4	3000	MEDIA	0.136	Carbonato de sodio (refinación fundición)
										TOTAL=	2210930		100.000	

2.2.2 APLICACIÓN DE EVALUACION SIMPLIFICADA DE RIESGO POR INHALACION METODO INRS

EVALUACION DE RIESGO POR INHALACION METODO INRS

AREA	PRODUC TO	FRASES H/R	VLA		CLASE DE POTENCIAL (JERARQUIZACI	VIENE DE	CLASE DE	VOLATILIDAD		CLASE DE	PROCEDIMIEN	то	PROT	ECCION					
			ED	EC	CLASE	PUNTUAC	PUNTUA CION	CLASE	(kpa de líquidos o (temperatura de ebullición- temperatura de trabajo)/esta do físico en solidos		PUNTUACIO N			PUNTU ACION		factor de correcci ón VLA	PUNTUA CION	ACCIO N	
Mina	Nitrato de amonio como (ANFO)	Frase H:272,31 9 (R:36/37/ 38)	10 mg/m3		3	100	1	1	sin emisión de polvo	2	0.05	cerrado/a bierto regularme nte	3	0.7	Ventilación general	1	3.5	3	Riesgo a priori bajo (sin necesidad de modificaciones
Mina	Dinamita 1 1/8 x 7" boliviana RIODIN HM al 80%	Frase H: 330,373	0.3 mg/m3		5	10000	1	1	sin emisión de polvo	2	0.05	cerrado/a bierto regularme nte		1	ausencia ventilación mecánica	1	500	2	Riesgo moderado, necesita probablemente medidas correctoras y/o evaluación más detallada (mediciones)
Mina	Mecha de seguridad FUSE SAFETY RIOFUSE	TLV: 3.5 mg/m3	3.5 mg/m3		4	1000	1	1	sin emisión de polvo	2	0.05	cerrado/a bierto regularme nte	3	0.7	Ventilación general	1	35	3	Riesgo a priori bajo (sin necesidad de modificaciones
Mina	Fulminant e RIOCAP FANEXA	Frase R:61			4	1000	1	1	sin emisión de polvo	2	0.05	cerrado/a bierto regularme nte	3	0.7	Ventilación general	1	35	3	Riesgo a priori bajo (sin necesidad de modificaciones
Planta de Agua	Policloruro de aluminio en polvo	Frase H:302;(R 37/38)	1 mg/m3		2	10	1	1	sin emisión de polvo	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	0.35	3	Riesgo a priori bajo (sin necesidad de modificaciones

Planta de Agua	Hipoclorito de sodio al 10%	Frase R:31,34, 50	1.45 mg/m3		4	1000	10	2	Presión de vapor 2.5Kpa	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	350	2	Riesgo moderado, necesita probablemente medidas correctoras y/o evaluación más detallada (mediciones)
Planta de Agua	Cloruro de sodio	Frase H:319;(R 40)	no regulado		2	10	1	1	sin emisión de polvo	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	0.35	3	Riesgo a priori bajo (sin necesidad de modificaciones
Medio Ambiente	Glifosato	Frase H:350	no definido		5	10000	10	2	Presión de vapor 9Kpa	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	3500	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Medio Ambiente	Soda Caustica (hidróxido de sodio)	Frase H:314		2 mg /m 3	4	1000	10	2	material en forma de polvo en grano	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	350	2	Riesgo moderado, necesita probablemente medidas correctoras y/o evaluación más detallada (mediciones)
Medio Ambiente	Desinfecta nte liquido	Material y proceso	1880 mg/m3 como etanol		3	100	10	2	Kpa:15.9	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	35	3	Riesgo a priori bajo (sin necesidad de modificaciones
Medio Ambiente	Detergent e Sapolio	R36 (como carbonat o de sodio)	10 mg/m3		3	100	10	1	sin emisión de polvo	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	35	3	Riesgo a priori bajo (sin necesidad de modificaciones
Medio Ambiente	Diésel	Frase R:22	376 mg/m3		4	1000	1	1	Presión de vapor 0.01 Kpa	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	35	3	Riesgo a priori bajo (sin necesidad de modificaciones
Medio Ambiente	Gasolina	Frase R:21	376 mg/m3		4	1000	100	3	Presión de vapor 48-78 Kpa	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	3500	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Planta de Beneficio (Flotación)	Xantato amílico de potasio (Z- 6)	Frase H:311,37 3	10 mg/m3		5	10000	10	2	material en forma de polvo en grano	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	3500	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Planta de Beneficio (Flotación)	Sulfuro de sodio	Frase H: 314 ;(R34)	13.9 mg/m3 como ácido sulfhídrico		3	100	10	2	material en forma de polvo en grano	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	35	3	Riesgo a priori bajo (sin necesidad de modificaciones

Planta de Beneficio (Flotación)	Espumant e ER-370 /D250	Función de etiquetad o (corrosiv o)	10 mg/m3 (como ácido cresilico)	4	1000	1	1	temperatura de ebullición 252 C	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	35	3	Riesgo a priori bajo (sin necesidad de modificaciones
Planta de Beneficio (Flotación)	Promotor AR1242/ FLOTTEC 2300	Frase H:311	10 mg/m3 (como ácido cresilico)	3	100	1	1	Kpa despreciable a 25°C	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	3.5	3	Riesgo a priori bajo (sin necesidad de modificaciones
Planta de Beneficio (Flotación)	Promotor AR1208	Frase H:314	2 mg/m3 (como hidróxido de sodio)	3	100	10	2	Presión de vapor 2.3 Kpa	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	35	3	Riesgo a priori bajo (sin necesidad de modificaciones
Planta de Beneficio (Flotación)	Promotor 404/Flotte c 2044 Colector	Frase :314	2 mg/m3 (como hidróxido de sodio)	3	100	10	2	Presión de vapor 2.3Kpa	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	35	3	Riesgo a priori bajo (sin necesidad de modificaciones
Planta de Beneficio (Flotación)	Silicato de sodio (liquido)	Frase H:314,31 8,332,33 5	10 mg/m3	3	100	10	2	Presión de vapor= 2.39Kpa	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	35	3	Riesgo a priori bajo (sin necesidad de modificaciones
Planta de Beneficio (Flotación)	Bisulfito de sodio	Frase H:302(R 22,31,58	5 mg/m3	2	10	100	3	material en forma de polvo fino	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	35	3	Riesgo a priori bajo (sin necesidad de modificaciones
Planta de Beneficio (Flotación)	Sulfato de cobre pentahidra tado	Frase R:22	1 mg/m3	2	10	100	3	material en forma de polvo fino	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	35	3	Riesgo a priori bajo (sin necesidad de modificaciones
Planta de Beneficio (Refinacion- Fundicion)	Carbonato de sodio	Frase R:36	10 mg/m3	1	1	10	2	material en forma de polvo en grano	4	1	Dispersivo	2	0.1	campana superior	1	1	3	Riesgo a priori bajo (sin necesidad de modificaciones
Planta de Beneficio (Refinacion- Fundicion)	Bórax (Tetrabora to de sodio)	Frase H:360	5 mg/m3	3	100	1	1	sin emisión de polvo	4	1	Dispersivo	2	0.1	campana superior	1	10	3	Riesgo a priori bajo (sin necesidad de modificaciones
Planta de Beneficio (Refinacion- Fundicion)	Nitrato de potasio	Según TLV: 10 mg/m3	10 mg/m3	2	10	10	2	material en forma de polvo en grano	4	1	Dispersivo	2	0.1	campana superior	1	10	3	Riesgo a priori bajo (sin necesidad de modificaciones

Planta de Beneficio (Refinacion- Fundicion)	Ácido nítrico	Frase H: 314; (R:35)	5,2 mg/m3	5	10000	100	3	121°C/120°C (temperatura de ebullición sobre temperatura de trabajo)	2	0.05	cerrado/a bierto regularme nte	2	0.1	campana superior	1	5000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Laboratorio químico metalúrgico	Carbonato de Sodio	Frase R:36	10 mg/m3	2	10	10	2	material en forma de polvo en grano	4	1	cerrado/a bierto regularme nte	4	1	ausencia de ventilación mecánica	1	100	3	Riesgo a priori bajo (sin necesidad de modificaciones
Laboratorio químico metalúrgico	Litargirio (Oxido de Plomo)	Frase H:301	0,05 mg/m3	5	10000	10	2	material en forma de polvo en grano	4	1	cerrado/a bierto regularme nte	4	1	ausencia de ventilación mecánica	10	1000000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Laboratorio químico metalúrgico	Bórax (Tetrabora to de sodio)	Frase H:360	5 mg/m3	4	1000	1	1	sin emisión de polvo	4	1	cerrado/a bierto regularme nte	4	1	ausencia de ventilación mecánica	1	1000	2	Riesgo moderado, necesita probablemente medidas correctoras y/o evaluación más detallada (mediciones)
Laboratorio químico metalúrgico	Nitrato de potasio	Según TLV: 10 mg/m3	10 mg/m3	2	10	10	2	material en forma de polvo en grano	4	1	cerrado/a bierto regularme nte	4	1	ausencia de ventilación mecánica	1	100	3	Riesgo a priori bajo (sin necesidad de modificaciones
Laboratorio químico metalúrgico	Nitrato de plata	Frase H:314	3 mg/m3	2	10	1	1	sin emisión de polvo	2	0.05	cerrado/a bierto regularme nte	4	1	ausencia de ventilación mecánica	1	0.5	3	Riesgo a priori bajo (sin necesidad de modificaciones
Laboratorio químico metalúrgico	Sílice	Frase R: 48/20	0.1 mg/m3	3	100	1	1	sin emisión de polvo	2	0.05	cerrado/a bierto regularme nte	4	1	ausencia de ventilación mecánica	10	50	3	Riesgo a priori bajo (sin necesidad de modificaciones
Laboratorio químico metalúrgico	Ácido nítrico	Frase R:35	5,2 mg/m3	3	100	10	2	Presión de vapor= 6.4 Kpa	2	0.05	cerrado/a bierto regularme nte	1	0.01	Cabina de laboratorio	1	0.5	3	Riesgo a priori bajo (sin necesidad de modificaciones
Mantenimiento	Silicón rojo	Según TLV: 5 mg/m3	5 mg/m3	2	10	1	1	sin emisión de polvo	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	0.35	3	Riesgo a priori bajo (sin necesidad de modificaciones
Mantenimiento	WD 40	Frase H:304	5 mg/m3	2	10	100	3	presión de vapor= 720 Kpa	2	0.05	Dispersivo	3	0.7	Intemperie	1	35	3	Riesgo a priori bajo (sin necesidad de modificaciones

Mantenimiento	Cemento refractario	Frase R:36	10 mg/m3	3	100	1	1	sin emisión de polvo	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	3.5	3	Riesgo a priori bajo (sin necesidad de modificaciones
Mantenimiento	PINTURA NAVAL AZUL	Frase H:351	192 mg/m3 como tolueno	4	1000	10	2	presión de vapor: 1.38Kpa	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	350	2	Riesgo moderado, necesita probablemente medidas correctoras y/o evaluación más detallada (mediciones)
Mantenimiento	Pintura anticorrosi va	Frase H:351	177 mg/m3	4	1000	10	2	presión de vapor: 1.38Kpa	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	350	2	Riesgo moderado, necesita probablemente medidas correctoras y/o evaluación más detallada (mediciones)
Mantenimiento	Diluyente	Frase R: 20	1100 mg/m3	3	100	100	3	Presión de vapor: 47.4 Kpa	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	350	2	Riesgo moderado, necesita probablemente medidas correctoras y/o evaluación más detallada (mediciones)
Mantenimiento	Aceite SAE 15W - 40 Castrol	Frase H:304,30 3,315,31 8	5 mg/m3	4	1000	1	1	menor a 0.01 Kpa	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	35	3	Riesgo a priori bajo (sin necesidad de modificaciones
Mantenimiento	Aceite SAE 250	Frase H:304,30 3,315,31 8	5 mg/m3	4	1000	1	1	menor a 0.01 Kpa	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	35	3	Riesgo a priori bajo (sin necesidad de modificaciones
Mantenimiento	Aceite para transmisió n 250 GL	Frase H:304,30 3,315,31 8	5 mg/m3	4	1000	1	1	menor a 0.01 Kpa	2	0.05	cerrado/a bierto regularme nte	3	0.7	Intemperie	1	35	3	Riesgo a priori bajo (sin necesidad de modificaciones
Mantenimiento	Soldadura AGA 6011	Frase H: 351,332, 302, 413	0.4 mg/m3 (como ozono)	5	10000	1	1	sin emisión de polvo	4	1	Dispersivo	3	0.7	Intemperie	1	7000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Mantenimiento	Soldadura AGA 7018	Frase H: 351,332, 302, 414	0.4 mg/m3 (como ozono)	5	10000	1	1	sin emisión de polvo	4	1	Dispersivo	3	0.7	Intemperie	1	7000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Mantenimiento	Grasa multipropó sito	mg/m3	5.6 mg/m3	3	100	1	1	sin emisión de polvo	3	0.5	Abierto	3	0.7	Intemperie	1	35	3	Riesgo a priori bajo (sin necesidad de modificaciones

2.2.3 APLICACIÓN DE EVALUACION SIMPLIFICADA DE RIESGO POR CONTACTO Y/O ABSORCION POR PIEL METODO INRS

			EVALUACION S	IMPLIF	ICADA DE RIE	SGO POR C	ONTACTO Y/O	O ABSORCI	ON POR PIEL			
				CLASE PELIG		CLASE DE EXPUESTA	SUPERFICIE	FRECUEN EXPOSICIO		RIESGO DE	CONTACTO) CON LA PIEL
REACTIVO	VLA/TLV		FRASE H, R	CLAS E	PUNTUACI ON	SUPERFI CIE EXPUEST A	PUNTUACI ON	CLASE	PUNTUACI ON	PUNTUACI ON	PRIORID AD DE ACCION	CARACTERIZAC ION DEL RIESGO
	ED	EC										
Nitrato de amonio como (ANFO)	10 mg/m3		Frase H:272,319 (R:36/37/38)	3	100	Dos mano + antebrazo brazo completo	3	Permane nte	10	3000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Dinamita 1 1/8 x 7" boliviana RIODIN HM al 80%	0.3 mg/m3		Frase H: 330,373	3	100	Dos mano + antebrazo brazo completo	3	Intermiten te	2	600	2	Riesgo moderado (necesita probablemente medidas correctoras y/o una evaluación más detallada)
Mecha de seguridad FUSE	3.5 mg/m3		TLV: 3.5 mg/m3	3	100	Dos mano + antebrazo	3	Permane nte	10	3000	1	Riesgo probablemente muy elevado (medidas

SAFETY RIOFUSE						brazo completo						correctoras inmediatas)
Fulminante RIOCAP FANEXA			Frase R:61	4	1000	Dos mano + antebrazo brazo completo	3	Permane nte	10	30000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Policloruro de aluminio en polvo	1 mg/m3		Frase H:302;(R 37/38)	2	10	Dos manos una mano +antebraz o	2	Intermiten te	2	40	3	Riesgo a priori bajo (sin necesidad de modificaciones)
Hipoclorito de sodio al 10%	1.45 mg/m3		Frase R:31,34,50	4	1000	Dos manos una mano +antebraz o	2	Intermiten te	2	4000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Cloruro de sodio	no regulado		Frase H:319;(R40)	1	1	Dos manos una mano +antebraz o	2	Frecuent e	5	10	3	Riesgo a priori bajo (sin necesidad de modificaciones)
Glifosato	no definido		Frase H:350	5	10000	Dos mano + antebrazo brazo completo	3	ocasional	1	30000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Soda Caustica (hidróxido de sodio)		2 mg/m3	Frase H:314	4	1000	Dos manos una mano +antebraz o	2	ocasional	1	2000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)

Desinfectan te liquido	1880 mg/m3 como etanol	Material y proceso	1	1	Dos mano + antebrazo brazo completo	3	Frecuent e	5	15	3	Riesgo a priori bajo (sin necesidad de modificaciones)
Detergente Sapolio	10 mg/m3	R36 (como carbonato de sodio)	2	10	Dos manos una mano +antebraz o	2	Frecuent e	5	100	3	Riesgo a priori bajo (sin necesidad de modificaciones)
Diésel	376 mg/m3	Frase R:22	3	100	Dos mano + antebrazo brazo completo	3	ocasional	1	300	2	Riesgo moderado (necesita probablemente medidas correctoras y/o una evaluación más detallada)
Gasolina	376 mg/m3	Frase R:21	3	100	Dos mano + antebrazo brazo completo	3	ocasional	1	300	2	Riesgo moderado (necesita probablemente medidas correctoras y/o una evaluación más detallada)
Xantato amílico de potasio (Z- 6)	10 mg/m3	Frase H:311,373	4	1000	Dos manos una mano +antebraz o	2	Permane nte	10	20000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Sulfuro de sodio	13.9 mg/m3 como ácido sulfhídric o	Frase H: 314 ;(R34)	4	1000	Dos manos una mano +antebraz o	2	Permane nte	10	20000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)

Espumante ER-370 /D250	10 mg/m3 (como ácido cresilico)	Función de etiquetado (corrosivo)	4	1000	Dos manos una mano +antebraz o	2	Permane nte	10	20000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Promotor AR1242/ FLOTTEC 2300	10 mg/m3 (como ácido cresilico)	Frase H:311	4	1000	Dos manos una mano +antebraz o	2	Permane nte	10	20000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Promotor AR1208	2 mg/m3 (como hidróxido de sodio)	Frase H:314	4	1000	Dos manos una mano +antebraz o	2	Permane nte	10	20000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Promotor 404/Flottec 2044 Colector	2 mg/m3 (como hidróxido de sodio)	Frase :314	4	1000	Dos manos una mano +antebraz o	2	Permane nte	10	20000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Silicato de sodio (liquido)	10 mg/m3	Frase H:314,318,332,335	4	1000	Dos manos una mano +antebraz o	2	Permane nte	10	20000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Bisulfito de sodio	5 mg/m3	Frase H:302(R22,31,58)	4	1000	Dos manos una mano +antebraz o	2	Permane nte	10	20000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)

Sulfato de cobre pentahidrat ado	1 mg/m3	Frase R:22	3	100	Dos manos una mano +antebraz o	2	Permane nte	10	2000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Carbonato de sodio	10 mg/m3	Frase R:36	2	10	Dos manos una mano +antebraz o	2	Intermiten te	2	40	3	Riesgo a priori bajo (sin necesidad de modificaciones)
Bórax (Tetraborat o de sodio)	5 mg/m3	Frase H:360	4	1000	Dos manos una mano +antebraz o	2	Intermiten te	2	4000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Nitrato de potasio	10 mg/m3	Según TLV: 10 mg/m3	3	100	Dos manos una mano +antebraz o	2	Intermiten te	2	400	2	Riesgo moderado (necesita probablemente medidas correctoras y/o una evaluación más detallada)
Ácido nítrico	5,2 mg/m3	Frase H: 314; (R:35)	4	1000	Dos mano + antebrazo brazo completo	3	Frecuent e	5	15000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Carbonato de Sodio	10 mg/m3	Frase R:36	2	10	Dos manos una mano +antebraz o	2	ocasional	1	20	3	Riesgo a priori bajo (sin necesidad de modificaciones)
Litargirio (Oxido de Plomo)	0,05 mg/m3	Frase H:301	5	10000	Dos manos una mano	2	ocasional	1	20000	1	Riesgo probablemente muy elevado (medidas

					+antebraz o						correctoras inmediatas)
Bórax (Tetraborat o de sodio)	5 mg/m3	Frase H:360	4	1000	Dos manos una mano +antebraz o	2	ocasional	1	2000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Nitrato de potasio	10 mg/m3	Según TLV: 10 mg/m3	3	100	Dos manos una mano +antebraz o	2	ocasional	1	200	2	Riesgo moderado (necesita probablemente medidas correctoras y/o una evaluación más detallada)
Nitrato de plata	3 mg/m3	Frase H:314	4	1000	Dos manos una mano +antebraz o	2	ocasional	1	2000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Sílice	0.1 mg/m3	Frase R: 48/20	3	100	Dos manos una mano +antebraz o	2	ocasional	1	200	2	Riesgo moderado (necesita probablemente medidas correctoras y/o una evaluación más detallada)
Ácido nítrico	5,2 mg/m3	Frase R:35	4	1000	Dos manos una mano +antebraz o	2	ocasional	1	2000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Silicón rojo	5 mg/m3	Según TLV: 5 mg/m3	3	100	una mano	1	ocasional	1	100	3	Riesgo a priori bajo (sin

											necesidad de modificaciones)
WD 40	5 mg/m3	Frase H:304	2	10	una mano	1	ocasional	1	10	3	Riesgo a priori bajo (sin necesidad de modificaciones)
Cemento refractario	10 mg/m3	Frase R:36	2	10	Dos mano + antebrazo brazo completo	3	ocasional	1	30	3	Riesgo a priori bajo (sin necesidad de modificaciones)
Pintura naval azul	192 mg/m3 como tolueno	Frase H:351	4	1000	Dos mano + antebrazo brazo completo	3	ocasional	1	3000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Pintura anticorrosiv a	177 mg/m3	Frase H:351	4	1000	Dos mano + antebrazo brazo completo	3	ocasional	1	3000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Diluyente	1100 mg/m3	Frase R: 20	3	100	Dos manos una mano +antebraz o	2	ocasional	1	200	2	Riesgo moderado (necesita probablemente medidas correctoras y/o una evaluación más detallada)
Aceite SAE 15W - 40 Castrol	5 mg/m3	Frase H:304,303,315,318	2	10	Dos manos una mano +antebraz o	2	ocasional	1	20	3	Riesgo a priori bajo (sin necesidad de modificaciones)

Aceite SAE 250	5 mg/m3	Frase H:304,303,315,318	2	10	Dos manos una mano +antebraz o	2	ocasional	1	20	3	Riesgo a priori bajo (sin necesidad de modificaciones)
Aceite para transmisión 250 GL	5 mg/m3	Frase H:304,303,315,318	2	10	Dos manos una mano +antebraz o	2	ocasional	1	20	3	Riesgo a priori bajo (sin necesidad de modificaciones)
Soldadura 6011		Frase H: 351,332,302,	4	1000	Dos mano + antebrazo brazo completo	3	ocasional	1	3000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Soldadura 7018		Frase H: 351,332,302,	4	1000	Dos mano + antebrazo brazo completo	3	ocasional	1	3000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
Grasa multipropósi to	5.6 mg/m3		3	100	Dos manos una mano +antebraz o	2	ocasional	1	200	2	Riesgo moderado (necesita probablemente medidas correctoras y/o una evaluación más detallada)

CAPITULO 3:

RESULTADOS OBTENIDOS

DISCUSIÓN

METODO COSHH Essentials

En el área de mina se logra diferenciar dos reactivos que necesitan medidas de confinamiento o sistemas cerrados puntuación de riesgo 3 como la dinamita y el fulminante, esto debido principalmente a su grado de peligrosidad a corto plazo del operador que los manipula.

En la siguiente área (medio ambiente), logramos identificar a reactivos como soda caustica, la cual nos da una puntuación de riesgo 3, necesitando de medidas de confinamiento y el glifosato nos puntuó con grado 4 (necesidad de un experto), acción dada por el grado de peligrosidad más alto según cuadro de frases H, y su punto de ebullición bajo que lo hace pasar al ambiente en un nivel medio.

En el área de campamento no se notó un grado alto de riesgo de sus dos compuestos como gasolina y diésel.

En el área de planta de beneficio se detectó al Xantato amílico de potasio, promotor AR 1242, AR1208, Y AR1404, carbonato de sodio, bórax y ácido nítrico con un grado de riesgo 3 debido principalmente al paso al medio ambiente por su punto de ebullición y en el caso del Xantato por la formación de polvos al momento de su preparación, el carbonato de sodio en esta área sale alto debido a la cantidad usada.

Para el laboratorio metalúrgico da como riesgo 3 al Carbonato de sodio, bórax y ácido nítrico, sin embargo en este punto encontramos otros reactivo con grado de riesgo de 4 el litargirio, grado alto debido a su propiedad intrínseca de peligro con una frase H de 301 (puede ser mortal en caso de ingestión y penetración en las vías respiratorias.

Para el caso de mantenimiento nos dio un grado de riesgo alto 4 las pinturas por uno de sus componentes como plomo menores al 1%., las soldaduras como 3 sin embargo son por sus gases producidos al momento de la operación.

Método INRS

Jerarquización de riesgo

Para nuestra jerarquización distribuida en áreas nos dio como reactivo con más alta puntuación de riesgo potencial la dinamita, seguido de litargirio y glifosato, principalmente agravados por sus frases de peligro y en estos casos debido a la frecuencia de uso y cantidades en relación a sus demás reactivos distribuidos en áreas. Seguidos de estos reactivos encontramos al Xantato amílico de potasio, soldaduras, pinturas, fulminante, soda

caustica, mecha de seguridad como principales, los demás reactivos tienen menor grado de riesgo basándonos en nuestra jerarquización.

Evaluación de riesgo por inhalación

En el tope de nuestra evaluación encontramos al litargirio, luego reactivos que se repiten en las evaluaciones como el glifosato, soldaduras, gasolina, Xantato amílico de potasio.

Evaluación de riesgo contacto con la piel

Para esta evaluación nos dio alto una gran cantidad de reactivos, vamos a enumerar los reactivos los cuales tienen una mayor puntuación como el fulminante, glifosato, luego tenemos otro grupo de reactivos que tiene una puntuación alta, estos son los reactivos usados en planta de beneficio, puntuaciones altas debido al contacto permanente que se tiene con ellos.

RECOMENDACIONES

Al realizar la evaluación de este método (INRS) se determinó como reactivo con mayor grado de riesgo al glifosato.

Realizar un análisis de usos para determinar si es posible el cambio a otro reactivo con menos grado de peligrosidad para la salud y si en el mercado se encontrara cambiar. Si no es posible se realizara:

Elaboración de un Procedimiento escrito de trabajo seguro para la preparación del mismo y el uso correcto en el lugar de trabajo, de la misma manera aquí se identifican los equipos de protección personal necesarios para su labor.

Rotación de personal que se encuentre realizando esta labor, con el objetivo de disminuir el contacto que se tiene con este reactivo.

La preparación se la deberá realizar en una cabina para disminuir el contacto directo con el operario.

Iniciar con evaluación cuantitativas.

Litargirio:

El litargirio es un producto base en el área de laboratorio, se recomienda la compra de fundente ya preparado el cual si bien es cierto contiene el mismo reactivo viene constituido como parte de un todo disminuyendo su grado de pulverulencia.

El uso de Procedimientos escritos de trabajo de seguro en el uso de litargirio si existen, por lo que si hay conocimiento de los efectos por parte del personal que maneja, se recomendaría más charlas con el fin de que no se olvide sus riesgos por "rutina de trabajo".

Adicional también se disminuiría el tiempo de contacto ya que la preparación no existiría y esto nos ayudaría para los demás reactivos que se usan en la elaboración del fundente como Bórax y Carbonato de sodio.

Iniciar con evaluación cuantitativas.

Pinturas:

Al elaborar las evaluaciones nos encontramos que las pinturas tenían remanente de mezcla con derivados de plomo en su composición, para este caso en específico al eliminar este reactivo nos baja sustancialmente el riesgo, un cambio de pintura tanto de la naval como de la anticorrosiva sería suficiente para este caso.

Soldaduras

Los niveles altos se deben a los humos que genera cuando se están trabajando lo cual se disminuye con el uso de equipos de protección adecuado y si se lo realizara en algún espacio confinado como tanques o interior mina instalar un extractor móvil para que retire del ambiente los gases producidos

Ácido nítrico

Este reactivo hay que diferenciarlo por áreas de uso ya que en las evaluación varia su grado de riesgo ya sea por la cantidad usada o por las instalaciones donde es usado, como ejemplo al realizar la evaluación por inhalación en el laboratorio metalúrgico se encuentra en una cabina de extracción lo que disminuye el riesgo a diferencia del uso en planta de beneficio (Refinacion-Fundicion) donde existe una campana de extracción, para ambos casos el uso de equipos de protección personal es necesario adicional a la capacitación de los operarios para su correcta manipulación.

Dinamita

Para este reactivo en la jerarquización es el primero basado exclusivamente a sus frases de peligro y a la cantidad usada, ninguna de las anteriores se puede omitir por lo tanto se debe realizar un procedimiento escrito de trabajo seguro, capacitación especializada acerca del manejo a los operarios.

Xantato amílico de potasio

Si existiera la posibilidad de cambio de este reactivo hacerla o de lo contario combinarla con otro de menor peligro, si no fuese posible

Capacitar a personal acerca de peligros de la utilización de este reactivo

El uso de equipos de protección al momento de preparar es necesario.

Espumante ER 370

Uso de equipos de protección, riesgo alto en contacto con la piel.

Promotores AR1242, AR1208, 404

Usos de equipos de protección

Capacitación en Procedimientos escritos de trabajo seguro.

CONCLUSIONES

El método COSHH Essentials resulto el menos difícil, más sencillo, generalidades y errores ya que en cantidades usadas no especifica ni da relación con otros reactivos de la misma área como si lo es en la método INRS, dándonos un riesgo alto cuando quizás no sea el correcto, sin embargo nos da una pauta rápida sobre las medidas correctivas a usarse

Se elaboró una matriz base en el cual se tiene más información de los reactivos usados en la empresa.

En el método de jerarquización de riesgo, al determinar el riesgo potencial podremos visualizar de mayor a menor cuales se sebe corregir de inicio, pauta importante para el inicio de una gestión completa del riesgo químico.

Para la evaluación de riesgo por inhalación y INRS se determina las acciones a tomar, el más completo de las evaluaciones ya que incluye desde propiedades intrínsecas de cada sustancia hasta procedimientos y puntos de operación en la empresa, en este método nos tocó recurrir a profesiogramas, datos de consumo, tiempos de contacto y verificar problemas de ingeniería que se tenía en cuanto a cabinas de extracción y localización de puntos de preparación y de uso de reactivos.

REFRENCIAS BIBLIOGRAFICAS

Aguilar Franco, Josefa Bernaola Alonso, Manuel Gálvez Pérez, Virginia Rams Sánchez-Escribano, Pilar Sánchez Cabo, Mª Teresa Sousa Rodríguez, Mª Encarnación Tanarro Gozalo, Celia Tejedor Traspaderne, Jose N. (2010) Riesgo químico: Sistemática para la evaluación higiénica.

Hernández (2014) Metodología de la investigación

INSHT (2001) Guía técnica para la evaluación y prevención de los riesgos relacionados con los agentes químicos presentes en los lugares de trabajo REAL DECRERTO 374/2001 6 de Abril BOE n°104, del 1 de Mayo del 2001.

INSHT (2007) El proceso de gestión de los riesgos higiénicos por exposición a agentes químicos.

INSHT (2019) Limite de exposición profesional para agentes químicos 2019

INSHT (2013) Guía técnica para la evaluación y prevención de los riesgos relacionados con los agentes químicos presentes en los lugares de trabajo.

INSHT (2017) Herramientas para la gestión del riesgo químico. Métodos de evaluación cualitativa y modelos de estimación de la exposición.

Moreno Hurtado (2008) El proceso de gestión de los riesgos higiénicos por exposición a agentes químicos.

https://www.navarra.es/NR/rdonlyres/B27796A9-29D5-4B67-A302-

F0942E4888EC/151780/MetodoSimplificadoINRSArt.pdf

https://rua.ua.es/dspace/bitstream/10045/69629/1/Metodos_simplificado_de_evaluacion_del _riesgo_de_inh_Sanchez_Fernandez_Cesar.pdf

Base de datos MSDS PRODUMIN S.A.

Publicación; Exposición dérmica laboral, Absorción percutánea agente químicos con notación vía dérmica Dolores Guimaraens Juanena 2004.

ANEXOS

7.1 TABLAS:

Tabla 1: Clase de peligro en función de frases de peligrosidad (frases R, frases H)

Clase de peligro	Frases R	Frases H	VLA mg/m² (1)	Materiales y procesos
1	Tiene frases R, pero no tiene ninguna de las que aparecen a continuación	Tiene frases H, pero no tiene ninguna de las que aparecen a continuación	> 100	
2	R36, R37, R38 R36/37, R36/38, R36/37/38 R37/38 R66, R67	H315, H319 H335 H336 EUH066	> 10 ≤ 100	Hierro / Cereal y derivados / Grafito / Material de construcción / Talco / Cemento / Composites / Madera de combustión tratada / Soldadura Metales-Plásticos / Material vegetal-animal
3	R20, R21, R22 R20/21, R20/22, R20/21/22 R21/22 R33, R34 R48/20, R48/21, R48/22, R48/20/21, R48/20/22, R48/21/22, R48/20/21/22 R62, R63, R64, R65 R68/20, R68/21, R68/22, R68/20/21, R68/20/22, R68/21/22, R68/20/21/22	H302, H304 H312 H314 (Corr. Cut. 1B y 1C) H332 H361, H361d, H361f, H361fd H362 H371 H373 EUH071	> 1 ≤ 10	Soldadura inoxidable Fibras cerámicas-vegetales Pinturas de plomo Muelas Arenas Aceites de corte y refrigerantes
4	R15/29 R23, R24, R25 R23/24, R23/25, R23/24/25, R24/25 R29, R31, R35 R39/23, R39/24, R39/25, R39/23/24, R39/23/25, R39/24/25, R39/23/24/25 R40, R41, R42, R43 R42/43 R48/23, R48/24, R48/25, R48/23/24, R48/23/25, R48/24/25, R48/23/24/25 R60, R61, R68	H301, H311 H314 (Corr. Cut. 1A) H317, H318 H331, H334 H341, H351 H360, H360F, H360FD, H360D, H360Df, H360Fd H370, H372 EUH031	> 0,1 ≤ 1	Maderas blandas y derivados Plomo metálico Fundición y afinaje de plomo
5	R26, R27, R28 R26/27, R26/28, R26/27/28, R27/28 R32, R39 R39/26, R39/27, R39/28, R39/26/27, R39/26/28, R39/26/27/28 R45, R46, R49	H300, H310 H330 H340 H350, H350i EUH032 EUH070	≤ 0,1	Amianto ® y materiales que lo contienen Betunes y breas Gasolina ® (carburante) Vulcanización Maderas duras y derivados ^H

Cuando se trate de materia particulada, este valor se divide entre 10.
 Posee legislación especifica obligatoria [B.4] y requiere de evaluación cuantitativa obligatoria por ser cancerígeno.

Se refiere únicamente al trabajo en contacto directo con este agente.
 Se refiere a polvo de maderas considerado como cancerígeno [B.5].

Tabla 2: Clase de cantidad en función de las cantidades usadas por día

Clase de cantidad	Cantidad/día
1	< 100 g o ml
2	≥100 g o ml y < 10 kg o l
3	≥ 10 y < 100 kg o l
4	≥ 100 y < 1000 kg o l
5	≥1000 kg o l

Fuente: Método simplificado de evaluación del riesgo de inhalación a agentes químicos Sánchez 2017

Tabla 2 A: Usada para la determinación de cantidad en una jerarquización de riego para la salud

Clase de cantidad	Q _i /Q _{máx.}
1	<1%
2	≥1 - <5%
3	≥5 - <12%
4	≥12 - <33%
5	≥33 - 100%

Tabla 3: Determinación de clase de frecuencia

Utilización	Ocasional	Intermitente	Frecuente	Permanente			
Día	≤ 30 min	>30 - ≤120min	>2 - ≤6h	>6h			
Semana	≤ 2h	>2-8h	1-3 días	> 3 días			
Mes	1 día	2-6 días	7-15 días	> 15 días			
Año	≤ 15 días	> 15 días - ≤ 2 meses	>2 - ≤ 5 meses	> 5 meses			
Class	1	2	3	4			
Clase	0: El agente químico no se usa hace al menos un año. El agente químico no se usa más						

Fuente: Sistemática para la evaluación higiénica INSHT 2010

Tabla 4: Determinación de la clase de exposición potencia

Clase de cantidad						20
5	0	4	5	5	5	
4	0	3	4	4	5	
3	0	3	3	3	4	
2	0	2	2	2	2	
1	0	1	1	1	1	
	0	1	2	3	4	Clase de frecuencia

Tabla 5: Determinación de riesgo potencial

Clase de exposición potencial						
5	2	3	4	5	5	
4	1	2	3	4	5	
3	1	2	3	4	5	
2	1	1	2	3	4	
1	1	1	2	3	4	
	1	2	3	4	5	Clase de peligro

Fuente: Sistemática para la evaluación higiénica INSHT 2010

Tabla 6: Puntuación de riesgo potencial

Clase de Riesgo Potencial	Puntuación de Riesgo Potencial
5	10.000
4	1.000
3	100
2	10
1	1

Tabla 7: determinación de puntuación en métodos según pulverulencia

Descripción del material sólido	Clase de pulverulencia
Material en forma de polvo fino. Formación de polvo que queda en suspensión en la manipulación (por ejemplo: azúcar en polvo, harina, cemento, yeso).	3
Material en forma de polvo en grano (1-2 mm). El polvo sedimenta rápido en la manipulación (por ejemplo: azúcar consistente cristalizada).	2
Material en pastillas, granulado, escamas (varios mm o 1-2 cm) sin apenas emisión de polvo en la manipulación.	1

Tabla 8 Determinación de volatilidad basado en presión de vapor de sustancias

Presión de vapor a la temperatura de trabajo	Clase de volatilidad
Pv ≥ 25 KPa	3
0,5 KPa ≤ Pv < 25 KPa	2
Pv < 0,5 KPa	1

Tabla 9: Puntuación de volatilidad o pulverulencia

Clase de volatilidad o pulverulencia	Puntuación de volatili- dad o pulverulencia
3	100
2	10
1	1

Tabla 10 Factor de corrección según el VLA (valores limites ambientales)

VLA	FC _{VLA}
VLA > 0,1	1
0,01 < VLA ≤ 0,1	10
0,001 < VLA ≤ 0,01	30
VLA ≤ 0,001 100	
Tabla D.11 Factores de corrección en función del VLA.	

Tabla 11 Prioridad de acción según puntuación de riesgo por inhalación

Puntuación del riesgo por inhalación	Prioridad de acción	Caracterización del riesgo
> 1.000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
> 100 y ≤ 1.000	2	Riesgo moderado. Necesita probablemente medidas correctoras y/o una evaluación más detallada (mediciones)
≤100	3	Riesgo a priori bajo (sin necesidad de modificaciones)

Tabla 12 Puntuación por clase de peligro "evaluación de riesgo por contacto de la piel método INRS."

Clase de peligro	Puntuación de peligro
5	10.000
4	1.000
3	100
2	10
1	1

Tabla 13: Determinación de puntuación según superficie expuesta

Superficies expuestas	Puntuación de superficie
Una mano	1
Dos manos Una mano + antebrazo	2
Dos manos + antebrazo Brazo completo	3
Miembros superiores y torso y/o pelvis y/o las piernas	10

Tabla 14: Determinación de puntuación por frecuencia de exposición

Frecuencia de exposición	Puntuación de frecuencia
Ocasional: < 30 min/día	1
Intermitente: 30 min - 2 h/día	2
Frecuente: 2h - 6 h/día	5
Permanente: > 6 h/día	10

Tabla 15: Determinación de caracterización de riesgo y prioridad de acción

Puntuación del riesgo	Prioridad de acción	Caracterización del riesgo
> 1.000	1	Riesgo probablemente muy elevado (medidas correctoras inmediatas)
> 100 y ≤ 1.000	2	Riesgo moderado. Necesita probablemente medidas correctoras y/o una evaluación más detallada
≤ 100	3	Riesgo a priori bajo (sin necesidad de modificaciones)

Tabla 16: Determinación los grupos de peligro en función de frases R de método COSHH essentials

A	R36, R38, R65, R67 Cualquier sustancia sin frases R contenidas en los grupos B a E
В	R20/21/22, R68/20/21/22
С	R23/24/25, R34, R35, R37, R37/38, R39/23/24/25, R41, R43, R48/20/21/22, R68/23/24/25
D	R26/27/28, R39/26/27/28, R40, R48/23/24/25, R48/23/25, R48/24, R60, R61, R62, R63, R64
Ε	Mut. Cat. 3 R40*, R42, R45, R46, R49, R68*

A	H303, H304, H305, H313, H315, H316, H318, H319, H320, H333, H336 Cualquier sustancia sin frases H contenidas en los grupos B a E
В	H302, H312, H332, H371
С	H301, H311, H314, H317, H318, H331, H335, H370, H373
D	H300, H310, H330, H351, H360, H361, H362, H372
Е	H334, H340, H341, H350

Tabla 17: Determinación de la cantidad de producto utilizado durante la actividad (método COSHH essentials)

Grupo de cantidad	Cantidad de sólidos	Cantidad de líquidos
Pequeña	Gramos	Mililitros
Mediana	Kilogramos	Litros
Grande	Toneladas	Metros cúbicos

Tabla 18: Determinación tendencia a formar polvos (método COSHH Essentials).

Descripción del material sólido	Tendencia a formar polvo		
Polvos finos y de baja densidad. Al usarlos se observan nubes de polvo que permanecen en suspensión varios minutos. Ejemplos: cemento, negro de humo, yeso, etc.	Alta		
Sólidos granulares o cristalinos. Se produce polvo durante su manipulación, que se deposita rápidamente, pudiéndose observar sobre las superficies adyacentes. Ejemplo: polvo de detergente.	Media		
Sustancias en forma de granza (pellets) que no tienen tendencia a romperse. No se aprecia polvo durante su manipulación. Ejemplos: granza de PVC, escamas, pepitas, etc.	Baja		

Tabla 19: Determinación de nivel de riesgo potencial método COSHH Essentials.

Grado de peligrosidad	Cantidad usada	Baja volatilidad o pulverulencia	Media volatilidad	Media pulverulencia	Alta volatilidad o pulverulencia
	Pequeña	1	1	1	1
А	Mediana	1	1	1	2
	Grande	1	1	2	2
	Pequeña	1	1	1	1
В	Mediana	1	2	2	2
	Grande	1	2	3	3
	Pequeña	1	2	1	2
С	Mediana	2	3	3	3
	Grande	2	4	4	4
	Pequeña	2	3	2	3
D	Mediana	3	4	4	4
	Grande	3	4	4	4
E		uaciones con su ivel de riesgo es		grado de peligro	osidad, se consi- Activa

Tabla 20: Acciones a tomar dado el nivel de riesgo potencial

Nivel de riesgo	Acciones a tomar
1	Ventilación general.
2	Medidas específicas de prevención y protección, por ejemplo, extracción localizada.
3	Confinamiento o sistemas cerrados. Mantener, siempre que sea posible, el proceso a una presión inferior a la atmosférica para dificultar el escape de las sustancias.
4	Cumplir con la legislación, cuando se trate de sustancias cancerígenas y/o mutágenas de categorías 1 y 2. Adoptar medidas específicas. Realizar una evaluación detallada de la exposición. Verificar con mayor frecuencia la eficacia de las instalaciones de control.

Tabla 21

Reactivos distribuidos por área y propiedad requerida para realizar evaluación.

Descripción de reactivos		Peligro intrínseco de cada reactivo	VLA/TLV (método INRS INHALACION ' DERMICO)	
Área de empresa	Nombre de reactivo	En función de frase R,H,valores limites ambientales, método INRS Y COSHH ESSENTIALS	ED	EC
Mina	Nitrato de amonio como (ANFO)	Frase H:272,319 (R:36/37/38)	10 mg/m3	
Mina	Dinamita 1 1/8 x 7" boliviana RIODIN HM al 80%	Frase H: 330,373	0.3 mg/m3	
Mina	Mecha de seguridad FUSE SAFETY RIOFUSE	TLV: 3.5 mg/m3	3.5 mg/m3	
Mina	Fulmínate RIOCAP FANEXA	Frase R:61		
Medio Ambiente P.A.	Policloruro de aluminio en polvo	Frase H:302;(R 37/38)	1 mg/m3	
Medio Ambiente P.A.	Hipoclorito de sodio al 10%	Frase R:31,34,50	1.45 mg/m3	
Medio Ambiente P.A.	Cloruro de sodio	Frase H:319;(R40)	no regulado	
Medio Ambiente	Glifosato	Frase H:350	no definido	
Medio Ambiente	Soda Caustica (hidróxido de sodio)	Frase H:314		2 mg/m3
Medio Ambiente	Desinfectante liquido	Material y proceso	1880 mg/m3 como etanol	
Medio Ambiente	Detergente Sapolio	R36 (como carbonato de sodio)	10 mg/m3	
Campament o	Diésel	Frase R:22	376 mg/m3	
Campament o	Gasolina	Frase R:21	376 mg/m3	
Planta de Beneficio (Flotación)	Xantato amílico de potasio (Z-6)	Frase H:311,373	10 mg/m3	
Planta de Beneficio (Flotación)	Espumante ER-370 /D250	Frase H: 314 ;(R34)	13.9 mg/m3 como ácido sulfhídrico	
Planta de Beneficio (Flotación)	Promotor AR1242/ FLOTTEC 2300	Función de etiquetado (corrosivo)	10 mg/m3 (como ácido cresilico)	
Planta de Beneficio (Flotación)	Promotor AR1208 /	Frase H:311	10 mg/m3 (como ácido cresilico)	
Planta de Beneficio (Flotación)	Promotor 404/Flottec 2044 Colector	Frase H:314	2 mg/m3 (como hidróxido de sodio)	
Planta de Beneficio (Flotación)	Silicato de sodio (liquido)	Frase :314	2 mg/m3 (como	

			hidróxido de sodio)	
Planta de Beneficio (Flotación)	Sulfuro de sodio	Frase H:314,318,332,335	10 mg/m3	
Planta de Beneficio (Flotación)	Bisulfito de sodio	Frase H:302(R22,31,58)	5 mg/m3	
Planta de Beneficio (Flotación)	Sulfato de cobre pentahidratado	Frase R:22	1 mg/m3	
Planta de Beneficio (Refinacion-	Carbonato de sodio	5000 P.26	10 mg/m3	
Fundicion) Planta de Beneficio (Refinacion- Fundicion)	Bórax (Tetraborato de sodio)	Frase R:36 Frase H:360	5 mg/m3	
Planta de Beneficio (Refinacion- Fundicion)	Nitrato de potasio	Según TLV: 10 mg/m3	10 mg/m3	
Planta de Beneficio (Refinacion- Fundicion)	Ácido nítrico	Frase H: 314; (R:35)	5,2 mg/m3	
Laboratorio químico metalúrgico	Carbonato de Sodio	Frase R:36	10 mg/m3	
Laboratorio químico metalúrgico	Litargirio (Oxido de Plomo)	Frase H:301	0,05 mg/m3	
Laboratorio químico metalúrgico	Bórax (Tetraborato de sodio)	Frase H:360	5 mg/m3	
Laboratorio químico metalúrgico	Nitrato de potasio	Según TLV: 10 mg/m3	10 mg/m3	
Laboratorio químico metalúrgico	Nitrato de plata	Frase H:314	3 mg/m3	
Laboratorio químico metalúrgico	Sílice	Frase R: 48/20	0.1 mg/m3	
Laboratorio químico metalúrgico	Ácido nítrico	Frase R:35	5,2 mg/m3	
Mantenimie nto	Silicón rojo	Según TLV: 5 mg/m3	5 mg/m3	
Mantenimie nto	WD 40	Frase H:304	5 mg/m3	
Mantenimie nto	Cemento refractario	Frase R:36	10 mg/m3	
Mantenimie nto	Pintura naval	Frase H:351	192 mg/m3 como tolueno	
Mantenimie nto	Pintura anticorrosiva	Frase H:351	177 mg/m3	
Mantenimie nto	DILUYENTE	Frase R: 20	1100 mg/m3	

Mantenimie nto	Aceite SAE 15W - 40 Castrol	Frase H:304,303,315,318	5 mg/m3	
Mantenimie nto	Aceite SAE 250	Frase H:304,303,315,318	5 mg/m3	
Mantenimie nto	Aceite para transmisión 250 GL	Frase H:304,303,315,318	5 mg/m3	
Mantenimie nto	Soldadura AGA 6011	Frase H: 351,332,302, 413		
Mantenimie nto	Soldadura AGA 7018	Frase H: 351,332,302, 414		
Mantenimie nto	Grasa multipropósito			

7.2 Figuras

Fig. 1: secciones de información de una Hoja de seguridad de productos quimicos

Identificación (secciones 1-3)	¿Cuál es el material y qué necesito saber inmediatamente en una emergencia?
2. Emergencias (secciones 4-8)	¿Qué debo hacer si se presenta una situación peligrosa?
Manejo y precauciones (secciones 7-10)	¿Cómo puedo prevenir que ocurran situaciones peligrosas?
Complementario (secciones 11-16)	¿Existe alguna otra información útil acerca de este material?

	Sección 1.	Producto e Identificación de la
Identificación		Compañía.
	Sección 2.	Identificación de peligros.
	Sección 3.	Composición, Información sobre
		ingredientes.
	Sección 4.	Medidas de primeros auxilios.
Emergencias	Sección 5.	Medidas en caso de incendio.
	Sección 6.	Medidas en caso de vertido accidental.
	Sección 7.	Manejo y Almacenamiento.
Manejo y	Sección 8.	Controles de exposición y protección
Precauciones		personal.
	Sección 9.	Propiedades físicas y químicas.
	Sección 10.	Estabilidad y reactividad.
	Sección 11.	Información toxicológica.
	Sección 12.	Información ecológica.
Complementario	Sección 13.	Consideraciones de Disposición.
	Sección 14.	Información sobre transporte.
	Sección 15.	Información reglamentaria.
	Sección 16.	Información adicional.

Fuente: Norma de comunicación (HCS)

Figura 2: Puntuación en método INRS según Volatilidad de líquidos (según temperatura de utilización)

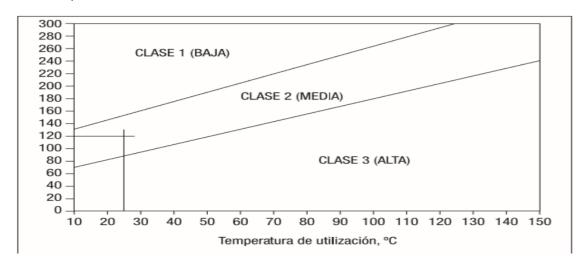


Figura 3: Puntuación según procedimiento de trabajo Método INRS

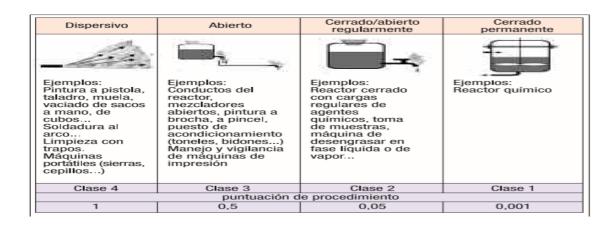


Fig. 4: Determinación de puntuación según clase de protección colectiva, método INRS

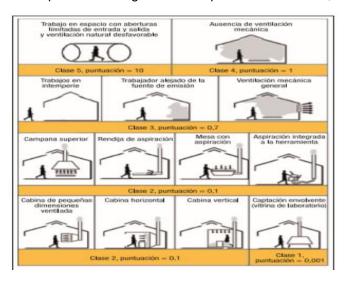


Fig. 5 Check list método COSHH Essentials

F)/A111AC	CIONI CUALIT	·ATIV/A DE LOC	. חובנים	C OTHER COS CITE	ECK LIST IS	OCIIII Facantiala	
	ector	ATIVA DE LOS	KIESGO	S QUIIVIICUS CH	ECK LIST (C	OSHH Essentials)	
	DATOS GENERALES						
Centro de				DI TIOS GLIVEI			
Sección							
Sustancia		Hora					
	uministrador						
	rador						
Paso 2		QUE DECIDEN	I LAS ME	DIDAS DE CONT	ROL		
Pas	o 2A	Paso 2	2B		Paso 2C		
	dad para la						
sa	lud	Cantidad u	tilizada	Volatil Pulverulencia	idad o pulv	rerulencia Volatilidad del	
Α				del solido		liquido	
В		Pequeña			Baja		
С		Mediana			Mediana		
D		Grande			Alta		
E					1		
S							
Paso 3			Med	didas de control			
	Ventilació	n	_				
Coi	ntrol de inge	eniería					
	Cerramien	to					
	Especial						
	7						
Paso 4	Paso 4 Localización hojas de control						
N° de hoja	as de contro	l					
Paso 5	Paso 5 Implementación de acciones y revisión						
Evaluación de otras sustancia							
Planificar implementación de normas de prevención							
Consideración de otras necesidades de control							
Acción							
Revisión							

Fuente: Elaborado por León 2019

Fig. 6: Determinación de nivel de volatilidad de líquidos en función de la temperatura de trabajo método COSSH Essentials

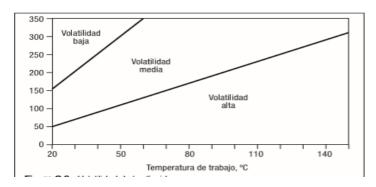
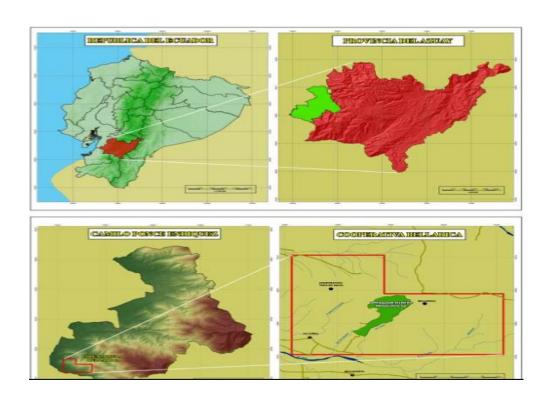



Fig. 7 Ubicación geográfica empresa Produmin S.A.

Fuente: Archivo Produmin S.A.

Fig. 8: Flujograma de operaciones mina Produmin S.A.

EXPLORACION EXPLOTACION EXPLOTACION EXPLOTACION EXPLOTACION

Fig. 9: Flujograma Planta de beneficio (concentración química-uso de reactivos)

CONCENTRACION QUIMICA FLOTACION

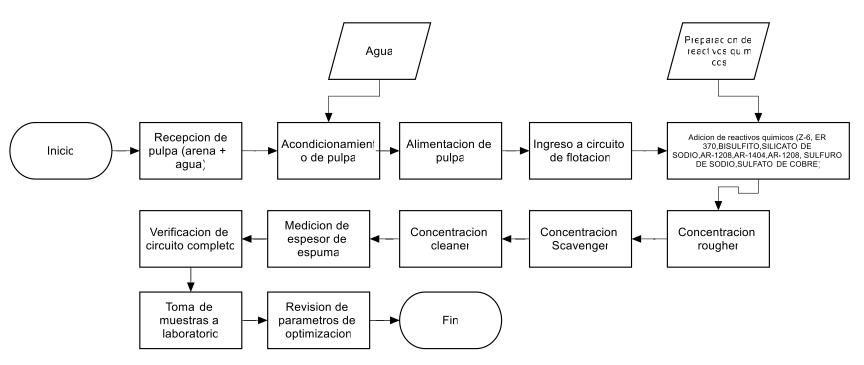


Fig. 10: Flujograma Laboratorio químico-metalúrgico

Flujograma laboratoric

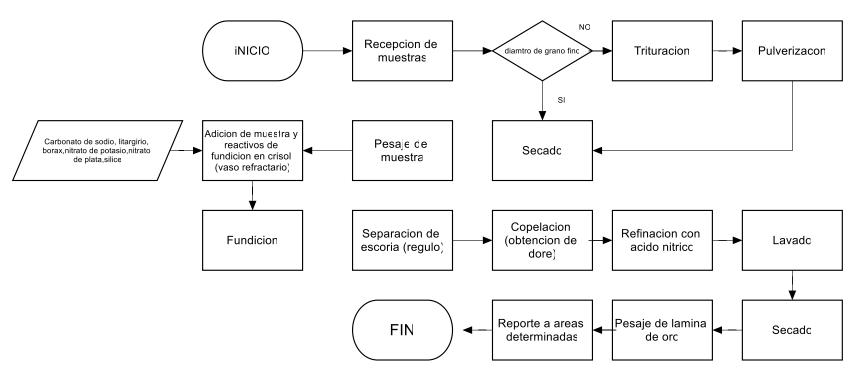
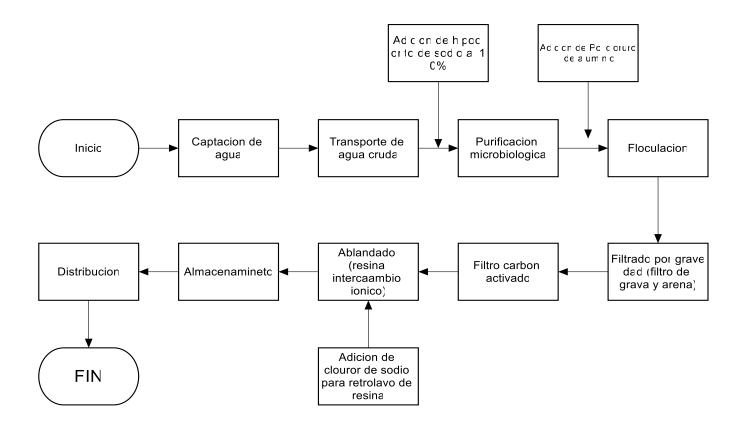



Fig. 11: Flujograma planta de agua

PLANTA DE AGUA PRODUMIN S.A.

