

UNIVERSIDAD DEL AZUAY

FACULTAD DE CIENCIA Y TECNOLOGÍA

ESCUELA DE INGENIERÍA CIVIL Y GERENCIA DE CONSTRUCCIONES

COMPROBACIÓN DE DISEÑO DE PÓRTICO A GRAVEDAD Y PÓRTICO RESISTENTE A MOMENTO CON VIGA DE SECCIÓN REDUCIDA DE ACERO, MEDIANTE CYPE Y ETABS

Trabajo de graduación previo a la obtención del título de:

INGENIERO CIVIL CON ÉNFASIS EN GERENCIA DE CONSTRUCCIONES

Autores:

CAROLINA ARTEAGA CÓRDOVA

CARLOS AUGUSTO MORENO TORRES

Director:

FRANCISCO XAVIER FLORES SOLANO

CUENCA, ECUADOR

2022

DEDICATORIA

Dedico esta tesis a mis padres María Eugenia y Teodoro, que siempre me apoyan y están para mí en todo momento. Que con paciencia me han acompañado a lo largo de mi carrera universitaria y siempre me motivan, han sido mi ejemplo y mi guía para hoy cumplir una meta más.

A mis hermanas, abuelos y toda mi familia que me han acompañado y motivado cada día a ser alguien mejor y cumplir con mis objetivos.

Gracias porque sin ustedes no estaría hoy en el lugar en el que estoy.

Carolina

DEDICATORIA

Dedico este trabajo a mi ejemplo a seguir, mi abuelo Jaime Torres León quien me inculcó los valores de trabajo, honestidad y superación. Aunque no este físicamente con nosotros, su ejemplo ha sido el pilar fundamental para la culminación de mi carrera.

A mis padres quienes estuvieron presentes en todo momento, brindándome su apoyo incondicional, educación y sacrificio económico, a toda mi familia que siempre estuvo pendiente de mi desarrollo personal y a mis maestros, quienes impartieron todos sus conocimientos de la mejor manera.

Carlos

AGRADECIMIENTO

Queremos agradecer a nuestras familias, por ser un pilar fundamental a lo largo de nuestra vida, especialmente ahora en esta etapa universitaria.

A todos los profesores y miembros de la Universidad del Azuay que nos han acompañado a lo largo de este camino compartiéndonos sus conocimientos y motivándonos siempre a ser mejores personas y profesionales.

Especialmente al Ing. Francisco Flores quien confió en nosotros y nos apoyó para realizar este trabajo, siempre brindándonos su conocimiento y tiempo, dentro y fuera de las aulas de clase. Por siempre motivarnos a dar un paso más allá en todo lo que hacemos.

Al Ing. Juan Carlos Malo, quien fue nuestro profesor desde el primer día de clases en la universidad y siempre nos ha apoyado en todo hasta el final. Un agradecimiento especial por siempre estar ahí, por el tiempo brindado y por ser un gran educador.

Al Ing. José Vázquez por siempre estar atento, compartir con nosotros sus conocimientos y guiarnos a lo largo de nuestra carrera universitaria como docente y director de escuela.

A todos nuestros compañeros y amigos, con quienes compartimos dentro y fuera de las aulas de clase, por apoyarnos siempre a lo largo de este proceso, en aquellos días buenos y malos.

A todos quienes nos abrieron las puertas y compartieron sus conocimientos con nosotros.

Gracias a todos por su paciencia, dedicación, consejos, confianza, apoyo incondicional y amistad.

Carolina y Carlos

ÍNDICE DE CONTENIDOS

DEDICATORIA	ii
DEDICATORIA	iii
AGRADECIMIENTO	iv
ÍNDICE DE CONTENIDOS	v
ÍNDICE DE FIGURAS	viii
ÍNDICE DE TABLAS	Х
ÍNDICE DE ECUACIONES	xii
RESUMEN	xiv
ABSTRACT	XV
Introducción	1
Antecedentes	1
Objetivos	3
Objetivo general	3
Objetivos específicos	3
CAPÍTULO 1	4
1. GENERALIDADES	4
1.1. Estado del arte	4
1.2. Marco Teórico	5
CAPÍTULO 2	7
2. PÓRTICO A GRAVEDAD - METODOLOGÍA	7
2.1. Cargas	7
2.1.1. Cargas permanentes o cargas muertas	7
2.1.2. Cargas variables o cargas vivas	9
2.2. Combinaciones de cargas	10
2.3. Diseño de miembros	11
2.3.1. Secciones compactas	11
2.3.2. Diseño de miembros en tensión	11
2.3.3. Diseño de miembros en compresión	11
2.3.4. Diseño de miembros en flexión	13
2.3.5. Diseño de miembros en corte	16
2.4. Ingreso de datos en CYPE	16
2.5. Ingreso de datos en ETABS	24
CAPÍTULO 3	33
3. PÓRTICO A GRAVEDAD – ANÁLISIS Y DISCUSIÓN	33

v

3.1. Dis	eño de viga	33
3.1.1.	Cálculos manuales	33
3.1.2.	Resultados CYPE	37
3.1.3.	Resultados ETABS	41
3.1.4.	Comparación de resultados	42
3.2. Dise	eño de columna	44
3.2.1.	Cálculos manuales	44
3.2.2.	Resultados CYPE	49
3.2.3.	Resultados ETABS	55
3.2.4.	Comparación de resultados	56
CAPÍTULO	4	60
4. PÓRTIC	CO RESISTENTE A MOMENTO -METODOLOGÍA	60
4.1. Car	gas	60
4.1.1.	Cargas permanentes o cargas muertas	61
4.1.2.	Cargas variables o cargas vivas	61
4.1.3.	Cargas accidentales o sísmicas	61
4.2. Cor	nbinaciones de cargas	61
4.3. Filo	sofía de diseño sismo resistente	63
4.4. Dise	eño basado en fuerzas (DBF)	63
4.4.1. acelerac	Componentes horizontales: espectro elástico horizontal de diseño iones (Sa)	en 63
4.4.2.	Zonificación sísmica y factor de zona Z	65
4.4.3.	Geología local	67
4.4.4.	Coeficientes de perfil de suelo F _a , F _d y F _s	68
4.4.5.	Categoría de edificio y coeficiente de importancia I	70
4.4.6.	Límites permisibles de las derivas de piso	70
4.5. Pro	cedimiento de cálculo del DBF	71
4.5.1.	Pasos del método	71
4.5.2.	Cortante basal de diseño V	71
4.5.3.	Determinación del período de vibración	72
4.5.4.	Factor de reducción de resistencia sísmica R	72
4.5.5.	Distribución vertical de fuerzas sísmicas laterales	73
4.5.6.	Control de la deriva de piso (derivas inelásticas máximas de piso 4 74	۱ M)
4.5.7.	Índice de estabilidad Q i	75
4.5.8.	Efectos de segundo orden P- Δ	75
4.6. Dise	eño de miembros	76

4.6.1.	Secciones sísmicamente compactas	76
4.6.2. Diseño de miembros para solicitaciones combinadas y torsión		77
4.7. Dis	eño de conexión con viga de sección reducida	78
4.7.1.	Factores de resistencia	78
4.7.2.	Máximo momento probable en la articulación plástica	78
4.7.3.	Placa de continuidad para alas de viga	79
4.7.4.	Espesor de la zona panel	81
4.7.5.	Procedimiento de diseño viga de sección reducida	81
4.7.6.	Criterio columna fuerte – viga débil	86
4.8. Ing	reso de datos en CYPE	88
4.9. Ing	reso de datos en ETABS	94
CAPÍTULO	5	97
5. PÓRTIO	CO RESISTENTE A MOMENTO – ANÁLISIS Y DISCUSIÓN	97
5.1. Dis	eño basado en fuerzas (DBF)	97
5.1.1.	Cálculos manuales	97
5.1.2.	Resultados CYPE	102
5.1.3.	Resultados ETABS	107
5.1.4.	Comparación de resultados	109
5.2. Dis	eño de columna	111
5.2.1.	Cálculos manuales	111
5.2.2.	Resultados CYPE	118
5.2.3.	Resultados ETABS	124
5.2.4.	Comparación de resultados	127
5.3. Dis	eño de viga	129
5.3.1.	Cálculos manuales	129
5.3.2.	Resultados CYPE	136
5.3.3.	Resultados ETABS	143
5.3.4.	Comparación de resultados	145
5.4. Dis	eño de conexión con viga de sección reducida	148
5.4.1.	Cálculos manuales	148
5.4.2.	Resultados ETABS	152
5.4.3.	Resultados CYPE	153
5.4.4.	Comparación de resultados	153
CONCLUSI	ONES Y RECOMENDACIONES	155
Conclusio	nes	155
Recomend	laciones	156

Bibliografía

ÍNDICE DE FIGURAS

Figura 2.1: Pórtico a gravedad	7
Figura 2.2: Gráfica C _b	14
Figura 2.3: Datos generales CYPE 3D	17
Figura 2.4: Hipótesis adicionales	17
Figura 2.5: Reiilla	18
Figura 2.6: Niveles	18
Figura 2.7: Nueva barra	19
Figura 2.8: Describir nuevo perfil	19
Figura 2.9: Creación nuevo perfil	20
Figura 2.10: Estructura modelada	$\frac{20}{20}$
Figura 2.11: Describir disposición	21
Figura 2.12: Vinculaciones exteriores	21
Figura 2.12: Introducir carga sobre barras	22
Figura 2.14: Coeficientes Pandeo	$\frac{22}{22}$
Figura 2.15: Coeficientes Pandeo lateral	23
Figura 2.16: Cálculo	23
Figura 2.17: Diagrama de esfuerzos	$\frac{23}{24}$
Figura 2.18: Porcentaie de aprovechamiento de resistencia	$\frac{2}{24}$
Figura 2.10: Configuraciones iniciales	25
Figura 2.20: Creación de grilla	25
Figure 2.20. Creation de grind Figure 2.21: Visualizaciones	25
Figura 2.22: Creación de nuevo material	26
Figura 2.22: Creación de nuevo material	20
Figura 2.23. Creation de nuevo perm	$\frac{27}{27}$
Figura 2.24. Definit tipos de carga	$\frac{27}{28}$
Figure 2.26: Condiciones de anovo	20
Figura 2.20. Condiciones de apoyo	20 20
Figura 2.27. Asignaciones de carga	2) 20
Figura 2.20. Combinaciones de carga	29
Figure 2.20: Destaño display	29
Figura 2.30. Festalla display	30
Figura 2.31. Características de diseño	30
Figure 2.32. Información de chaqueo enélicie acoro	21
Figure 2.34: Overwrites	31
Figure 2.1: Dimensiones del perfil	32
Figura 3.1. Dimensiones del perm Figura 3.2: Gréfica da momento y cortanta máxima CVDE 2D	20
Figura 3.2. Granca de momento y cortante máximo CTFE 5D	30 41
Figura 3.5. Diagrama de momento y contante maximo ETABS	41
Figura 3.4. Dimensiones del permi	4J 50
Figura 3.5. Diagrama de momento, contante y axial CTFE 5D	50
Figura 5.0: Diagrama de momento, contante y axial ETADS	50
Figura 5.7: Diseno de portico a gravedad	39
Figura 4.1: Portico resistente a momento	00
rigura 4.2: Especiro sisinico elastico de aceleraciones que representa el sismo	ue
uiseno Eisung 4.2: Equadon roma sígnicos nors que faites de diseñe e en la 11.6 (04
Figura 4.5: Ecuador, zonas sismicas para propositos de diseno y valor del factor	ae
	00
Figura 4.4: Conexion con viga de sección reducida	81

Figura 4.5: Determinación de $Mpv *$ para el caso de una columna interior de un	1 pórtico
especial a momento	87
Figura 4.6: Datos generales CYPECAD	88
Figura 4.7: Normativa para el cálculo de la acción sísmica	89
Figura 4.8: Líneas de replanteo	89
Figura 4.9: Nuevas plantas	90
Figura 4.10: Nuevo pilar	90
Figura 4.11: Tipo de sección	91
Figura 4.12: Pestañas inferiores	91
Figura 4.13: Sección transversal viga	92
Figura 4.14: Cargas	92
Figura 4.15: Calcular la obra (sin dimensionar cimentación)	93
Figura 4.16: Listados	93
Figura 4.17: Definición de cargas	94
Figura 4.18: Definición de carga sísmica	94
Figura 4.19: Ingreso de masas	95
Figura 4.20: Edición de fuente de masas	95
Figura 4.21: Editar viga de sección reducida	96
Figura 5.1: Pórtico resistente a momento a diseñar	97
Figura 5.2: Espectro de respuesta	99
Figura 5.3: Coeficientes de participación	104
Figura 5.4: Cortante sísmico combinado por planta	106
Figura 5.5: Cortante basal	107
Figura 5.6: Fuerzas sísmicas laterales	108
Figura 5.7: Dimensiones del perfil	111
Figura 5.8: Diagrama de momento, cortante y axial CYPE 3D para la combina	ción 1,4
D	118
Figura 5.9: Diagrama de momento, cortante y axial CYPE 3D para la combina	ción 1,2
D + 1,6 L	119
Figura 5.10: Dimensiones del perfil	130
Figura 5.11: Gráfica de momento y cortante máximo CYPE 3D combinación d	le cargas
1.4 D	137
Figura 5.12: Gráfica de momento y cortante máximo CYPE 3D combinación d	le cargas
1.2 D + 1.6 L	137
Figura 5.13: Diseño de pórtico a momentos	148

ÍNDICE DE TABLAS

	0
Tabla 2.1: Pesos unitarios de materiales de construccion	8
Tabla 2.2: Pesos totales de cargas permanentes	9
Tabla 2.3: Sobrecargas mínimas uniformemente distribuídas	9
Tabla 2.4: Razones ancho-espesor: elementos en compresión de miembros en fle	exión
	11
Tabla 2.5: Valores aproximados del factor de longitud efectiva, K.	12
Tabla 3.1: Características del perfil CYPE 3D	38
Tabla 3.2: Comparación resultados viga	43
Tabla 3.3: Comparación cálculo manual - CYPE	43
Tabla 3.4: Comparación cálculo manual - ETABS	44
Tabla 3.5: Comparación ETABS - CYPE	44
Tabla 3.6: Características del perfil CYPE 3D	50
Tabla 3.7: Comparación resultados columna	57
Tabla 3.8: Comparación cálculo manual - CYPE	57
Tabla 3.9: Comparación cálculo manual - ETABS	58
Table 3.10: Comparación cálculo ETABS - CVPE	58
Table 4.1: Valores de 7	50 66
Table 4.1. Values de Σ	66
Table 4.2. Foblaciones ecuatorianas y valor del factor Z	67
Table 4.4. Time de male a Esterne de side E	0/
Tabla 4.4: Tipo de suelo y Factores de sitio F_a	68
Tabla 4.5: Tipo de suelo y Factores de sitio F_d	69
Tabla 4.6: Tipo de suelo y Factores de comportamiento inelástico del subsuelo F	s 69
Tabla 4.7: Tipo de uso, destino e importancia de la estructura	70
Tabla 4.8: Valores de derivas de piso máximas, expresadas como fracción de la a	ıltura
de piso	70
Tabla 4.9: Valores de Ct y α según tipo de estructura	72
Tabla 4.10: Factor de reducción de resistencia sísmica R	73
Tabla 4.11: Determinación de k	74
Tabla 4.12: Máximas relaciones ancho – espesor para elementos a compresión	77
Tabla 4.13: Factor de fluencia probable (Ry)	79
Tabla 5.1: Datos generales	98
Tabla 5.2: Factores y coeficientes	98
Tabla 5.3: Período de vibración	99
Tabla 5.4: Coeficiente sísmico	99
Tabla 5.5: Peso por elementos vigas y columnas	100
Tabla 5 6. Pesos por piso	100
Tabla 5.7: Sumatoria de pesos por piso	100
Tabla 5.8: Cortante basal	100
Tabla 5.0: Everyas sísmicas laterales	100
Tabla 5.10: Control de derivas inclásticas máximas	101
Tabla 5.10. Control de derivas inclasticas inaximas	101
Tabla 5.11: Indice de establidad Ql	102
Tabla 5.12: Derivas maximas por planta	100
Tabla 5.13: Derivas maximas por planta	108
Tabla 5.14: Indice de estabilidad Ql	108
Tabla 5.15: Justificación de acción sísmica	109
Tabla 5.16: Comparación de acción sísmica cálculo manual vs ETABS	109
Tabla 5.17: Comparación de acción sísmica cálculo manual vs CYPECAD	110
Tabla 5.18: Comparación de acción sísmica CYPE vs ETABS	110

х

Tabla 5.19: Esfuerzos en barras, por combinación CYPE 3D	119
Tabla 5.20: Características del perfil CYPE 3D	120
Tabla 5.21: Comparación resultados columna	128
Tabla 5.22: Comparación cálculo manual - CYPE	128
Tabla 5.23: Comparación cálculo manual - ETABS	129
Tabla 5.24: Comparación cálculo ETABS – CYPE	129
Tabla 5.25: Esfuerzos en barras, por combinación CYPE 3D	138
Tabla 5.26: Características del perfil CYPE 3D	138
Tabla 5.27: Comparación resultados viga	146
Tabla 5.28: Comparación cálculo manual - CYPE	146
Tabla 5.29: Comparación cálculo manual - ETABS	147
Tabla 5.30: Comparación ETABS - CYPE	147
Tabla 5.31: Conexión viga de sección reducida	153

/			
TNIDICIE	DD	MIAN	TEC
	1 N H '		N H S
		\ \ /	
	~ ~		

Ecuación 1. Combinación 1	10
Ecuación 2. Combinación 2	10
Ecuación 3. Combinación 3	10
Ecuación 4. Combinación 4	10
Ecuación 5. Combinación 5	10
Ecuación 6. Combinación 6	10
Ecuación 7. Combinación 7	10
Ecuación 8. Combinación 1	10
Ecuación 9. Combinación 2	10
Ecuación 10	11
Ecuación 11	12
Ecuación 12	12
Ecuación 13	13
Ecuación 14	13
Ecuación 15	13
Ecuación 16 Coeficiente Cb	13
Ecuación 17	14
Ecuación 18	15
Ecuación 19	15
Ecuación 20	15
Ecuación 21	15
Ecuación 22	15
Ecuación 23	15
Ecuación 24	16
Ecuación 25. Combinación 1	62
Ecuación 26. Combinación 2	62
Ecuación 27. Combinación 3	62
Ecuación 28. Combinación 4	62
Ecuación 29. Combinación 5	62
Ecuación 30. Combinación 6	62
Ecuación 31. Combinación 7	62
Ecuación 32	62
Ecuación 33. Combinación 1	62
Ecuación 34. Combinación 2	62
Ecuación 35. Combinación para chequeo de capacidad	62
Ecuación 36	65
Ecuación 37	65
Ecuación 38	65
Ecuación 39	65
Fcuación 40	65
Fcuación 41	71
Fcuación 42	72
Ecuación 42	73
Ecuación 43	73
Ecuación 45	73
Fcuación 46	73 74
Ecuación 47	74 75
Equación 49	75 76
	70

Ecuación 49	11
Ecuación 50	77
Ecuación 51	78
Ecuación 52	78
Ecuación 53	79
Ecuación 54	79
Ecuación 55	80
Ecuación 56	80
Ecuación 57	81
Ecuación 58	81
Ecuación 59	81
Ecuación 60	81
Ecuación 61	82
Ecuación 62	82
Ecuación 63	83
Ecuación 64	83
Ecuación 65	83
Ecuación 66	84
Ecuación 67	84
Ecuación 68	84
Ecuación 69	85
Ecuación 70	85
Ecuación 71	85
Ecuación 72	85
Ecuación 73	86
Ecuación 74	86
Ecuación 75	87
Ecuación 76	94

COMPROBACIÓN DE DISEÑO DE PÓRTICO A GRAVEDAD Y PÓRTICO RESISTENTE A MOMENTO CON VIGA DE SECCIÓN REDUCIDA DE ACERO, MEDIANTE CYPE Y ETABS

RESUMEN

En la actualidad se utilizan distintos softwares de cálculo para realizar los diseños estructurales de diferentes edificaciones. Estos softwares facilitan mucho el diseño al ingeniero y los resultados se obtienen con mayor rapidez que realizando los cálculos por el método tradicional. Es importante tener un conocimiento en diseño estructural y en las normativas vigentes para obtener resultados óptimos y confiables; ya que la falta de conocimiento puede provocar grandes daños. Los programas CYPE y ETABS utilizan diferentes metodologías de diseño. En este trabajo de titulación se realiza una comparación entre los resultados que se obtienen en ambos programas para dos pórticos; uno bajo cargas gravitacionales y otro bajo cargas gravitacionales y sísmicas. Mediante un análisis bidimensional de una estructura, se analizan sus vigas y columnas. Para el pórtico resistente a momentos se aplica una conexión de tipo viga de sección reducida.

Palabras clave: CYPE, diseño sísmico, estructuras metálicas, ETABS, método tradicional, pórtico resistente a momentos, viga de sección reducida.

Ing. Francisco Flores Solano Director del Trabajo de Titulación

N DO N

Ing. José Vázquez Calero

Director de Escuela

Carolina Arteago

Carolina Arteaga Córdova

Carlos Augusto Moreno Torres

Autora

Autor

DESIGN CHECK OF A GRAVITY FRAME AND SPECIAL MOMENT STEEL FRAME WITH REDUCED BEAM SECTION, USING CYPE AND ETABS

ABSTRACT

Currently, different calculation software are used to carry out the structural designs of different buildings. These software make the design much easier for the engineer and the results are obtained more quickly than with the traditional calculation method. It is important to have knowledge in structural design and current regulations in order to obtain optimal and reliable results; lack of knowledge can cause great damage. CYPE and ETABS programs use different design methodologies. In this thesis a comparison was made between the results obtained in both programs for two different frames; one under gravitational loads and the other under gravitational and seismic loads. Through a two-dimensional analysis of a structure, its beams and columns were analyzed. For the special moment frame, a reduced beam-section type connection was applied.

Keywords: CYPE, ETABS, reduced beam section, seismic design, special moment frame, steel structures, traditional method.

Ing. Francisco Flores Solano

Director of the Degree Project

Ing. José Vázquez Calero School Director

Translated by:

Carolina Arteago

Carolina Arteaga Córdova

Author

Carlos Augusto Moreno Torres
Author

Introducción

Los avances tecnológicos nos han permitido desarrollar softwares de diseño para simplificar los procesos de cálculo necesarios para el análisis estructural. Estas herramientas han sustituido los cálculos manuales generando un riesgo, ya que muchos usuarios las utilizan sin tomar en cuenta las consideraciones apropiadas. Los programas calculan y comprueban correctamente las estructuras siempre que se ingresen las especificaciones de una manera adecuada.

El Ecuador al estar ubicado dentro del Cinturón de Fuego del Pacífico, posee una alta actividad sísmica acompañada de un sistema de fallas geológicas importantes. Esta es una característica muy significativa del país por lo que se debe tomar en cuenta y analizar detenidamente todas estas consideraciones al momento del diseño. La Norma Ecuatoriana de la Construcción (NEC) es la encargada de regular los requerimientos y metodologías que se deben seguir para el diseño de diferentes tipos de estructuras. En este caso se utilizarán los capítulos de estructuras de acero (NEC-SE-AC), de cargas no sísmicas (NEC-SE-CG) y peligro sísmico diseño sismo resistente (NEC-SE-DS). A su vez, estas normas se basan en normas extranjeras como el ANSI/AISC 341-05, ANSI/AISC 341-10, ANSI/AISC 358-05 y FEMA 350.

El propósito de este trabajo de titulación es, realizar un análisis bidimensional comparativo entre los resultados de cálculo realizados por CYPE, ETABS y los cálculos manuales basados en las normas vigentes. Se analizarán dos pórticos, uno bajo cargas gravitacionales y el otro resistente a momentos bajo cargas gravitacionales y sísmicas. Para ambos casos se realizan análisis por elementos (vigas y columnas). Para el pórtico resistente a momentos, se utilizará una conexión de tipo viga de sección reducida, con el objetivo de tener una zona concentrada de fluencia ante la carga sísmica.

Para el manejo óptimo de los softwares se desarrollará una guía explicativa con los pasos a seguir para un modelamiento y comprobación de diseño correctos.

Antecedentes

Ecuador por su localización se encuentra en una zona de gran actividad sísmica y de altas fallas geográficas. De la historia se sabe que se han sufrido una serie de eventos telúricos que han generado un gran impacto económico y humano. Los terremotos han sido los principales causantes de las mayores afectaciones a la infraestructura física, generando así el más alto número de pérdidas humanas. Ecuador sufrió un último sismo de gran importancia el 16 de abril de 2016, su epicentro se dio frente a las costas de Pedernales, provincia de Manabí con una magnitud de 7,8 Mw (Instituto Geográfico Militar, 2018).

El acero estructural de carbono comenzó a producirse en grandes cantidades en 1870, en 1884 se laminaron por primera vez en Estados Unidos las vigas I de acero y para 1890 este material era el principal metal estructural usado en Estados Unidos. Pues este presenta grandes ventajas por su versatilidad, gran resistencia, poco peso, ductilidad, entre otras (McCormac & Csernak, 2012).

La primera propuesta para el diseño por capacidad se dio en Nueva Zelanda en 1969 para estructuras de hormigón armado. Posteriormente en 1992, otros investigadores desarrollaron un método que en la actualidad se utiliza para distintos tipos de estructuras. Este concepto pretende permitir la formación de un mecanismo de deformación plástica, evitando que se generen fallas frágiles (Crisafulli, 2018).

En Chicago se estableció por primera vez en 1921 el Instituto Americano de Construcción de Acero (AISC por sus siglas en inglés). Su misión es hacer del acero estructural el material de elección. Este instituto tiene un gran respeto por su larga tradición de servicio a la industria de construcción en acero; brindando información pertinente y fiable a través de códigos, investigación, educación, asistencia técnica, certificación de calidad, normalización y desarrollo de mercado (American Insitute of Steel Construction, 2022).

ETABS es un software producto de 40 años de investigación y desarrollo que proporciona una gran cantidad de herramientas para edificaciones y obras civiles. El distintivo de ETABS desde sus inicios hasta la actualidad es que posee gran capacidad y a su vez es fácil de usar. Nos brinda herramientas inigualables para el modelado y visualización de objetos 3D, tiene una alta capacidad analítica lineal y no lineal, opciones de dimensionamiento modernas y cuenta con una amplia gama de materiales, esclarecedores gráficos, informes y diseños esquemáticos que facilitan la comprensión del análisis y de los respectivos resultados (CSI SPAIN).

CYPE es un software creado en España en la década de los 80. Es capaz de realizar el cálculo de esfuerzos, diseño y dimensionamiento de estructuras de hormigón armado y metálicas para edificaciones y obras civiles sometidas a acciones verticales y horizontales. El modelo numérico que utiliza CYPE es el método matricial y elementos finitos (Pardo Soucase & Valiente Ochoa, 2012). El cálculo sísmico se realiza mediante un análisis modal espectral completo que resuelve cada modo como una hipótesis y realiza la expansión modal y la combinación modal para la obtención de esfuerzos (CYPE Ingenieros SA).

Objetivos

Objetivo general

• Comparación y comprobación del diseño a gravedad y sismorresistente de pórticos en CYPE y ETABS.

Objetivos específicos

- Modelar, analizar y comprobar el diseño de dos pórticos en CYPE y ETABS, cumpliendo con las normas vigentes.
- Comparar los resultados obtenidos en los dos softwares con un diseño manual siguiendo las normativas.
- Determinar una guía del uso de los dos softwares de cálculo para el diseño de pórticos en acero estructural.

CAPÍTULO 1

1. GENERALIDADES

1.1. Estado del arte

Según Palma, Gavilanes y Baquerizo, CYPE es un software de fácil manejo y verificación de datos, dentro de sus ventajas presenta la reducción de los tiempos de modelaje y diseño ya que no solo ayuda a diseñar (2012).

Rivas C, Zerna P. y Santos E. (2012) mencionan que CYPE demuestra ser un software que una vez modelada la estructura deja pocas dudas debido a su sencillo manejo y verificación de datos. Permite reducir los tiempos de modelaje y diseño, ya que entrega los planos estructurales y la memoria técnica de la obra en formato convencional, y casi listos para imprimir; lo que al hacer un análisis de costos debido al diseño; le generará un ahorro económico significativo al diseñador estructural.

Según Saravia J. (2013), sobre el uso del programa ETABS para el "Análisis y Diseño con ETABS, su aplicación adecuada y comprobación de resultados, aplicado a Edifícios de Concreto Armado", se enfoca al buen uso y aplicación del mismo, analizó un edificio de 14 niveles, con el objetivo de evitar todos los errores graves que puedan surgir al no conocer con certeza el funcionamiento y uso de los programas, y ayudar a quienes poseen un buen criterio estructural a confiar en el mismo. Menciona que se deben llevar constantes chequeos en hojas de cálculo como Excel, con el objetivo de llevar un control total sobre los programas que se utilicen, en este caso como ETABS. Estos chequeos nos brindan la certeza y confiabilidad de los programas de cálculo.

Según Alves J. (2011), sobre el uso de software ETABS en el "Análisis Dinámico de una Estructura Irregulares Empleando el Programa de Cálculo Estructural ETABS", se propuso un Análisis Dinámico Espacial, según el Método de Superposición Modal con Tres Grados de Libertad por Nivel, de acuerdo a lo establecido en la Norma COVENIN 1756:2001A relativa a Edificaciones Sismorresistente, de una estructura de tipo regular denominada "MR", a partir de la cual, luego de determinadas modificaciones geométricas y funcionales de su configuración estructural inicial, se diseñaron dos estructuras de tipo irregular, denominadas "MI1" y "MI2", que posteriormente fueron analizadas del mismo modo,

a fin de dar respuesta a la problemática planteada, determinando el nivel de impacto que generan dichas irregularidades en la respuesta dinámica de la estructura.

En el diseño sísmico de un edificio de 5 pisos con el uso de CYPECAD y ETABS en Villa María del Triunfo – Lima 2019, sus autores Febres K. y Ñahuis R. (2019) verificaron la fiabilidad de los datos del software CYPECAD, comparándolo con un software muy reconocido como lo es ETABS. Concluyeron que ETABS trabaja con un espectro inelástico y CYPECAD con espectro elástico, por lo que se debe multiplicar la carga espectral en ETABS por la aceleración de la gravedad. Por otro lado, para la fuerza cortante sobre la base, se obtienen resultados similares, con una diferencia causada por el método de cálculo usado por cada programa.

Adicionalmente, Malasree, *et al.* (2019), afirman que CYPECAD requiere de un menor tiempo para el análisis y diseño de diferentes proyectos. También mencionan que tanto CYPECAD como ETABS son capaces de determinar la seguridad de un diseño y modificar los elementos estructurales individualmente. Las derivas máximas de piso y los desplazamientos se logran en ambos programas. CYPECAD tiene la capacidad de generar los planos y detalles automáticamente, mientras que en ETABS, estos se deben realizar por separado.

1.2. Marco Teórico

Pórticos resistentes a momento

La conexión entre vigas y columnas se genera con conexiones rígidas. Se forman nudos plásticos en las vigas para tener una fuente de ductilidad y las columnas deben permanecer elásticas, excepto en la base del pórtico. La resistencia a cargas sísmicas laterales se da por flexión y cortante en vigas y columnas. Para asegurar que se generen nudos plásticos en las vigas se reducen las secciones de patín, reduciendo así de forma controlada la resistencia a flexión en esa zona (Ministerio de Desarrollo Urbano y Vivienda, 2016).

Viga de sección reducida (VSR)

Se genera una reducción en la sección transversal en una longitud específica para forzar una potencial zona inelástica en la viga (Ministerio de Desarrollo Urbano y Vivienda, 2014).

Cortante basal de diseño

Fuerza total generada por la acción sísmica de diseño, aplicada en la base de la estructura (Ministerio de Desarrollo Urbano y Vivienda, 2014).

Cortante de piso

Sumatoria de las fuerzas laterales de todos los niveles sobre el piso en estudio (Ministerio de Desarrollo Urbano y Vivienda, 2014).

Deriva de piso

Desplazamiento lateral relativo por nivel, generado por la influencia de una fuerza horizontal, con respecto al siguiente nivel, tomado en dos puntos en el mismo eje vertical de la estructura. Su método de cálculo es restar el desplazamiento del extremo inferior del desplazamiento del extremo superior del nivel (Ministerio de Desarrollo Urbano y Vivienda, 2014).

Estructura

Grupo de elementos estructurales conectados entre sí para resistir cargas verticales y horizontales (sísmicas y otras). Se pueden clasificar en: estructuras de edificación y de otros tipos como puentes, tanques, etc. (Ministerio de Desarrollo Urbano y Vivienda, 2014).

Método de diseño por capacidad

Método de diseño para asegurar la disipación energética bajo el efecto de deformaciones importantes de ciertos elementos estructurales. Los demás elementos se los estudia y diseña de forma apropiada de manera que sean capaces de resistir las solicitaciones más desfavorables y asegurar la disipación de energía (Ministerio de Desarrollo Urbano y Vivienda, 2014).

CAPÍTULO 2

2. PÓRTICO A GRAVEDAD - METODOLOGÍA

El pórtico a analizarse se conforma por dos columnas de 3 m de altura y una viga de 6 m de longitud como se muestra en la figura 2.1. En este caso se verificarán las capacidades de los elementos por separado.

Figura 2.1: Pórtico a gravedad

Fuente: Autores

2.1. Cargas

Las cargas aplicadas al pórtico se dividen en dos categorías: cargas variables (vivas) y cargas permanentes (muertas).

2.1.1. Cargas permanentes o cargas muertas

Compuestas por los pesos de los elementos que conforman la estructura y sus acabados como son: muros, paredes, recubrimientos, instalaciones sanitarias, eléctricas, mecánicas, máquinas y todo artefacto integrado permanentemente a la estructura (Ministerio de Desarrollo Urbano y Vivienda, 2014).

Para el presente análisis se tomarán los pesos de las paredes (incluyen empastado y enlucido), losa alivianada, pisos de baldosa cerámica, cielorraso, contrapiso e instalaciones eléctricas y sanitarias.

En la tabla 2.1 se presentan los valores de los pesos unitarios de materiales de construcción según la NEC-SE-CG.

Tabla 2.1: Peso	s unitarios d	le materiales	de	construcción
-----------------	---------------	---------------	----	--------------

InstantionUnitarioB. Piedras artificialeskN/m3Baldosa cerámica18Hormigón simple22Hormigón armado24Ladrillo cerámico perosado (0 a 10% de huecos)19Ladrillo cerámico perforado (20 a 30% de huecos)14Ladrillo cerámico huevo (40 a 50% de huecos)10Ladrillo cerámico huevo (40 a 50% de huecos)10Ladrillo artesanal16Bloque hueco de hormigón12Bloque hueco de hormigón alivianado8.5C. Materiales granularesNN/m3Arena seca14.5Arena húmeda16Arena húmeda16Ripio seco16Ripio seco16Ripio fuímedo20Graval (canto rodado)16Gravilla seca15.5Gravilla húmeda20D. MorterosNN/m3Cemento compuesto cal y arena18Cal y arena16Elementos secundarios10E. MetalesKN/m3Cero78.5Elementos secundarios0.2Contrapisos y recubrimientoskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapisos y recubrimientos0.2De veso sobre listonres de madera (Incluidos listones)0.2De mortero de cemento: compuesto de cal y arena0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.25De ja de hormigón inortero0.55Plancha ondulada de fibrocemento: de 8 mm de espesor <td< th=""><th>Material</th><th>Peso</th></td<>	Material	Peso
B. Piedras artificiales kN/m3 Baldosa cerámica 18 Hormigón simple 22 Hormigón armado 24 Ladrillo cerámico prensado (0 a 10% de huecos) 19 Ladrillo cerámico prensado (0 a 30% de huecos) 10 Ladrillo cerámico puerforado (20 a 30% de huecos) 10 Ladrillo carámico puerforado (20 a 30% de huecos) 10 Ladrillo carámico puerforado (20 a 30% de huecos) 10 Ladrillo carámico puerforado (20 a 30% de huecos) 10 Ladrillo carámico puerforado (20 a 30% de huecos) 10 Ladrillo carámico puerto (40 a 50% de huecos) 10 Ladrillo carámico puerto (40 a 50% de huecos) 10 Elextro (40 a 50% de huecos) 10 Baldosa de commerción 12 Bloque hueco de hormigón alivianado 8.5 C. Materiales granulares kN/m3 Arena a seca 14.5 Arena a de pómez seca 16 Ripio húmedo 20 Grava (canto rodado) 16 Gravilla seca 15.5 Gravilla húmeda 20 D. Morteros kN/m3 Cal y arena		
Baldosa cerámica18Hormigón simple22Hormigón armado24Ladrillo cerámico prensado (0 a 10% de huecos)19Ladrillo cerámico prensado (20 a 30% de huecos)14Ladrillo cerámico puevo (40 a 50% de huecos)10Ladrillo cerámico huevo (40 a 50% de huecos)10Ladrillo artesanal16Bloque hueco de hormigón12Bloque hueco de hormigón alivianado8.5C. Materiales granulareskN/m3Arena a pómez seca7Ripio seco16Ripio seco16Ripio húmedo20Grava (canto rodado)16Grava (canto rodado)16Cravilla seca15.5Gravilla húmeda20D. MorteroskN/m3Cemento compuesto y arena 1:3 a 1:520Cemento compuesto cal y arena18Cal y arena16Yeso10E. MetaleskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapisos y recubrimientoskN/m2Baldosa de cerámica, con mortero de cal y arena0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.2De ortero do cimento: de 8 mm de espesor0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.2Contrapiso s nortero0.55Plancha	B. Piedras artificiales	kN/m3
Hormigón simple22Hormigón armado24Ladrillo cerámico perforado (20 a 30% de huecos)19Ladrillo cerámico perforado (20 a 30% de huecos)10Ladrillo cerámico perforado (20 a 30% de huecos)10Ladrillo cerámico perforado (20 a 30% de huecos)10Ladrillo artesanal16Bloque hueco de hormigón12Bloque hueco de hormigón alivianado8.5C. Materiales granulareskN/m3Arena seca14.5Arena húmeda16Arena de pómez seca7Ripio seco16Ripio húmedo20Gravilla seca15.5Gravilla lómeda20D. MorteroskN/m3Cemento compuesto y arena 1:3 a 1:520Cemento compuesto cal y arena16Yeso10E. MetaleskN/m3Acero78.5Elementos secundarios10F. MetaleskN/m2De yeso sobre listonres de madera (incluidos los listones)0.2Contrapisos de hormigón ligero simple, por cada cm, de espesor0.16H. Cielorrasos y CubiertaskN/m2De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento: de 8 mm de espesor0.2de 6 mm de espesor0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.55Fianda con mortero de cemento0.55Fianda con mortero de cemento0.55Teja de barro occido sin mortero0.55Fianda con mortero de cemento<	Baldosa cerámica	18
Hormigón armado24Ladrillo cerámico prensado (0 a 10% de huecos)19Ladrillo cerámico perforado (20 a 30% de huecos)14Ladrillo cerámico huevo (40 a 50% de huecos)10Ladrillo artesanal16Bloque hueco de hormigón12Bloque hueco de hormigón alivianado8.5C. Materiales granulareskN/m3Arena seca14.5Arena seca16Arena seca16Arena de pómez seca7Ripio seco16Gravai (canto rodado)20Gravai (canto rodado)16Gravailla seca15.5Gravilla seca15.5Compuesto y arena 1:3 a 1:520Cemento compuesto cal y arena18Cal y arena16Yeso10Elementos secundarioskN/m3Acero78.5Elementos secundarios0.2Contrapisos y recubrimientoskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapiso de hormigón ligero simple, por cada cm, de espesor0.2De mortero de cemento: com de espesor0.2De mortero de cemento: cemento0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.2de 6 mm de espesor0.55Flancha ondulada de fibrocemento: de 8 mm de espesor0.2Cemento compuesto de cemento0.55Flancha ondulada de fibrocemento: de 8 mm de espesor0.2Contrapiso de hormigón con mortero0.55Flancha ondulada de fib	Hormigón simple	22
Ladrillo cerámico prensado (0 a 10% de huecos)19Ladrillo cerámico perforado (20 a 30% de huecos)10Ladrillo cerámico huevo (40 a 50% de huecos)10Ladrillo artesanal16Bloque hueco de hormigón12Bloque hueco de hormgón alivianado8.5C. Materiales granularesKN/m3Arena seca14.5Arena húmeda16Arena de pómez seca7Ripio seco16Ripio seco16Grava (canto rodado)15Grava (canto rodado)16Gravalla seca15.5Gravilla seca15.5Gravalla húmeda20D. MorterosKN/m3Cemento compuesto y arena 1:3 a 1:520Cemento compuesto y arena 1:3 a 1:520Cemento secundarios10E. MetalesKN/m3Acero78.5Elementos secundarios55G. Contrapisos y recubrimientoskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapiso de hormigón ligero simple, por cada cm, de espesor0.2De mortero de cemento: compuesto de cal y arena0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.2De mortero de cemento compuesto de cal y arena0.55Planca on mortero0.55Teja de hormigón son mortero0.55Teja de hormigón con mortero0.55Teja han con mortero0.55Teja han con mortero0.55Teja han con mortero0.55<	Hormigón armado	24
Ladrillo cerámico perforado (20 a 30% de huecos)14Ladrillo carámico huevo (40 a 50% de huecos)10Ladrillo artesanal16Bloque hueco de hormigón12Bloque hueco de hormigón alivianado8.5C. Materiales granulareskN/m3Arena seca14.5Arena húmeda16Arena húmedo20Grava (canto rodado)16Ripio seco16Ripio húmedo20Gravilla seca15.5Gravilla húmeda20D. MorteroskN/m3Cemento compuesto y arena 1:3 a 1:520Cemento compuesto cal y arena16Yeso10E. MetaleskN/m3Catero78.5Elementos secundarios78.5Elementos secundarioskN/m3Contrapisos y recubrimientoskN/m3Acero78.5Elementos secundarios0.2Contrapiso de hormigón ligero simple, por cada cm, de espesor0.2De mortero de cemento: por cada cm, de espesor0.2De mortero de cemento: compuesto de cal y arena0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.2De mortero de cemento0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.5Teja plan con mortero de cemento0.85Teja plan con mortero0.55Teja de hormigón con mortero0.55Teja de hormigón con mortero0.55Teja de hormigón con mortero0.55	Ladrillo cerámico prensado (0 a 10% de huecos)	19
Ladrillo cerámico huevo (40 a 50% de huecos)10Ladrillo artesanal16Bloque hueco de hormigón12Bloque hueco de hormgón alivianado8.5C. Materiales granulareskN/m3Arena seca14.5Arena de pómez seca7Ripio seco16Ripio húmedo20Grava (canto rodado)16Gravilla seca15.5Gravilla seca15.5Gravilla seca20D. Morteros20Cemento compuesto y arena 1:3 a 1:520Cemento compuesto y arena 1:3 a 1:520Cemento compuesto y arena 1:3 a 1:520Cemento secundarios16Yeso10E. MetaleskN/m3Acero78.5Elementos secundarios0.2Contrapisos y recubrimientoskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapiso sy cubiertaskN/m2De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento: de 3 y arena0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.2De mortero de cemento0.5Teja plana con mortero de cemento0.85Teja plana con mortero0.85Teja de hormigón inortero0.85Teja de hormigón con mortero0.15	Ladrillo cerámico perforado (20 a 30% de huecos)	14
Ladrillo artesanal16Bloque hueco de hormigón12Bloque hueco de hormigón alivianado8.5C. Materiales granulareskN/m3Arena seca14.5Arena seca16Arena de pómez seca7Ripio seco16Ripio seco16Gravilla seca15.5Gravilla seca15.5Gravilla seca15.5Gravilla húmeda20D. MorteroskN/m3Cemento compuesto y arena 1:3 a 1:520Cemento compuesto y arena 1:3 a 1:520Cemento compuesto zi y arena16Yeso10E. MetaleskN/m3Acero78.5Elementos secundarios78.5Elementos secundarios0.2Contrapiso y recubrimientoskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapiso y recubrimientoskN/m2De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento: de 3 y arena0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.2De mortero de cemento: de 8 mm de espesor0.2De mortero de compuesto de cal y arena0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.2Teja de barro cocido sin mortero0.55Teja de hormigón con mortero0.55Teja de hormigón con mortero0.85Teja de hormigón con mortero0.85Teja de hormigón con mortero0.85	Ladrillo cerámico huevo (40 a 50% de huecos)	10
Bloque hueco de hormigón12Bloque hueco de hormigón alivianado8.5C. Materiales granulareskN/m3Arena seca14.5Arena húmeda16Arena húmeda16Arena de pómez seca7Ripio seco16Ripio húmedo20Grava (canto rodado)16Gravilla seca15.5Gravilla seca20D. MorteroskN/m3Cemento compuesto y arena 1:3 a 1:520Cemento compuesto cal y arena18Cal y arena16Yeso10Elementos secundarioskN/m3Acero78.5Elementos secundarios0.2Contrapisos y recubrimientoskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapisos y CubiertaskN/m2De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento : de sopesor0.2Contrapiso a de hormigón ligero simple, por cada cm, de espesor0.2De peso sobre listonres de madera (incluidos los listones)0.2De peso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento : de 8 mm de espesor0.2Contrapiso a nortero de cemento: compuesto de cal y arena0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.2de 6 mm de espesor0.5Teja de barro cocido sin mortero0.55Teja de hormigón con mortero0.55Teja de hormigón con mortero0.55<	Ladrillo artesanal	16
Bloque hueco de hormgón alivianado 8.5 C. Materiales granulares kN/m3 Arena seca 14.5 Arena húmeda 16 Arena de pómez seca 7 Ripio seco 16 Ripio húmedo 20 Grava (canto rodado) 16 Gravilla seca 15.5 Gravilla seca 15.5 Gravilla húmeda 20 D. Morteros kN/m3 Cemento compuesto y arena 1:3 a 1:5 20 Cemento compuesto cal y arena 18 Cal y arena 16 Yeso 10 E. Metales kN/m3 Acero 78.5 Elementos secundarios 78.5 G. Contrapisos y recubrimientos kN/m3 Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor 0.2 Contrapiso de hormigón ligero simple, por cada cm, de espesor 0.2 De yeso sobre listonres de madera (incluidos los listones) 0.2 De yeso sobre listonres de madera (incluidos los listones) 0.2 De mortero de cemento compuesto de cal y arena 0.55 Plancha ondulada de fibrocemento	Bloque hueco de hormigón	12
C. Materiales granulareskN/m3Arena seca14.5Arena húmeda16Arena de pómez seca7Ripio seco16Ripio seco16Grava (canto rodado)16Gravilla seca15.5Gravilla seca20D. MorteroskN/m3Cemento compuesto y arena 1:3 a 1:520Cemento compuesto y arena 1:3 a 1:520Cemento compuesto cal y arena18Cal y arena16Yeso10E. MetaleskN/m3Acero78.5Elementos secundarios78.5Elementos secundarios0.2Contrapisos y recubrimientoskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapiso s y CubiertaskN/m2De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento: de 8 mm de espesor0.2Contrapiso a fibrocemento: de 8 mm de espesor0.2Teja de barro cocido sin mortero0.55Teja de hormigón con mortero0.85Teja de hormigón con mortero0.85Teja de hormigón con mortero0.85Teja de hormigón con mortero0.85	Bloque hueco de hormgón alivianado	8.5
Arena seca14.5Arena húmeda16Arena de pómez seca7Ripio seco16Ripio húmedo20Grava (canto rodado)16Gravilla seca15.5Gravilla seca15.5Gravilla húmeda20D. MorteroskN/m3Cemento compuesto y arena 1:3 a 1:520Cemento compuesto cal y arena18Cal y arena16Yeso10E. MetaleskN/m3Acero78.5Elementos secundarios78.5G. Contrapisos y recubrimientoskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapiso de hormigón ligero simple, por cada cm, de espesor0.2De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento: de cal y arena0.55Plancha ondulada de fibrocemento: de cal y arena0.55Plancha ondulada de fibrocemento: de cal y arena0.55Plancha nondulada de fibrocemento: de cal y arena0.55Teja de barro cocido sin mortero0.5Teja de harro cocido sin mortero0.5Teja de harro cocido sin mortero0.85Teja de hormigón con mortero0.85Teja de hormigón con mortero0.85Teja de hormigón con mortero0.85	C. Materiales granulares	kN/m3
Arena húmeda16Arena de pómez seca7Ripio seco16Ripio húmedo20Grava (canto rodado)16Gravilla seca15.5Gravilla seca20D. MorteroskN/m3Cemento compuesto y arena 1:3 a 1:520Cemento compuesto cal y arena18Cal y arena16Yeso10E. MetaleskN/m3Acero78.5Elementos secundarios78.5Elementos secundarios0.2Contrapiso s y recubrimientoskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapiso de hormigón ligero simple, por cada cm, de espesor0.2De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento: de am de espesor0.2Charan de fibrocemento: de 8 mm de espesor0.2De mortero de cemento: de 6 mm de espesor0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.2de 6 mm de espesor0.55Teja de barro cocido sin mortero0.85Teja de hormigón con mortero0.85Teja de hormigón con mortero0.85	Arena seca	14.5
Arena de pómez seca7Ripio seco16Ripio húmedo20Grava (canto rodado)16Gravilla seca15.5Gravilla seca20D. MorteroskN/m3Cemento compuesto y arena 1:3 a 1:520Cemento compuesto cal y arena18Cal y arena16Yeso10E. MetaleskN/m3Acero78.5Elementos secundarioskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.16H. Cielorrasos y CubiertaskN/m2De yeso sobre listonres de madera (incluídos los listones)0.2De mortero de cemento: de 8 mm de espesor0.2Cantra ondulada de fibrocemento: de 8 mm de espesor0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.5Teja de barro cocido sin mortero0.85Teja de hormigón con mortero0.85Teja de hormigón con mortero1.15	Arena húmeda	16
Ripio seco16Ripio húmedo20Grava (canto rodado)16Gravilla seca15.5Gravilla seca15.5Gravilla húmeda20D. MorteroskN/m3Cemento compuesto y arena 1:3 a 1:520Cemento compuesto cal y arena18Cal y arena16Yeso10E. MetaleskN/m3Acero78.5Elementos secundarioskN/m2G. Contrapisos y recubrimientoskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.16H. Cielorrasos y CubiertaskN/m2De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento: de 3 mm de espesor0.2Plancha ondulada de fibrocemento: de 3 mm de espesor0.2Cal de barro cocido sin mortero0.5Teja de barro cocido sin mortero0.5Teja de hormigón con mortero0.85Teja de hormigón con mortero0.85Teja de hormigón con mortero1.15	Arena de pómez seca	7
Ripio húmedo20Grava (canto rodado)16Gravilla seca15.5Gravilla seca20D. MorteroskN/m3Cemento compuesto y arena 1:3 a 1:520Cemento compuesto cal y arena18Cal y arena16Yeso10E. MetaleskN/m3Acero78.5Elementos secundarios78.5G. Contrapisos y recubrimientoskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapiso de hormigón ligero simple, por cada cm, de espesor0.2De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento: de 8 mm de espesor0.2Contra de comento: de 8 mm de espesor0.5Plancha ondulada de fibrocemento: de 8 mm de espesor0.5Teja de barro cocido sin mortero0.5Teja de hormigón con mortero0.5Teja de hormigón con mortero0.85Teja de hormigón con mortero0.5	Ripio seco	16
Grava (canto rodado)16Gravilla seca15.5Gravilla húmeda20D. MorteroskN/m3Cemento compuesto y arena 1:3 a 1:520Cemento compuesto cal y arena18Cal y arena16Yeso10E. MetaleskN/m3Acero78.5Elementos secundarios78.5G. Contrapisos y recubrimientoskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapiso y CubiertaskN/m2De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento: de 8 mm de espesor0.2Conta ondulada de fibrocemento: de 8 mm de espesor0.2Conta de hormico e compuesto de cal y arena0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.2De hormico cocido sin mortero0.5Teja de barro cocido sin mortero0.5Teja de hormigón con mortero0.85Teja de hormigón con mortero0.85	Ripio húmedo	20
Gravilla seca15.5Gravilla húmeda20D. MorteroskN/m3Cemento compuesto y arena 1:3 a 1:520Cemento compuesto cal y arena18Cal y arena16Yeso10E. MetaleskN/m3Acero78.5Elementos secundarios78.5Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapiso y recubrimientoskN/m2Baldosa de cerámica, con mortero de cal y arena0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.2De mortero de cemento: de 8 mm de espesor0.2Contrapiso os precubrimiento: de 8 mm de espesor0.2De mortero de cemento: de 8 mm de espesor0.5Flancha ondulada de fibrocemento: de 8 mm de espesor0.5Teja de barro cocido sin mortero0.5Teja de hormigón con mortero0.85Teja de hormigón con mortero0.85Teja de hormigón con mortero1.15	Grava (canto rodado)	16
Gravilla húmeda20D. MorteroskN/m3Cemento compuesto y arena 1:3 a 1:520Cemento compuesto cal y arena18Cal y arena16Yeso10E. MetaleskN/m3Acero78.5Elementos secundarioskN/m2G. Contrapisos y recubrimientoskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapiso de hormigón ligero simple, por cada cm, de espesor0.16H. Cielorrasos y CubiertaskN/m2De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento: de 8 mm de espesor0.2Contaria ondulada de fibrocemento: de 8 mm de espesor0.2Contaria de hormigón nortero0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.5Teja de barro cocido sin mortero0.5Teja de hormigón con mortero0.85Teja de hormigón con mortero0.85Teja de hormigón con mortero1.15	Gravilla seca	15.5
D. MorteroskN/m3Cemento compuesto y arena 1:3 a 1:520Cemento compuesto cal y arena18Cal y arena16Yeso10E. MetaleskN/m3Acero78.5Elementos secundarios78.5G. Contrapisos y recubrimientoskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapiso de hormigón ligero simple, por cada cm, de espesor0.16H. Cielorrasos y CubiertaskN/m2De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento: de 8 mm de espesor0.2Contrapiso compuesto de cal y arena0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.15Teja de barro cocido sin mortero0.85Teja de hormigón con mortero0.85Teja de hormigón con mortero1.15	Gravilla húmeda	20
Cemento compuesto y arena 1:3 a 1:520Cemento compuesto cal y arena18Cal y arena16Yeso10E. MetaleskN/m3Acero78.5Elementos secundarios78.5G. Contrapisos y recubrimientoskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapiso de hormigón ligero simple, por cada cm, de espesor0.16H. Cielorrasos y CubiertaskN/m2De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento: de 8 mm de espesor0.2Contrapiso de hormigón nortero0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.15Teja de barro cocido sin mortero0.5Teja de hormigón con mortero0.85Teja de hormigón con mortero1.15	D. Morteros	kN/m3
Cemento compuesto cal y arena18Cal y arena16Yeso10E. MetaleskN/m3Acero78.5Elementos secundarios78.5G. Contrapisos y recubrimientoskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapiso de hormigón ligero simple, por cada cm, de espesor0.16H. Cielorrasos y CubiertaskN/m2De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento: de 8 mm de espesor0.15Plancha ondulada de fibrocemento: de 8 mm de espesor0.15Teja de barro cocido sin mortero0.5Teja de hormigón con mortero0.85Teja de hormigón con mortero1.15	Cemento compuesto y arena 1:3 a 1:5	20
Cal y arena16Yeso10E. MetaleskN/m3Acero78.5Elementos secundarios78.5G. Contrapisos y recubrimientoskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapiso de hormigón ligero simple, por cada cm, de espesor0.16H. Cielorrasos y CubiertaskN/m2De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento: de 8 mm de espesor0.255Plancha ondulada de fibrocemento: de 8 mm de espesor0.15Teja de barro cocido sin mortero0.5Teja de hormigón con mortero0.85Teja de hormigón con mortero1.15	Cemento compuesto cal y arena	18
Yeso10E. MetaleskN/m3Acero78.5Elementos secundarios78.5G. Contrapisos y recubrimientoskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapiso de hormigón ligero simple, por cada cm, de espesor0.16H. Cielorrasos y CubiertaskN/m2De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento compuesto de cal y arena0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.15Teja de barro cocido sin mortero0.5Teja de hormigón con mortero0.85Teja de hormigón con mortero1.15	Cal y arena	16
E. MetaleskN/m3Acero78.5Elementos secundarios78.5G. Contrapisos y recubrimientoskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapiso de hormigón ligero simple, por cada cm, de espesor0.16H. Cielorrasos y CubiertaskN/m2De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento compuesto de cal y arena0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.15Teja de barro cocido sin mortero0.55Teja de hormigón con mortero0.85Teja de hormigón con mortero1.15	Yeso	10
Acero78.5Elementos secundarioskN/m2G. Contrapisos y recubrimientoskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapiso de hormigón ligero simple, por cada cm, de espesor0.16H. Cielorrasos y CubiertaskN/m2De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento compuesto de cal y arena0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.15Teja de barro cocido sin mortero0.5Teja plana con mortero de cemento0.85Teja de hormigón con mortero1.15	E. Metales	kN/m3
Elementos secundariosG. Contrapisos y recubrimientoskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapiso de hormigón ligero simple, por cada cm, de espesor0.16H. Cielorrasos y CubiertaskN/m2De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento compuesto de cal y arena0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.2de 6 mm de espesor0.15Teja de barro cocido sin mortero0.5Teja plana con mortero de cemento0.85Teja de hormigón con mortero1.15	Acero	78.5
G. Contrapisos y recubrimientoskN/m2Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapiso de hormigón ligero simple, por cada cm, de espesor0.16H. Cielorrasos y CubiertaskN/m2De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento compuesto de cal y arena0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.2de 6 mm de espesor0.15Teja de barro cocido sin mortero0.5Teja plana con mortero de cemento0.85Teja de hormigón con mortero1.15	Elementos secundarios	
Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor0.2Contrapiso de hormigón ligero simple, por cada cm, de espesor0.16H. Cielorrasos y CubiertaskN/m2De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento compuesto de cal y arena0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.15Teja de barro cocido sin mortero0.5Teja plana con mortero de cemento0.85Teja de hormigón con mortero1.15	G. Contrapisos y recubrimientos	kN/m2
Contrapiso de hormigón ligero simple, por cada cm, de espesor0.16H. Cielorrasos y CubiertaskN/m2De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento compuesto de cal y arena0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.2de 6 mm de espesor0.15Teja de barro cocido sin mortero0.5Teja plana con mortero de cemento0.85Teja de hormigón con mortero1.15	Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor	0.2
H. Cielorrasos y CubiertaskN/m2De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento compuesto de cal y arena0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.2de 6 mm de espesor0.15Teja de barro cocido sin mortero0.5Teja plana con mortero de cemento0.85Teja de hormigón con mortero1.15	Contrapiso de hormigón ligero simple, por cada cm, de espesor	0.16
De yeso sobre listonres de madera (incluidos los listones)0.2De mortero de cemento compuesto de cal y arena0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.2de 6 mm de espesor0.15Teja de barro cocido sin mortero0.5Teja plana con mortero de cemento0.85Teja de hormigón con mortero1.15	H. Cielorrasos y Cubiertas	kN/m2
De mortero de cemento compuesto de cal y arena0.55Plancha ondulada de fibrocemento: de 8 mm de espesor0.2de 6 mm de espesor0.15Teja de barro cocido sin mortero0.5Teja plana con mortero de cemento0.85Teja de hormigón con mortero1.15	De yeso sobre listonres de madera (incluidos los listones)	0.2
Plancha ondulada de fibrocemento: de 8 mm de espesor0.2de 6 mm de espesor0.15Teja de barro cocido sin mortero0.5Teja plana con mortero de cemento0.85Teja de hormigón con mortero1.15	De mortero de cemento compuesto de cal y arena	0.55
de 6 mm de espesor0.15Teja de barro cocido sin mortero0.5Teja plana con mortero de cemento0.85Teja de hormigón con mortero1.15	Plancha ondulada de fibrocemento: de 8 mm de espesor	0.2
Teja de barro cocido sin mortero0.5Teja plana con mortero de cemento0.85Teja de hormigón con mortero1.15	de 6 mm de espesor	0.15
Teja plana con mortero de cemento0.85Teja de hormigón con mortero1.15	Teja de barro cocido sin mortero	0.5
Teja de hormigón con mortero 1.15	Teja plana con mortero de cemento	0.85
	Teja de hormigón con mortero	1.15

Fuente: Elaboración propia a partir de los datos de Ministerio de Desarrollo Urbano y Vivienda, 2014

En la tabla 2.2 se presentan los pesos unitarios asumidos para el presente análisis.

Descripción		Initario
Losa alivianada con novalosa (espesor 5 cm)	1.89	KN/m_2
Paredes	1.34	KN/m_2
Contrapiso de hormigón ligero simple, por cada cm, de espesor	0.16	KN/m_2
Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor	0.20	KN/m_2
Instalaciones eléctricas y sanitarias	0.10	KN/m_2
Cielorraso de yeso sobre listones de madera (incluidos los listones)	0.2	KN/m_2
TOTAL	3.90	KN/m_2

Tabla 2.2: Pesos totales de cargas permanentes

Fuente: Elaboración propia

Al realizar el análisis en dos dimensiones, se deben ingresar las cargas como lineales, por lo que asumimos un área tributaria de 3 m de ancho por 6 m de longitud, dando como resultado una carga lineal distribuida a lo largo de la viga de 11,77 kN/m.

2.1.2. Cargas variables o cargas vivas

También conocidas como sobrecargas de uso, varían según la ocupación que se le asignará a la estructura y están conformadas por los pesos de personas, muebles, equipos y accesorios móviles y temporales, mercadería en transición, y otras (Ministerio de Desarrollo Urbano y Vivienda, 2014).

En la Norma Ecuatoriana de la Construcción se puede encontrar una lista con las ocupaciones o los usos, en este caso tomaremos el valor para edificaciones de residenciales viviendas.

En la tabla 2.3 se observa el valor de la carga uniformemente distribuida tomada de la NEC-SE-CG.

Tabla 2.3: Sobrecargas mínimas uniformemente distribuidas

Ocupación o Uso	Carga uniforme (kN/m2)
Residencias	
Viviendas (unifamiliares y bifamiliares)	2

Fuente: Elaboración propia a partir de los datos de Ministerio de Desarrollo Urbano y Vivienda, 2014

De la misma forma que la carga permanente, al realizar el análisis en dos dimensiones, se deben ingresar las cargas como lineales, por lo que asumimos un área tributaria de 3 m de ancho por 6 m de longitud, dando como resultado una carga lineal distribuida a lo largo de la viga de 6 kN/m.

2.2. Combinaciones de cargas

Símbolos y notación

D	Carga permanente
L	Sobrecarga (carga viva)
Е	Carga de sismo
Lr	Sobrecarga cubierta (carga viva)
S	Carga de granizo
W	Carga de viento

Combinaciones básicas

Para el diseño de estructuras se debe tomar en cuenta las distintas combinaciones y asegurarse que la resistencia de diseño sea igual o mayor a los efectos generados por estas combinaciones.

1,4 D	Ecuación 1. Combinación 1
$1,2 D + 1,6 L + 0,5 max [L_r; S; R]$	Ecuación 2. Combinación 2
$1,2 D + 1,6 max [L_r; S; R] + max [L; 0.5W]$	Ecuación 3. Combinación 3
$1,2 D + 1,0 W + L + 0,5 max[L_r; S; R]$	Ecuación 4. Combinación 4
1,2 D + 1,0 E + L + 0,2 S	Ecuación 5. Combinación 5
0,9 D + 1,0 W	Ecuación 6. Combinación 6
0,9 D + 1,0 E	Ecuación 7. Combinación 7

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014

En el presente diseño solo se cuenta con cargas permanentes y vivas, por lo que las combinaciones de carga a utilizarse son las siguientes.

1,4 D	Ecuación 8. Combinación 1
1,2 <i>D</i> + 1,6 <i>L</i>	Ecuación 9. Combinación 2

2.3. Diseño de miembros

2.3.1. Secciones compactas

Los miembros deben tener alas continuamente conectadas al alma y las relaciones ancho-espesor de sus elementos a compresión no deben exceder las relaciones máximas ancho-espesor, λ_p , de la tabla 2.4 presentada a continuación.

Tabla 2.4: Razones ancho-espesor: elementos en compresión de miembros en flexión

R	azones	ancho-espe	esor: ele	mentos en co	ompresión	de miemb	ros en fle	xión
	0	Descripción	Razón	Razón ancho-e límite	espesor	D . 1		
	Caso	elemento	espesor	λ_p (compacta - no compacta)	λ_r (esbelto - no esbelto)	Ejempios		
Atiesados	10	Flexión en alas de perfiles I laminados, canales y tes.	b/t	$0.38\sqrt{\frac{E}{Fy}}$	$1.0\sqrt{\frac{E}{Fy}}$			$\frac{b}{1}$
Elementos No-4	15	Almas de doble T simétricas y canales.	h/t _w	$3.76\sqrt{\frac{E}{Fy}}$	$5.70\sqrt{\frac{E}{Fy}}$	t _n	t <u>*</u> h	

Fuente: Elaboración propia a partir de los datos de Ministerio de Desarrollo Urbano y Vivienda, 2014

2.3.2. Diseño de miembros en tensión

En el capítulo D del AISC 360-16 establece que la resistencia de diseño en tracción debe ser el menor valor obtenido de acuerdo a estados límites de fluencia calculado en la sección bruta (American Institute of Steel Construction, 2016).

$$P_n = F_y A_g$$
 Ecuación 10
 $\phi_1 = 0,90$

2.3.3. Diseño de miembros en compresión

En el capítulo E del AISC 360-16 establece que la resistencia nominal a compresión, P_n , debe ser el menor valor obtenido de acuerdo con los estados límites que aplican pandeo por flexión, torsional y flexotorsional (American Institute of Steel Construction, 2016).

 $\phi_{c} = 0,90$

Longitud efectiva

$$L_c = KL$$
 Ecuación 11

Donde:

L = longitud no arriostrada lateralmente del miembro, mm.

El factor de longitud efectiva, K, se determina en base a la Tabla 2.5.

Tabla 2.5: Valores aproximados del factor de longitud efectiva, K.

Fuente: Tomado de McCormac & Csernak, 2013

Pandeo por flexión de miembros sin elementos esbeltos

La resistencia nominal a la compresión se determina en base al estado límite de pandeo por flexión siguiendo las siguientes fórmulas.

$$P_n = F_{cr}A_g$$
 Ecuación 12

La tensión de pandeo por flexión, se determina como sigue:

a) Cuando $\frac{KL}{r} \le 4,71 \sqrt{\frac{E}{F_Y}}$ (o $\frac{F_y}{F_e} \le 2,25$) $F_{cr} = \left[0,658^{\frac{F_y}{F_e}}\right] F_y$ Ecuación 13 b) Cuando $\frac{KL}{r} > 4,71 \sqrt{\frac{E}{F_Y}}$ (o $\frac{F_y}{F_e} > 2,25$) $F_{cr} = 0,877F_e$ Ecuación 14 Donde:

Donde:

r = radio de giro, (mm).

Fe = tensión de pandeo elástico determinada según la ecuación 15, (MPa).

$$F_e = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2} \qquad Ecuación 15$$

2.3.4. Diseño de miembros en flexión

Para los diseños a gravedad se ocupa un $\phi_b = 0.90$.

Cálculo factor de modificación por pandeo lateral-torsional

$$C_b = \frac{12,5 M_{max}}{2,5 M_{max} + 3M_A + 4M_B + 3M_C}$$
 Ecuación 16 Coeficiente C_b

Donde:

 M_{max} = valor absoluto del máximo momento en el segmento no arriostrado, (N-mm).

 M_A = valor absoluto del momento en primer cuarto del segmento no arriostrado, (N-mm).

 M_B = valor absoluto del momento en el centro del segmento no arriostrado, (N-mm).

 M_C = valor absoluto del momento en tercer cuarto del segmento no arriostrado, (N-mm).

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014

Conservadoramente se puede asumir siempre el valor de $C_b = 1$, pero en este caso se pasa por alto la posibilidad de generar ahorros considerables de peso de acero para algunas situaciones. A continuación, se presenta en la figura 2.2 como la capacidad de momento obtenida al multiplicar M_n por C_b puede no ser mayor que el M_n plástico de la zona 1, que es M_p y es igual a F_yZ .

Figura 2.2: Gráfica C_b

Fuente: Tomado de McCormac & Csernak, 2013

Miembros compactos de sección H de simetría doble y canales flectadas en torno a su eje mayor

En el capítulo F del AISC 360-16 establece que la resistencia nominal a flexión, M_n, debe ser el menor valor obtenido de acuerdo con los estados límites de fluencia y pandeo lateral-torsional (American Institute of Steel Construction, 2016).

Fluencia

$$M_n = M_p = F_y Z_x$$
 Ecuación 17

Donde:

 F_{y} = tensión de fluencia mínima especificada del tipo de acero utilizado, (MPa).

 $Z_x =$ módulo de sección plástico en torno al eje x, (mm³).

Pandeo Lateral-Torsional

a) Cuando $L_b \leq L_p$, el estado límite de pandeo lateral torsional no aplica

b) Cuando $L_p < L_b \leq L_r$

$$M_n = C_b \left[M_p - (M_p - 0.7F_y S_x) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right] \le M_p \qquad Ecuación \ 18$$

c) Cuando $L_b > L_r$

$$M_n = F_{cr}S_x \le M_p$$
 Ecuación 19

Donde:

 L_b = longitud entre puntos que están arriostrados contra desplazamientos laterales de compresión de ala o arriostrado contra giro de la sección, (mm).

$$F_{cr} = \frac{C_b \pi^2 E}{\left(\frac{L_b}{r_{ts}}\right)^2} \sqrt{1 + 0.078 \frac{Jc}{S_x h_o} \left(\frac{L_b}{r_{ts}}\right)^2} \qquad Ecuación \ 20$$

Donde:

E = módulo de elasticidad del cero, (Mpa).

J = constante torsional, (mm⁴).

 S_x = módulo de sección elástico en torno al eje x, (mm³).

$$L_p = 1,76 r_y \sqrt{\frac{E}{F_y}}$$
 Ecuación 21

$$L_{r} = 1,95 r_{ts} \frac{E}{0,7 F_{y}} \sqrt{\frac{Jc}{S_{x}h_{o}} + \sqrt{\left(\frac{Jc}{S_{x}h_{o}}\right)^{2} + 6,76\left(\frac{0,7F_{y}}{E}\right)^{2}}}$$
 Ecuación 22

Donde:

$$r_{ts}^2 = \frac{\sqrt{I_y C_w}}{S_x} \qquad Ecuación \ 23$$

Para secciones con simetría doble: c = 1

2.3.5. Diseño de miembros en corte

En el capítulo G del AISC 360-16 establece la resistencia nominal de corte, Vn, de almas no atiesadas o atiesadas de acuerdo con el estado límite de fluencia en corte y pandeo en corte, se determina según la ecuación 24.

$$V_n = 0.6F_{\nu}A_{\omega}C_{\nu} \qquad Ecuación 24$$

Para almas de miembros laminados de sección H con $\frac{h}{t_w} \le 2,24 \sqrt{\frac{E}{F_y}}$

$$\phi_c = 1,00$$
 y $C_v = 1,0$

Donde:

 A_w = área del alma, la altura total multiplicada por el espesor del alma, dt_w , mm².

Atiesadores transversales

No se requieren atiesadores transversales si $\frac{h}{t_w} \le 2,46\sqrt{\frac{E}{F_y}}$.

2.4. Ingreso de datos en CYPE

El software CYPE cuenta con varios entornos para el análisis de estructuras, para este pórtico utilizaremos CYPE 3D. Al momento de ingresar al programa se presenta una pantalla de datos generales (Figura 2.3). En esta pestaña se deben ingresar las normativas mediante las cuales se desea que el programa realice el análisis. El tipo de materiales y las características de los mismos, ya sean de acero como de hormigón.

Perfiles		67	Hormigón armado		
Acero laminado	A36	∃ ~	Hornigón para pilares	l'c=250	×
Acero conformado	A36		Hormigón para vigas de fosado	Fc=250	×
Madera	Pino		Hornigón para elementos de cimentación	Fc=250	×
Aluminio	EN AW-5083	3-F	Acero de barras	Grade 60	
Homigán	fc=250	~	Características del árido	15 mm, 30 mm	
			Recubrimientos	Mermas de acer	10
Acciones			Terreno de cimentación		
Con sismo dinámico			Verficar deslizamiento de zapatas		
			Adherencia (a/)	0.000 MP	5/1
Resisten	cia al fuego		Angulo de razamiento lammo capate (d	25.00 già	idos
Estados limite	(combinaciones)		Stuaciones persistentes	0.200 MPa	+
Hpótesis	adicionales		Situaciones sismicas y accidentales	0.300 MPa	
Ome	ntación				
Proceso o	constructivo				
Opciones					
Pilares	Cimentación	n			

Figura 2.3: Datos generales CYPE 3D

Se deben agregar las cargas que en el programa se mencionan como hipótesis dentro de la pestaña de hipótesis adicionales (Figura 2.4), ya que en base a estas se generarán las combinaciones de carga.

Categorias de uso 1. General			3											
Acciones														
٨	utomática	s Adic	ionales											
Рево ргоріо	1		-		Can	gas muertas	- C	1	×	_				
Cargas muertas	1.00	1				gasmocras		-		Sob	recarga de uso	0	כ	×
Sobrecarga de uso		1	0		🔿 Nu	eva hipótesis adicional			0	A Nu	eva hipótesis adicional			ų,
Temperatura		0	0		Actúa	Hipótesis adicionales	Editar	Borrar		Actúa	Hoótesis adicionales	Editar	Вола	
Retracción		0	0	52	*	CM 1	2	Z		*	Q 1	0	1	
Viento		0	9		-			_		-				
Siano	12	0	9		-							_	_	
Neve	30	0	0											
Empujes del terreno		0	0	- 11				Þ						
Accidental		0	a							1				

Figura 2.4: Hipótesis adicionales

Fuente: Autores

Dentro de la pestaña planos se selecciona la opción de rejilla en donde se ingresan las coordenadas de las líneas de replanteo para comenzar a modelar la estructura (Figura 2.5).

Rejilla								×
					G	eneración de	lineas de	nepta
Lineas en E 🗋 💋	la dirección X			Lineas en	la dirección Y			
Biqueta	Coordenada	Posición de la etiquita		Esqueta	Coordenada	Postción di	e la etique	ta.
1	0.000	Orgen	*		0.000	Örigen		
2	6.000	Origen	÷	8	6.000	Drigen		
	Δ							

Fuente: Autores

Dentro de la pestaña planos se selecciona la opción Niveles y se ingresan las cotas de altura de cada planta (Figura 2.6).

Niveles			×
🗈 🗾 🕂			
Nivel	Cota	absoluta (m)
1			3.000
Nuevo nivel			0.000
			_
Aceptar		G	ancelar

Fuente: Autores

En la pestaña de Barra se selecciona la opción Nueva y se procede a crear las secciones transversales de los elementos (Figura 2.7).

Figura 2.7: Nueva barra

Se pueden seleccionar perfiles predeterminados o se puede crear nuevos perfiles selecionando nuevo en serie de perfiles (Figura 2.8).

Figura 2.8: Describir nuevo perfil

Fuente: Autores

Para generar un nuevo perfil se abre una pestaña (Figura 2.9) donde se ingresarán las dimensiones y se debe verificar las propiedades.

Reference Carlo tital Carlo del alla Fiscano del alta	H152X37.2 162.0 mm 154.0 mm	Area Inercia a flexión by	46.97 (2204.94 c
Carto total Carto del alla	152.0 mm	Inercia a flexión by	2204.54
Carto del ala	154.0 mm	The second secon	
Facesor del alma		Intercha a research da	706.72 c
Laborator and an an	£.1 mm	Módulo plástico Zyy	307.69
Espesor del ala	11.6 mm	Hodulo plastico Zza	139.83
🗇 Indinación de las alas		🔲 ivercia a tursión	10.69
🗌 Rado de acuerdo entre ala y alma		Módulo de alabes	29930.48 s
Pado de acuerdo del ala			
		A	
	Bedinación de las alas Radio de acuerdo entre ala y alna De acuerdo del ala	Indinación de las ales Redo de acuerdo entre ala y alna Redo de acuerdo del ale	Inclinactin de las alas Indinactin de las alas Indio de acuerdo entre alo y alma Indio de acuerdo del ala

Figura 2.9: Creación nuevo perfil

Se procede a modelar la estructura con los perfiles que se crearon (Figura 2.10).

Figura 2.10: Estructura modelada

Fuente: Autores

En caso de ser necesario se puede rotar las barras para colocarlas en el sentido deseado (Figura 2.11). Esto se puede hacer en la opción describir disposición en la pestaña barra.

Figura 2.11: Describir disposición

En la pestaña de nudos se selecciona la opción de vinculación exterior y se marcan los nudos a los que se desea asignar vinculaciones (Figura 2.12).

Figura 2.12: Vinculaciones exteriores

Fuente: Autores

En la pestaña carga se selecciona la opción de introducir cargas sobre barras y se elige la barra a la que se le desea aplicar la carga. Se escoge la hipótesis, el tipo de carga, su dirección y se le asigna un valor (Figura 2.13).
Arteaga Córdova C., Moreno Torres C. 22

🛐 Introducir cargas sobre barras	×
Hpitees CM 1	۷
Tipo de carga	-#1
Es sobre los que se define la dirección de la carga O Eses debates	
O Ees locales de la barra	
Dirección y sentido de aplicación de la cargo	*
Aceptar	ancelar

Figura 2.13: Introducir carga sobre barras

Fuente: Autores

En la pestaña Barra se selecciona Pandeo y a continuación se marcan las barras. En este punto se puede modificar el coeficiente de pandeo (k) que en el programa lo llaman β (Figura 2.14).

Figura 2.14: Coeficientes Pandeo

Fuente: Autores

En la pestaña de barra, se selecciona la opción de pandeo lateral y se selecciona de igual forma una barra. En este punto se deben verificar los coeficientes de pandeo lateral y el factor de modificación para el momento crítico C_b (Figura 2.15).

Figura 2.15: Coeficientes Pandeo lateral

Fuente: Autores

En la pestaña Cálculo se selecciona la opción de cálculo y se procede a comprobar las barras sin dimensionar los perfiles (Figura 2.16).

O No dimensionar partiles	
Dimensionamiento cinido de nediles	
O Dimensionamiento óptimo de perfiles	
Common ar las harras	
Comprobar las barras	
Comprobar las barras	

Figura 2.16: Cálculo

Fuente: Autores

Una vez calculada la estructura, en la pestaña de cálculo se puede seleccionar la opción de esfuerzos y se presentarán los diferentes diagramas de axial, cortante, momento, la deformada o las flechas según se seleccione de acuerdo a las cargas o combinaciones asignadas (Figura 2.17).

Figura 2.17: Diagrama de esfuerzos

Fuente: Autores

En la pestaña cálculo dentro de la opción comprobar elementos se puede obtener el porcentaje de aprovechamiento de resistencia de las barras (Figura 2.18).

ų.	L: Barra N2N3 - 6 m	- F
	Nivel 11 Capa : por defecto	4
	W254X32.9 (A36)	4.5
	 ✓ Aprov. de resistencia : 71.83 % Ø Aprov. de flecha : No se han definido límites 	
	Pulse para obtener una tabla con el coeficiente de aprovechamiento para cada uno de los pertiles de la serie.	
7 1002114		E TOXETH
		B

Figura 2.18: Porcentaje de aprovechamiento de resistencia Fuente: Autores

2.5. Ingreso de datos en ETABS

Para comenzar con un nuevo proyecto en ETABS nos aparecerá la siguiente pantalla (Figura 2.19) donde, se definen las unidades en las que se va a trabajar el modelo, aunque estas si podrán ser modificadas posteriormente en caso de ser necesario. Se seleccionan las normas bajo las cuales se desea que el programa realice los análisis necesarios.

O Use Settings from a Model File	0
Use Settings from a Model File	
-	0
Use Built-in Settings With:	
Display Units Metric	s v 0
Steel Section Database AISC1	4 ~
Steel Design Code AISC 3	100-16 v 🕚
County Daries Code ACI 31	18-14 🗸 🕔

Figura 2.19: Configuraciones iniciales

Fuente: Autores

Para modelar una estructura es necesario crear una grilla, donde se definen las líneas de replanteo para trabajar. El pórtico a modelarse es regular por lo que se ingresan los espaciamientos por defecto como se ve en la Figura 2.20. En caso de tener una estructura con espaciamientos irregulares se debería seleccionar la opción de *Custom Grid Spacing* y editar la grilla según corresponda.

Senter of Set Lees in X Decision Senter of Set Lees in 7 Decision	T Types Day 1	ang i i i i i i i i i i i i i i i i i i i
Specific of Grids in X-Direction Specify of Grids in Y-Direction	k k k k k k k k k k k k k k k k k k k	egit 2 in
Specify Ond Laboling Optione	Ged Labers	
Casher Crit Rywing	C Darken Dary	win
Rendy Datafor Still Lines	The Cost Data Specify Custor	a Many Data

Fuente: Autores

Al terminar con estos pasos se presentarán dos pantallas (Figura 2.21) con visualizaciones de la grilla en elevación y en 3D, estas podrán ser modificadas según se necesite para ver la estructura en planta o en otros ejes.

Figura 2.21: Visualizaciones

Fuente: Autores

Se deben definir los materiales a utilizarse. Esto se puede hacerlo haciendo click en la pestaña *Define* y a continuación en *Material Properties*. Aquí se puede escoger uno de los materiales que tiene el programa por defecto o se puede editarlos, así como crear nuevos con las características necesarias. Procedemos a crear un nuevo material con las características que se presentan a continuación en la figura 2.22.

Material Property Data	x	
General Data Material Name A36 Material Type Seeel Derectional Symmetry Type Hoenepie Material Deplay Color Change Material Notes Modfly/Show Notes		
Naterial Weight and Mass	🛐 Matenal Property Design Data	×
	Material Name and Type A35 Material Name A35 Material Name A35 Material Name Steel, leatropic Grade Entropic Design Properties for Steel Materials Minimum Yield Strees, Fy Minimum Tensie Strength, Fu 396955 96 Expected Yield Strees, Fy 372316 83 Effective Tensile Strength, Fue 436985 55	
Time Dependent Properties . OK Cancel	OK Cancel	

Figura 2.22: Creación de nuevo material

Fuente: Autores

Se pueden utilizar los perfiles predeterminados del programa o se procede a crear un perfil en la pestaña *Define – Section Properties – Frame Sections - Add New* *Property*. Se presenta la pantalla de la figura 2.23, en la que se selecciona el tipo de sección a modelar y se ingresan las dimensiones.

re Type			Property Name	
Section 0	Tape Sand SVade Fringe	*	Section Name	Cal 203x45.2
quertly Used Shape Types Concordia	Deal		Base Material	A36
TOT	TT	ГПО	Properties	
			ben	Value
Terrod	Rivel Committee		Anna, mm2	5769.2
International International			AS2, nm2	1465.2
b I ≜			AS3.mm2	3906.5
same angen	-		133, mm4	44761532.8
			122, mm4	15342246
	OK Gevel		\$33Pos.mm3	441000.3
			s33Neg, mm3	441000.3
General Cata			\$22Pos, mm3	151155.1
Property Name	Postan .		S22Neg, mm3	151155.1
Patrial A3	a v <u></u>	2	R33, mm	88.1
Notes .	Charge	1	822, mm	51.6
	most and most		Z33.mm3	487705.8
her	07/2/07/01/2/00/00/10		222.mm3	228995.3
Section Shape	eel VWde Flange 🛛 🗠		J.mn4	204016.5
lection Property Bource			Cw, mm5	1.413E+11
Source: User Defined			CG Offset 3 Dir, mm	0
Section Deversions		Property Huddens	CG Offset 2 Dr. mm	0
Tutal Depth	203 mn	Modfy/Shoe Modflets.	PNA Offset 3 Dr. mm	0
Top Flange Width	203 mm	Change Comme	PNA Offset 2 Dir. mm	0
Tap Range Thickness	11			10.0
Web Thickness	[7.2]m			
Bettom Range Width	203			
Battom Flange Thickness	11 300		-	
Filet Redux	•	DK.		

Figura 2.23: Creación de nuevo perfil

Fuente: Autores

Para definir los tipos de carga se selecciona la pestaña *Define - Load patterns* (Figura 2.24).

oada				Click To:
Load	Туре	Self Weight Multiplier	Auto Lateral Load	Add New Load
Dead	Dead	~ 0	~	Modify Load
Dead Uve	Uve	0		Modify Lateral Load
				Delete Load

Figura 2.24: Definir tipos de carga

Fuente: Autores

En la pestaña *Draw* se encuentran las diferentes opciones para modelar las estructuras. En este caso seleccionamos la opción para dibujar vigas y columnas, aparece una pestaña (Figura 2.25), donde se selecciona el material (*property*) con el que se desea modelar.

Figura 2.25: Modelación de la estructura

Fuente: Autores

Para asignar vinculaciones exteriores o condiciones de apoyo se selecciona la pestaña assign - joint - restraints, se seleccionan los nudos que se desean aplicar alguna restricción (Figura 2.26).

estraints in Global Dire	ctions
Translation X	Rotation about X
Translation Y	Rotation about Y
Translation Z	Rotation about Z
st Restraints	
OK	Close Apply

Figura 2.26: Condiciones de apoyo

Fuente: Autores

Para este pórtico asignamos las cargas distribuidas en la viga. Por lo tanto, se procede a utilizar la pestaña *assign – frame loads* y se selecciona el tipo de carga que se desea colocar, en este caso aplicamos la carga distribuida. Se abre una pantalla (Figura 2.27) donde se selecciona el tipo de carga y el valor.

Load Pa	attern Name		Dead		`	1
.oad Type a	nd Direction			Options		
Forcer	0	Moments		O A	dd to Existing Lo	ads
Direction	f Load Application	Gravity	~	• B	eplace Existing elete Existing Lo	Loads
Frapezoidal	Loads 1.	2		3.	4	
Distance	0	0.25	0.75		1	
Load	0	0	0		0	kN/m
	Relative I	istance from End	н О	Absolute [Distance from Er	d-l
Load	0 Relative D	istance from End	H O	Absolute [Oistance from Er	d-l

Figura 2.27: Asignación de cargas

Fuente: Autores

Para generar las combinaciones de carga se procede a seleccionar la pestaña *define – load combinations*. En este caso se pueden crear las combinaciones manualmente o se pueden generar automaticamente por el programa según el material a utilizarse y editarlas posteriormente según se requiera (Figura 2.28).

Load Combinations	>	K 💽 Add Default Design Combinations X
Combinations	Click to:	Select Design Type for Load Combinations
1.2D+1.6L 1.4D	Add New Combo	Steel Frame Design
	Add Copy of Combo	Composite Beam Design
	Modify/Show Combo	Concrete Frame Design
	Delete Combo	Concrete Shear Wall Design
		Concrete Slab Design
	Add Default Design Combos	
	Convert Combos to Nonlinear Cases	Convert to User Combinations (Editable)
	OK Cancel	OK Cancel

Figura 2.28: Combinaciones de carga

Fuente: Autores

Una vez modelada la estructura se procede a analizarla dando click en el ícono de *run analysis* (Figura 2.29).

Figura 2.29: Análisis Fuente: Autores Una vez ejecutado el programa se observará la estructura deformada y se puede graficar los distintos diagramas de momento, cortante y axial en la pestaña *display* (Figura 2.30).

Disp	ley	Design	Options	Teals	Help	
П	Un	deformed	Shape			F4
10	Lo	ed Assigns				•
71	De	formed Sh	epe			F6
野	Fo	rce/Stress I	Diagrams			•
Pa	Die	pley Perío	mance Cha	rek		
Pa.	Dis	play Perlo	mence Ch	eck Usage	e Ratio Diagram	10 #*
ş.,	En	rrgy/Virtu	l Work Diag	jam		
死	Cu	mulative E	nergy Com	parienti.		
AIL.	Ste	ny Respon	se Plots			
£Ľ.	Co	mbined St	ory Respon	ve Plats		
12	Re	worise Spe	sctrum Cun	e		
11	Ple	t Function	n		5	923
H	₀ ,	ick Hyster	esia			
(G	Sta	tic Pushov	er Curve			
Ē	16	ige Results	e.			
벖	58	e Named	Display			
nd	Sh	ow Named	Display			
	Sh	ow Tables.	8		Ctri	+T

Figura 2.30: Pestaña display

Fuente: Autores

Para la comprobación del diseño se deben verificar las características de diseño en la pestaña *design – Steel frame design – view/revise preferences* (Figura 2.31). Aquí se presentan los diferentes factores por defecto, para este diseño editaremos el tipo de marco y los factores de resistencia.

				tem Description
	tex	Value	٨	The selected design code.
01	Design Cade	AISC 360-16		selected code.
02	Multi-Response Case Design	Step-by-Step - Al		
03	Framing Type	OME		
04	Selenic Design Category	A		
05	Importance Factor	1		
06	Design System Rho	1		
07	Design System Sds	0.5		
08	Design System R	8		
09	Design System Omega0	3		
10	Design System Cd	5.5		
11	Design Provision	LRFD		
12	Analysis Method	Effective Length		
13	Second Order Method	General 2nd Order		
14	Stifness Reduction Method	Tau-b Reed		
15	Add Notional load cases into seismic combos?	No		
16	Beta Factor	1.3		
17	BetaOmega Factor	1.6		Explanation of Color Coding for Values
18	Phi(Bending)	0.9	~	Blue: Default Value
To D Al	claul Values Reset To Rema Selected Rema All	Previous Values Roma Selected Rom	9	Black: Not a Default Value Rett: Value that has changed during the certain descine

Figura 2.31: Características de diseño Fuente: Autores

Una vez que se hayan verificado las preferencias, se debe correr la verificación del diseño en la pestaña *design – steel frame design – start design/check*. Se presentará el pórtico con diferentes colores según los rangos de capacidades a las que están trabajando los elementos (Figura 2.32).

Figura 2.32: Pórtico con rangos de capacidad

Fuente: Autores

Para ver el informe de diseño y cambiar más características de los elementos se procede a dar clic derecho sobre el elemento y se abrirá una pantalla con información (Figura 2.33).

Soy Dean	Story1 B1			Analysis Design	Sec	tion Ion	Vg Vg	a 254x32 5 a 254x32 9			
00120	SIBTION		HENT.	INCLU	ier:	ION CREA	x-	<i>p</i> -	HA-180-	829-588-7	
ID.	LOC	RATIO		ASL	+	D-HLJ	+	B-0010	\$A730	RATIO	
1.2D+1.8L	0,00000	0.756(0)		0,000	+	0.756		0.000	0.801	0.000	
1.20+1.61	0,50000	0.40510)		0,000		0.409		0.000	0.251	0,000	1.1
1.2041.61	1.00000	0.178401		0.003	+	0.178		0.001	0.201	0.000	
1.2D+1.61	1.50000	0.461(C)		0.003	4	0.481	4	0.005	0.151	0.000	
1.2041.61	2.00000	0.695(C)	-	0.000	+	0.695	+	0.000	0.100	0.000	
1.20+1.61	2.50000	0.825(C)		0.000	+	0.825	+	0.000	0.050	0.000	
1.20+1.61	3.00005	0.07210	-	0.000	+	0.072	+	0.005	0.000	0.000	
1.3D+1.6L	3.50000	0.020(C)	-	0.000		0.025	+	0.000	0.050	0.000	
3.30+1.61	4.00000	0.698 (C)		0.003	+	0.698	+	0.000	0.105	0.000	
1.2D+1.4L	4.50000	0.401(C)		0.009	+	0.401	+	0.005	0.153	0.000	
1.20+1.61	6.00000	0.1784C)		0.003	+	0.178	+	0.000	0.202	0.000	
1.20+1.61	5,50000	0.409101		0.003	+	0.405	+	0.001	0.253	0.000	
1.2D+1.6L	6,00000	0.756101		0.003		0.756	٠	0.005	0.801	0.000	
D8t181	0.00000	0.825101		0.007		0.525		9.005	0.205	0.000	
D8:131	0.80000	0.284(C)		0.003		0.284	+	0.000	0.174	0.000	4

Figura 2.33: Información de chequeo análisis acero

Fuente: Autores

Al seleccionar *overwrites* se presenta una nueva pantalla (Figura 2.34) en donde se pueden editar diferentes características y coeficientes del elemento seleccionado. Es importante verificar los coeficientes respectivos para cada tipo de elemento como el factor de longitud efectiva y el coeficiente de flexión C_b .

_	here	Volum	<u>^</u>	The design section for the selected
01	Current Design Section	Col 203-46.2		frame objects. When this overwrite is applied, any previous sub-select
02	Framing Type	OME		section assigned to the frame object is
03	Omegail	3		means it is taken from the analysis
04	Connection Type	WUE-W		section.
05	Rel Hinge Distance Left, Sh/L	0		
06	Rel Hinge Distance Right, Sh/L	0		
07	Rel Yo Parameter, Yo/h	1		
80	BR8 Beta Factor	13	111	
09	BRS Bets 'Onega Factor	16	111	
10	Perform RBS Capacity Design	Yes	1	
11	Consider Deflection?	No		
12	Deflection Check Type	Ratio		
13	DL Deflection Linit, L /	120		
14	Super DL+LL Deflection Limit, L /	120	11	
15	Uve Load Deflection Linit, L.7	360		
16	Total Load Deflection Limit, L/	240		
17	Total-Camber Deflection Limit, L/	240		Explanation of Color Coding for Values
18	DL Deflection Limit, abs, m	0.025	~	Blue: All selected items are progra
To De	rieut Values Res	et To Previous Values	_	Black: Some selected items are use defined
Al	tems Selected tems	All tons Selected tens		Red: Value that has changed durin

Figura 2.34: Overwrites

Fuente: Autores

CAPÍTULO 3

3. PÓRTICO A GRAVEDAD – ANÁLISIS Y DISCUSIÓN

3.1. Diseño de viga

3.1.1. Cálculos manuales

Para realizar el análisis por elementos se considera que la viga está empotrada en sus dos extremos.

Se analizan las dos combinaciones de carga y se realizan los cálculos en base a la combinación más desfavorable.

Donde:

qD = Carga muerta sin factorizar

qL = Carga viva sin factorizar

3.1.1.1. Cálculo de momento y cortante máximo

3.1.1.2. Dimensiones del perfil seleccionado

El perfil seleccionado es un perfil W 254X32.9.

Figura 3.1: Dimensiones del perfil

Fuente: Tomado de Gerdau Corsa, s.f.

$$d := 258 \ mm$$
 $bf := 146 \ mm$
 $tw := 6.1 \ mm$ $tf := 9.1 \ mm$

Propiedades de la sección

 $A \coloneqq 4120 \ mm^2$

$$Ix = 48182172.3 \ mm^4$$
 $Iy = 4724608.8 \ mm^4$

 $Cw \coloneqq 73103557377 \ mm^6$ $J \coloneqq 92179.4 \ mm^4$

 $Sx = 373505.2 \ mm^3$ $Sy = 64720.7 \ mm^3$

 $rx \coloneqq 108.1 \ mm$ $ry \coloneqq 33.9 \ mm$

 $Zx := 418382.2 \ mm^3$ $Zy := 99218.5 \ mm^3$

El perfil será de acero estructural A36, por lo que cuenta con las siguientes características:

$$Fy \coloneqq 250 \ MPa$$
 $E \coloneqq 200000 \ MPa$

3.1.1.3. Secciones compactas

Se chequea que los elementos componentes del perfil sean compactos.

Elementos comprimidos con miembros sujetos a flexión.

Flexión en alas de perfiles I laminados, canales y tes.

$$\lambda ala \coloneqq \frac{bf}{2 \cdot tf} = 8.022 \qquad \qquad \lambda p \coloneqq 0.38 \cdot \sqrt{\frac{E}{Fy}} = 10.748$$

 $\lambda ala < \lambda p$

2 -

Almas de doble T simétricas y canales.

$$\lambda alma \coloneqq \frac{T}{tw} = 39.311 \qquad \qquad \lambda p \coloneqq 3.76 \cdot \sqrt{\frac{E}{Fy}} = 106.349$$

$$T \coloneqq d - 2 \cdot tf = 239.8 \ mm$$

Para el perfil seleccionado, las relaciones ancho-espesor de sus elementos a compresión (tanto las alas como el alma) no exceden las relaciones máximas ancho-espesor, λ_p , por lo tanto, toda la sección es compacta.

3.1.1.4. Diseño de miembros en tensión

$$\phi Pnt \coloneqq 0.9 \cdot Fy \cdot A = 927 \ kN$$

3.1.1.5. Diseño de miembros en compresión

No se consideran arriostramientos laterales que pueden deberse a viguetas, ya que se está realizando un análisis únicamente en dos dimensiones. En este caso se analiza la viga empotrada en ambos extremos y se toma el valor de la longitud no arriostrada lateralmente de 6 m.

$$\phi Pnc := 0.9 \ Fcr \cdot A = 204.911 \ kN$$

$$Fcr \coloneqq 0.877 \cdot Fe = 55.262 \ MPa$$

$$Fe \coloneqq \frac{\pi^2 \cdot E}{\left(\frac{Lcy}{ry}\right)^2} = 63.012 \ MPa$$

3.1.1.6. Diseño de miembros en flexión

Cálculo factor de modificación por pandeo lateral-torsional (Cb)

$$Cb \coloneqq \frac{12.5 \cdot Mu}{2.5 \cdot Mu + 3 \cdot MA + 4 \cdot MB + 3 \cdot MC} = 2.381$$

$$MA := \frac{w \cdot (L)^2}{96} = 8.895 \ kN \cdot m \quad MB := \frac{w \cdot L^2}{24} = 35.581 \ kN \cdot m$$

$$MC \coloneqq \frac{w \cdot L^2}{96} = 8.895 \ kN \cdot m \qquad Mu = 71.162 \ kN \cdot m$$

 $C_{b} < 3$

Ya que el factor de modificación por pandeo lateral-torsional cumple con un valor menor a 3, se utilizará el valor de 2,38 para los cálculos necesarios a continuación.

 $Mp \coloneqq Fy \cdot Zx = 104.596 \ kN \cdot m$

$$Lp \coloneqq 1.76 \cdot ry \cdot \sqrt{\frac{E}{Fy}} = 1687.553 \ mm$$

$$Lr \coloneqq 1.95 \cdot rtsy \cdot \frac{E}{0.7 \cdot Fy} \cdot \sqrt{\frac{J}{Sx \cdot h0}} + \sqrt{\left(\frac{J}{Sx \cdot h0}\right)^2 + 6.76 \cdot \left(\frac{0.7 \cdot Fy}{E}\right)^2} = 5209.804 \ mm$$

$$Lb \coloneqq L = 6000 \ mm$$

$$Mn \coloneqq \frac{Cb \cdot \pi^2 \cdot E}{\left(\frac{Lb}{rtsy}\right)^2} \cdot \sqrt{1 + 0.078 \cdot \frac{J \cdot c}{Sx \cdot h0} \cdot \left(\frac{Lb}{rtsy}\right)^2} \cdot Sx = 127.683 \ kN \cdot m$$

El valor de la resistencia nominal a flexión M_n no puede ser mayor al de M_P , por lo que se asume M_n =104,596 kN m.

 $Mn = 104.596 \ kN \cdot m$

 $0.9 \cdot Mn = 94.136 \ kN \cdot m$

 $Mu = 71.1619 \ kN \cdot m$

 $\frac{Mu}{0.9 \cdot Mn} = 0.756$

La viga está trabajando al 75,6% por lo que cumple con la capacidad requerida.

3.1.1.7. Diseño de miembros en corte

$$\frac{T}{tw} \leq 2.24 \cdot \sqrt{\frac{E}{Fy}}$$

$39.31 \le 63.36$

Por lo tanto:

 $\Phi v \coloneqq 1$

$$Vn := 0.6 \cdot Fy \cdot Aw \cdot Cv1 = 236.07 \ kN$$

 $Aw \coloneqq d \cdot tw = 1573.8 \ mm^2$

 $\Phi v \cdot Vn = 236.07 \ kN$

Vu=71.162 kN

$$\frac{Vu}{\Phi v \cdot Vn} = 0.301 \qquad \qquad \Phi v \cdot Vn > Vu$$

La sección resiste a la fuerza cortante.

Atiesadores transversales

$$\frac{T}{tw} \leq 2.46 \cdot \sqrt{\frac{E}{Fy}}$$

$$39.31 \le 69.58$$

No se requieren atiesadores transversales

3.1.2. Resultados CYPE

CYPE 3D genera el siguiente informe de resultados basado en la combinación de cargas más desfavorable para cada una de las solicitaciones. El análisis se realiza basado en la norma ANSI/AISC 360-16 (LRFD). Estos resultados se pueden obtener seleccionando la opción listados.

El informe generado es completo e indica los pasos, las fórmulas y la normativa que se sigue para obtener los distintos resultados.

3.1.2.1. Momento y cortante máximo

Figura 3.2: Gráfica de momento y cortante máximo CYPE 3D

Fuente: Autores

3.1.2.2. Características del perfil seleccionado

El perfil seleccionado es un perfil W 254X32.9.

Tabla 3.1: Características del perfil CYPE 3D

Bar	ra N2/N3									
Pe Ma	rfil: W254X32.9 aterial: Acero (A36)									
		Nud	los	I an all and		Característica	as mecár	nicas		
	Y I	Inicial	Final	(m)	Área (cm²)	Ix ⁽¹⁾ (cm4)	I, ⁽¹⁾ (cm4	It ⁽²⁾ (cm4)		
		N2	N3	6.000	41.20	4818.22	472.4	6 9.22		
붠		Notas: ⁽²⁾ Inercia ⁽²⁾ Mome	otas: ⁽²⁾ Inercia respecto al eje indicado ⁽²⁾ Momento de inercia a torsión uniforme							
δ				Pandeo		1	Pandeo lateral			
뮝	X		Plan	o ZX	Plano ZY	Ala su	ıp.	Ala inf.		
Na N		β	1.	00	1.00	1.00)	1.00		
g		Lĸ	6.0	000	6.000	6.00	0	6.000		
Ъ,		C,		-			2.38	1		
versión e		Notación: β: Coefic L _s : Long C _b : Facto	ciente de pan itud de pando or de modific	deo eo (m) ación para el mo	mento crítico	·				

Fuente: Autores

3.1.2.3. Diseño de miembros en tensión

3.1.2.4. Diseño de miembros en compresión

Emitación de esbeltez para compresión (Capítulo E)

3.1.2.5. Diseño de miembros en flexión

Resistencia a flexión eje X (Capítulo F) Todas las secciones deben cumplir con las especificaciones LRFD desarrolladas en Capítulo F de ANSI/AISC 360-16 (LRFD). Se debe satisfacer el siguiente criterio: $\eta_{M} = \frac{M_{r}}{M_{r}} \leq 1$ η_м : 0.756 El momento flector solicitante de cálculo pésimo, M, se produce en el nudo N2, para la combinación de acciones 1.2·PP+1.2·CM1+1.6·Q1. Donde: M,: Resistencia a flexión requerida para las combinaciones de carga LRFD kN•m M. : 71.16 M.: Resistencia de diseño a flexión M. : kN•m 94 14 $M_c = \phi_A M_a$ La resistencia de diseño a flexión para secciones sometidas a momento flector es el menor valor de los obtenidos según los estados límite descritos en el Capítulo F: Donde: φ_b: Factor de resistencia a flexión **Φ**_b : 0.90 M.: La resistencia nominal a flexión calculada según Artículo 2, Sección 2, División c M. : 104.60 kN•m 1. Fluencia M_=M_=F_Z_ M.: <u>104.60</u> kN·m Donde: Fy: Límite elástico mínimo especificado MPa F_y : _____250.00 Z_s: Módulo resistente plástico respecto al eje X Z_{*} : <u>418.38</u> cm³ Pandeo lateral-torsional c) Si L_t < L_b: 믱 $M_n = F_{rr}S_r \le M_n$ M. : 104.60 kN·m educativa Donde: L_b: Distancia entre puntos de arriostramiento al desplazamiento lateral del ala comprimida o de la torsión de la sección transversal L : 6000 mm una versión $L_r = 1.95r_{ts} \frac{E}{0.7F_v} \sqrt{\frac{Jc}{S_x h_o}} \sqrt{1 + \sqrt{1 + 6.76} \left(\frac{0.7F_v}{E} \frac{S_x h_o}{Jc}\right)}$ Lr: 5209.69 mm $F_{cr} = \frac{C_b \sigma^2 E}{\left(\frac{L_b}{L_b}\right)^2} \sqrt{1 + 0.078 \frac{Jc}{S_x h_o}}$ cido por F_{er} : 341.84 MPa Donde: E: Módulo de elasticidad del acero E : 200000.00 MPa F.: Límite elástico mínimo especificado Fy : 250.00 MPa J: Momento de inercia a torsión uniforme cm4 1 : 9.22 h. : h.: Distancia entre los baricentros de las alas 248.90 mm C₆: Factor de modificación del pandeo lateral-torsional tomado, de forma conservadora, como: C_b : 2.38 ${r_{ts}}^2 = \frac{\sqrt{I_y C_w}}{}$ r_s: 39.67 S. mm Donde: I,: Momento de inercia respecto al eje Y I_v : <u>472.46</u> cm4 C. : 73103.56 cm6 C_w: Constante de alabeo de la sección Para c: i) para una sección doblemente simétrica en doble T: c=1c: 1.00

$S_x = \frac{I_x}{y}$	S _x :	373.51	cm ³
Donde:			
I _x : Momento de inercia respecto al eje X	I _x :	4818.22	cm4
y: Distancia a la fibra extrema en flexión	у:	129.00	mm
M _p =F _y Z _x	М _Р :	104.60	kN•m
Donde:			
Z _s : Módulo resistente plástico respecto al eje X	Z _x :	418.38	cm ³

3.1.2.6. Diseño de miembros en corte

Resistencia a corte Y (Capítulo G)	
adas las secciones deben cumplir con las especificaciones LRFD desarrolladas en Capítulo G de ANSI/AISC 360-16 (LRFD).	
Se debe satisfacer el siguiente criterio:	
$\eta_v = \frac{V_r}{V_c} \le 1$	ην : <u>0.301</u> 🗸
El esfuerzo cortante solicitante de cálculo pésimo V, se produce en el nudo N2, para la combinación de hipótesis 1.2·PP+1.2·CM1+1.6·Q1. Donde:	
 V_r: Resistencia a cortante requerida para las combinaciones de carga LRFD V_c: Resistencia de diseño a cortante 	V _r : <u>71.16</u> kN
$V_c = \Phi_v V_n$	V ₆ : 236.07 kN
La resistencia de diseño a cortante viene dada por:	
Donde:	
En la Sección G2.1 a:	
φ.: Factor de resistencia a cortante	φ _v : 1.00
V _n : se define según lo detallado en el Capítulo G, de la siguiente forma:	
para almas de secciones con simetría simple o doble y en U sometidas a cortante en el plano del alma (ANSI/AISC 360-16 (LRFD), Capítulo G - G2.1).	
$V_n = 0.6F_yA_wC_v$	V. : 236.07 kN
Donde:	
F _y : Límite elástico mínimo especificado	F _y : <u>250.00</u> MPa
$A_w = dt_w$	A _w : <u>15.74</u> cm ²
Donde:	
d: Canto total	d:mm
t _e : Espesor del alma	t _w : <u>6.10</u> mm
1. Resistencia nominal a cortante	
 a) para almas de perfiles laminados de sección en doble T cuando se cumple: 	
$\frac{h}{t_w} \le 2.24 \sqrt{\frac{E}{F_v}}$	
C _v : Coeficiente de cortante del alma Donde:	C _v : <u>1.00</u>
h: Distancia libre entre alas, menos el radio de acuerdo	h: <u>239.80</u> mm
E: Módulo de elasticidad del acero	E : <u>200000.00</u> MPa

2. Comprobación de rigidizadores transversales

	(a) si $\frac{h}{t_w} \le 2.46 \sqrt{\frac{E}{F_v}}$			
Å,	No son necesarios rigidizadores transversales.			
0	Donde:			
p	h: Distancia libre entre alas, menos el radio de acuerdo	h :	239.80	mm
tiv	t _# : Espesor del alma	t., :	6.10	mm
5	E: Módulo de elasticidad del acero	Е:	200000.00	MPa
ed	Fy: Límite elástico mínimo especificado	F _y :	250.00	MPa
C				

3.1.3. Resultados ETABS

ETABS genera el siguiente informe de resultados, basado en la combinación de cargas más desfavorable para cada una de las solicitaciones.

El análisis se realiza basado en la norma seleccionada previamente, en este caso AISC 360-16. El informe generado presenta los resultados de los esfuerzos generados e indica si no se cumple con las capacidades requeridas.

3.1.3.1. Cálculo de momento y cortante máximo

Figura 3.3: Diagrama de momento y cortante máximo ETABS

Fuente: Autores

3.1.3.2. Características del perfil seleccionado

El perfil seleccionado es un perfil W 254X32.9.

Section Properties									
A (m²)	J (m⁴)	I ₃₃ (m⁴)	l₂₂ (m⁴)	A _{v3} (m²)	A _{v2} (m²)				
0.0041	9.218E-08	0.000048	0.000005	0.0027	0.0016				

				Design Pro	perties	5				
S ₃₃ (m³)	S ₂₂ (m ³)	Z ₃₃ (m ³	²) Z ₂₂	(m³)	r ₃₃ (m)	r ₂₂ ((m)	C _w (m⁵)	
0.000	374	0.000065	0.00041	8 0.00	0099	0.10814	0.03	386	0	
			Γ	Material Pro	opertie	s				
		E	(kN/m²)	f _y (kN/m²)	F	ly	α			
		20	0000000	250000	1.4	189	NA			
			LLRF ar	d Demand	/Capac	itv Ratio				
			L (m)	LLRF	Stres	s Ratio Li	mit			
			6.00000	1		1				
	3.1.3.3	. See	cciones co	mpactas						
				Element [Details					
Element	Unique	e Name	Location (n	n) Combe	D	Element 7	Гуре	Se	ction	Classification
B1	4	4	0	DStIS2	Orc	linary Mome	ent Frame	Viga 2	254x32.9	Compact
	3134	Die	seño de mi	iembros	en fei	nsión				
	5.1.5.4	• •				1,51011				
			Axia	I Force and	d Capa	cities				
			Pu Force (kN	l) φ	Pnt Cap	oacity (kN)			
			0		926	6.9955				
	0 1 0 F	D'	~ 1			•				
	3.1.3.5		seno de m	lembros	en co	mpresio)n			
			Axia	I Force and	d Capa	cities				
			P _u Force (kN) φ	Pnc Ca	oacity (kN)			
			0		204	.4726				
				_	~					

Diseño de miembros en flexión 3.1.3.6.

Parameters for L	ateral Torsion	Buckling
------------------	----------------	----------

	Moments and Capacities M _u Moment (kN-m)	φMո (kN-m)
Major Bending	71.1619	94.136

3.1.3.7. Diseño de miembros en corte

3.1.4. Comparación de resultados

Level

Story1

A continuación, en la tabla 3.2 se presentan los resultados de las resistencias del elemento sujeto a tensión, compresión, flexión y corte obtenidos en los dos softwares de cálculo y el cálculo manual.

	VIGA										
	DISEÑO DE MIEMBROS EN TENSIÓN		DISEÑO DE DISEÑO DE MIEMBROS EN MIEMBROS EN TENSIÓN COMPRESIÓN		DISEN MIEMB FLEX	ÑO DE BROS EN KIÓN	DISEÑO DE MIEMBROS EN CORTE				
-	Pu (KN)	ΦPnt (KN)	Pu (KN)	Pu		ФМn (KN-m)	Vu (KN)	ΦVn (KN)			
CÁLCULO MANUAL	0.00	927.00	0.00	204.91	71.16	94.14	71.16	236.07			
CYPE	N.A	N.A	N.A	N.A	71.16	94.14	71.16	236.07			
ETABS	0.00	927.00	0.00	204.47	71.16	94.14	71.16	236.07			
				CAPAC	DADES						
CÁLCULO MANUAL	N	.A	N	.A	75.59%		30.14%				
CYPE	N	A	N	.A	75.:	59%	30.	14%			
ETABS	N	A	N	.A	75.5	59%	30.	14%			
N.A: No aplic	a.										

Tabla 3.2: Comparación resultados viga

Fuente: Autores

Como se puede observar en la tabla 3.2 no se procede a analizar la viga para esfuerzos de tensión ni compresión, ya que esta se encuentra cargada únicamente bajo fuerzas gravitacionales, por lo que no se generan cargas axiales. Se puede calcular los esfuerzos nominales del elemento a tensión y compresión, pero su capacidad va a ser cero ya que la carga última de diseño es nula. A pesar de esto, el software CYPE 3D no procede a realizar los cálculos ya que no existe carga axial.

En las tablas 3.3, 3.4 y 3.5 se presentan las diferencias que existen entre los resultados de las capacidades a tensión, compresión, flexión y corte de la viga (cálculo manual vs CYPE, cálculo manual vs ETABS y CYPE vs ETABS). Se observa que las variaciones en los resultados son mínimas y en la mayoría de los casos son nulas.

COMPARACIÓN CÁLCULO MANUAL - CYPE						
	CAPACIDAD	CAPACIDAD A	CAPACIDAD	CAPACIDAD		
	A TENSION	COMPRESION	A FLEXION	A CORTE		
CÁLCULO	ΝΑ	ΝΔ	75 59%	30.14%		
MANUAL	N.A	IN.A	13.3970	50.1470		
СҮРЕ	N.A	N.A	75.59%	30.14%		
DIFERENCIA	N.A	N.A	0.00%	0.00%		
N.A: No aplica.	N.A: No aplica.					

Tabla 3.3: Comparación cálculo manual - CYPE

Fuente: Autores

COMPARACIÓN CÁLCULO MANUAL - ETABS					
	CAPACIDAD A TENSIÓN	CAPACIDAD A COMPRESIÓN	CAPACIDAD A FLEXIÓN	CAPACIDAD A CORTE	
CÁLCULO MANUAL	N.A	N.A	75.59%	30.14%	
ETABS	N.A	N.A	75.59%	30.14%	
DIFERENCIA	N.A	N.A	0.00%	0.00%	
N.A: No aplica.					

Tabla 3.4: Comparación cálculo manual - ETABS

Fuente: Autores

Tabla 3.5: Comparación ETABS - CYPE

COMPARACIÓN ETABS - CYPE						
	CAPACIDAD	CAPACIDAD				
	A TENSIÓN	COMPRESIÓN	A FLEXIÓN	A CORTE		
ETABS	N.A	N.A	75.59%	30.14%		
СҮРЕ	N.A	N.A	75.59%	30.14%		
DIFERENCIA	N.A	N.A	0.01%	0.00%		
N.A: No aplica.						

Fuente: Autores

Como podemos observar en las tablas 3.3, 3.4 y 3.5 para el diseño de una viga, entre los dos softwares de cálculo y el cálculo manual no existe ninguna variación. Lo que nos ayuda a comprobar la eficacia de los programas utilizados para el análisis del elemento.

3.2. Diseño de columna

3.2.1. Cálculos manuales

Para realizar el análisis por elementos se considera que la columna está empotrada en su base y articulada en la unión con la viga.

Se analizan las dos combinaciones de carga y se realizan los cálculos en base a la combinación más desfavorable.

$$w \coloneqq 1.4 \cdot qD = 16.474 \ \frac{kN}{m}$$
 $w \coloneqq 1.2 \cdot qD + 1.6 \cdot qL = 23.721 \ \frac{kN}{m}$

Donde:

qD = Carga muerta sin factorizar

qL = Carga viva sin factorizar

Para el cálculo de los momentos, cortantes y carga axial última se utilizará la solicitación más desfavorable que en este caso es la de 1,2 D + 1,6 L. Estos valores serán obtenidos mediante el software ETABS.

3.2.1.1. Momento (M), cortante (P) y carga axial (V) máximas

$$M := 46.0629 \ kN \cdot m$$
 $P := 72.3041 \ kN$

 $V \coloneqq 22.7028 \ kN$

3.2.1.2. Dimensiones del perfil seleccionado

El perfil seleccionado es un perfil H 152x37.2.

$$Zx = 307.6871 \ cm^3$$
 $Zy = 139.8295 \ cm^3$
 $rx = \sqrt{\frac{Ix}{A}} = 6.851 \ cm$ $ry = \sqrt{\frac{Iy}{A}} = 3.879 \ cm$

El perfil analizado es de acero estructural A36, por lo que cuenta con las siguientes características:

$$Fy \coloneqq 250 \ MPa$$
 $E \coloneqq 200000 \ MPa$

3.2.1.3. Secciones compactas

Se chequea que los elementos componentes del perfil sean compactos.

Elementos comprimidos con miembros sujetos a flexión.

Flexión en alas de perfiles I laminados, canales y tes.

$$\lambda ala := \frac{bf}{2 \cdot tf} = 6.638 \qquad \qquad \lambda p := 0.38 \cdot \sqrt{\frac{E}{Fy}} = 10.748$$

$$\lambda a la < \lambda p$$

Almas de doble T simétricas y canales.

$$\lambda alma \coloneqq \frac{T}{tw} = 17.136 \qquad \qquad \lambda p \coloneqq 3.76 \cdot \sqrt{\frac{E}{Fy}} = 106.349$$

$$T := d - 2 \cdot tf = 138.8 \ mm$$

Para el perfil seleccionado, las relaciones ancho-espesor de sus elementos a compresión (tanto las alas como el alma) no exceden las relaciones máximas ancho-espesor, λ_p , por lo tanto, toda la sección es compacta.

3.2.1.4. Diseño de miembros en tensión

$$\phi\!=\!0.9$$

$$\phi Pnt \coloneqq \phi \cdot Fy \cdot A = 1056.848 \ kN$$

Pu=72.304 kN

3.2.1.5. Diseño de miembros en compresión

En base a la tabla 2.5 se determina el valor del factor de longitud efectiva, K. En este caso se toma un valor de 0,80 al tratarse de una columna empotrada en su base y articulada en su extremo.

 $k \approx 0.8$

$L \coloneqq 3000 \ mm$

Se determina la longitud efectiva a continuación.

 $Lc \coloneqq k \cdot L = 2400 \ mm$

Resistencia nominal a la compresión

 $Pn \coloneqq Fcr \cdot A = 958.595 \ kN$

$$\phi Pnc := 0.9 \cdot Fcr \cdot A = 862.735 \ kN$$

$$\frac{P}{\phi Pnc} = 0.084$$

La columna está trabajando al 8,4% por lo que cumple con la capacidad requerida.

3.2.1.6. Diseño de miembros en flexión

Cálculo factor de modificación por pandeo lateral-torsional (Cb)

Se asume un valor conservador de $C_b=1$.

$$Mp \coloneqq Fy \cdot Zx = 76.922 \ kN \cdot m$$

$$\phi Mn \coloneqq 0.9 \cdot Fy \cdot Zx = 69.23 \ kN \cdot m$$

$$Lp \coloneqq 1.76 \cdot ry \cdot \sqrt{\frac{E}{Fy}} = 1930.928 \ mm$$

$$Lr \coloneqq 1.95 \cdot rtsy \cdot \frac{E}{0.7 \cdot Fy} \cdot \sqrt{\frac{J}{Sx \cdot h0}} + \sqrt{\left(\frac{J}{Sx \cdot h0}\right)^2 + 6.76 \cdot \left(\frac{0.7 \cdot Fy}{E}\right)^2} = 9678.754 \ mm$$

 $Lb = 3000 \ mm$

$$Mn \coloneqq Cb \cdot \left(Mpy - (Mpy - 0.7 \cdot Fy \cdot Sx) \cdot \left(\frac{Lb - Lpy}{Lry - Lpy} \right) \right) = 72.881 \ kN \cdot m$$

0.9 · Mn = 65.59 kN · m

 $Mu = 46.06 \ kN \cdot m$

 $\frac{Mu}{0.9 \cdot Mn} = 0.702$

La columna está trabajando al 70,2% por lo que cumple con la capacidad requerida.

3.2.1.7. Diseño de miembros en corte

$$\frac{T}{tw} \leq 2.24 \cdot \sqrt{\frac{E}{Fy}}$$

$$17.136 \le 63.357$$

Por lo tanto:

 $\Phi v \coloneqq 1$

$$Vn := 0.6 \cdot Fy \cdot Aw \cdot Cv1 = 196.83 \ kN$$

$$Aw \coloneqq d \cdot tw = 1312.2 \ mm^2$$

$$\Phi v \cdot Vn = 196.83 \ kN$$

$$Vu = 22.703 \ kN$$

$$\frac{Vu}{\Phi v \cdot Vn} = 0.115$$

$$\Phi v \cdot Vn > Vu$$

La sección resiste a la fuerza cortante.

Atiesadores transversales

$$\frac{T}{tw} {\leq} 2.46 {\boldsymbol{\cdot}} \sqrt{\frac{E}{Fy}}$$

 $17.14 \le 69.58$

No se requieren atiesadores transversales.

3.2.2. Resultados CYPE

CYPE 3D imprime un reporte de cálculos siguiendo la norma ANSI/AISC 360-16 (LRFD). A lo largo del documento indica la combinación de cargas para la cual realiza el diseño, pero esta siempre es la más desfavorable. Este análisis se puede obtener seleccionando la opción listados.

El informe generado es completo e indica los pasos, las fórmulas y la normativa que se sigue para obtener los distintos resultados.

Esfuerzos		*		X: 0.000	0.00	10.00	
C Leyes		() ()	Ľ	1			N min.: -72.304 X: 0.000 m
 Todas las barras Sólo las barras seleccios Consultar valores 	nadas			1	-		
📕 😅 Aul (N)	0.100				Y		
Cortante y (Vy)	0.100			1			
Cortante z (Vz)	0.100			1			
Momento torsor (Mt)	0.100			1			
Momento y (My)	0.100			X			
Momento z (Mz)	0.100						
Deformada (D)	100.000						
Flechs xy (Fxy)	100.000		Vzn	nin.: -22.6	30 KN		
🗌 Flecha xz (Fxz)	100.000		A. 1	.525 m			
Recha (F)	100.000						
🗍 Ejes sobre el plano de la vent	lana						
🖸 Dibujar valores máximos y mí	nimos				- with		
Ver valores māsimos y minim	06		Vz m	ax.: -22.6	30 KN		
Comb. seleccionada			My m	ax.: 2 1,90	MININ	_	
Acero laminado y armado	¥		X: 3.0	00 m	T.,		
1.2 PP+1.2 CM1+1.6 Q1				1			

3.2.2.1. Momento (M), cortante (P) y carga axial (V) máximas

Figura 3.5: Diagrama de momento, cortante y axial CYPE 3D

Fuente: Autores

3.2.2.2. Dimensiones del perfil seleccionado

El perfil seleccionado es un perfil H 152x37.2.

Perf Mate	il: H152X37.2 erial: Acero (A36)								
		Nud	los			Característica	as mecánica	is	
	Y	Inicial	Final	(m)	Área (cm²)	Ix ⁽¹⁾ (cm4)	I _y ⁽¹⁾ (cm4)	It ⁽²⁾ (cm4)	
		N2	N1	3.000	46.97	2204.94	706.72	18.69	
		Notas: ⁽²⁾ Inercia respecto al eje indicado ⁽²⁾ Momento de Inercia a torsión uniforme							
					Pandeo		F	Pandeo lateral	
	X		Plan	o ZX	Plano ZY	Ala su	ip.	Ala inf.	
		β	0.	80	0.80	1.00)	1.00	
		Lĸ	2.4	100	2.400	3.00	0	3.000	
		C, - 1.000							
e CYPE		Notación: β: Coeficiente de pandeo L _a : Longitud de pandeo (m) C _a : Factor de modificación para el momento crítico							

Tabla 3.6: Características del perfil CYPE 3D

Fuente: Autores

Diseño de miembros en tensión 3.2.2.3.

Resistencia a tracción (Capítulo D) La comprobación no procede, ya que no hay axil de tracción.

3.2.2.4. Diseño de miembros en compresión

Limitación de esbeltez para compresión (Capítulo E)	
a esbeltez máxima admisible en una barra sometida a compresión es*:	
$\lambda \leq 200$	λ: <u>62</u> 🗸
Donde:	
λ: Coeficiente de esbeltez	
$\lambda = \frac{L_c}{r}$	λ: <u>62</u>
Siendo:	
L _e : Longitud efectiva	
$L_c = KL$	
Donde:	
L: Longitud de la barra	L: <u>3000</u> mm
K: Factor de longitud efectiva.	K : 0.80
r _v : Radio de giro respecto al eje Y	r _y : <u>3.88</u> cm
≥ Donde:	
$r_{\gamma} = \sqrt{\frac{I_{\gamma}}{A}}$	r _y : <u>3.88</u> cm
Donde:	
I _v : Momento de inercia respecto al eje Y	I _γ : <u>706.72</u> cm4
A: Área total de la sección transversal de la barra.	A : 46.97 cm ²

*8 La esbeltez máxima admisible está basada en las Notas de Usuario de la sección E2.

Resistencia a compresión (Capítulo E)

Todas las secciones deben cumplir con las especificaciones LRFD desarrolladas en Capítulo E de ANSI/AISC 360-16 (LRFD).

Se debe satisfacer el siguiente criterio:

 $\eta_{\tau} = \frac{P_r}{P_r} \le 1$

El axil de compresión solicitante de cálculo pésimo P, se produce para la combinación de hipótesis 1.2·PP+1.2·CM1+1.6·Q1. Donde:

Pr: Resistencia a compresión requerida para las combinaciones de carga LRFD

P.: Resistencia de diseño a compresión

 $P_n = F_n A$

 $P_c = \phi_a P_a$

La resistencia de diseño a compresión en secciones comprimidas es el menor valor de los obtenidos según los estados límite descritos en el Capítulo E.

Donde:

φ_p: Factor de resistencia a compresión, tomado como:

P.: Resistencia nominal a compresión, calculada según el Artículo E3-A:

educativa de CYPE

para el pandeo por flexión de secciones con elementos compactos y no mpactos (ANSI/AISC 360-16 (LRFD), Capítulo E - E3-A). Donde: A : _ Producido por una A: Área bruta de la sección de la barra. 46.97 cm² F_a: Tensión de pandeo por flexión, tomada como: Fer : 204.08 MPa i) Cuando: $\frac{F_y}{F_c} \le 2.25$ $F_{\rm cr} = \left[0.658^{\frac{F_{\rm s}}{F_{\rm s}}} \right] F_{\gamma}$ Donde: Fy: Límite elástico mínimo especificado del acero de las F_y: 250.00 MPa barras F.: Tensión crítica elástica de pandeo, tomada como la F. : 515.62 MPa menor de: E. = -Fex : 1608.70 MPa F., : 515.62 MPa Donde: Siendo: L: Longitud efectiva $L_r = KL$ E : 200000.00 MPa E: Módulo de elasticidad del acero K: Factor de longitud efectiva. K_{*} : 0.80 K, : 0.80 L: Longitud de la barra L: 3000 mm r_x : ____ r: Radio de giro dominante 6.85 cm r, : cm 3.88 $r = \sqrt{\frac{1}{A}}$ Donde: I: Momento de inercia I_x : <u>2204.94</u> cm4 I_y: 706.72 cm4 A: Área total de la sección transversal de A: 46.97 la barra. cm²

3.2.2.5. Diseño de miembros en flexión

Resistencia a flexión eje X (Capítulo F)

Todas las secciones deben cumplir con las especificaciones LRFD desarrolladas en Capítulo F de ANSI/AISC 360-16 (LRFD). Se debe satisfacer el siguiente criterio:

$$\begin{split} \eta_{M} &= \frac{M_{c}}{M_{c}} \leq 1 \\ \hline \eta_{M} &= \frac{M_{c}}{M_{c}} = \frac{M_{c}}{M_{c}} \\ \hline \eta_{M} &= \frac{M_{c}}{M_{c}} = \frac{M_{c}}{M_{c}} \\ \hline \eta_{M} &= \frac{M_{$$

Donde:	
φ ₆ : Factor de resistencia a flexión	φ.: 0.90
M _a : La resistencia nominal a flexión calculada según Artículo 2, Sección 2, División b	M _n :
1. Fluencia	
$M_n = M_p = F_y Z_x$	M _a : <u>76.92</u> kN∙m
Donde:	
Fy: Limite elástico mínimo especificado	F _y : <u>250.00</u> MPa
Z _x : Módulo resistente plástico respecto al eje X	Z _* : <u>307.69</u> cm ³
2. Pandeo lateral-torsional	
b) Si $L_p \le L_s \le L_s$:	
$M_{p} = C_{b} \left[M_{p} - \left(M_{p} - 0.7F_{y}S_{x} \right) \left(\frac{L_{b} - L_{p}}{L_{r} - L_{p}} \right) \right] \le M_{p}$	M. : <u>72.88</u> kN·m
Donde:	
Fy: Límite elástico mínimo especificado	F _y : <u>250.00</u> MPa
C _b : Factor de modificación del pandeo lateral-torsional tomado,	a
de forma conservadora, como:	C _b : <u>1.00</u>
$M_p = F_y Z_x$	M _P : <u>76.92</u> kN•m
Donde:	
Zx: Módulo resistente plástico respecto al eje X	Z _x : 307.69 cm ³
$S_x = \frac{I_x}{V}$	S. : 272.21 cm ³
Ŷ	
Donde:	
I _x : Momento de inercia respecto al eje X	I _x : <u>2204.94</u> cm4
y: Distancia a la fibra extrema en flexión	y: <u>81.00</u> mm
L _b : Distancia entre puntos de arriostramiento al desplazamiento	
lateral del ala comprimida o de la torsión de la sección	
transversal	L₀: <u>3000</u> mm
$L_p = 1.76r_y \sqrt{\frac{E}{F_y}}$	L _p : <u>1930.93</u> mm
Deader	
Donde:	E
E: Modulo de elasticidad del acero	E : <u>200000.00</u> MPa
$r = \begin{bmatrix} I_{i} \end{bmatrix}$	
$v_y = \sqrt{A}$	r _y : <u>3.88</u> cm
Donde:	
I.: Momento de inercia respecto al eje Y	L : 706 72 cm4
A: Área total de la sección transversal de la barra.	A : 46.97 Cm ²
	40.37
$L_{v} = 1.95r_{ts}\frac{E}{0.7F_{v}}\sqrt{\frac{Jc}{S_{s}h_{o}}}\sqrt{1+\sqrt{1+6.76\left(\frac{0.7F_{v}}{E}\frac{S_{v}h_{o}}{Jc}\right)^{2}}}$	L, : <u>9678.75</u> mm
Donde:	
E: Módulo de elasticidad del acero	E : 200000 00 MPa
J: Momento de inercia a torsión uniforme	J : 18.69 cm4
h.; Distancia entre los baricentros de las alas	h : 150.40 mm
$r_{ts}^2 = \frac{\sqrt{I_v C_w}}{S_x}$	r _{ts} : <u>44.18</u> mm
Donde:	
I.: Momento de inercia respecto al eje V	L : 706 72 cm4
C.: Constante de alabeo de la sección	C_ 1 29920.49 cm6
Dars cr	
Pala Li	

Producido p

i) para una sección doblemente simétrica en doble T:

c=1

c: <u>1.00</u>

Resistencia a corte Y (Capítulo G)	
Todas las secciones deben cumplir con las especificaciones LRFD desarrolladas en Capítulo G de ANSI/AISC 360-16 (LRFD). Se debe satisfacer el siguiente criterio:	
$\eta_{\rm e} = \frac{V_{\rm r}}{V_{\rm c}} \le 1$	η _ν : <u>0.115</u> ✓
El esfuerzo cortante solicitante de cálculo pésimo V, se produce para la combinación de hipótesis 1.2·PP+1.2·CM1+1.6·Q1.	
Donde: V _r : Resistencia a cortante requerida para las combinaciones de carga LRFD V _e : Resistencia de diseño a cortante	V r : <u>22.63</u> kN
V _c = φ _v V _n La resistencia de diseño a cortante viene dada por:	ν _ε : <u>196.83</u> kN
Donde: En la Sección G2.1 a: ϕ_v : Factor de resistencia a cortante V _n : se define según lo detallado en el Capítulo G, de la siguiente forma: para almas de secciones con simetría simple o doble y en U sometidas a cortante	φ.: <u>1.00</u>
eð el plano del alma (ANSI/AISC 360-16 (LRFD), Capítulo G - G2.1).	V _n : <u>196.83</u> kN
F _y : Límite elástico mínimo especificado A _w = dt _w Donde:	F _Y : <u>250.00</u> MPa A _w : <u>13.12</u> cm ²
d: Canto total t_: Espesor del alma	d: <u>162.00</u> mm t _w : <u>8.10</u> mm

3.2.2.6. Diseño de miembros en corte

Atiesadores transversales

Resistencia nominal a cortante a) para almas de perfiles laminados de sección en doble T cuando se cumple:			-
$\frac{h}{t_{w}} \leq 2.24 \sqrt{\frac{E}{F_{\gamma}}}$			
C _v : Coeficiente de cortante del alma	С, :	1.00	_
Donde:			
h: Distancia libre entre alas, menos el radio de acuerdo	h :	138.80	mm
E: Módulo de elasticidad del acero	Ε:	200000.00	MPa
2. Comprobación de rigidizadores transversales			
(a) si $\frac{h}{t_w} \le 2.46 \sqrt{\frac{E}{F_y}}$			
No son necesarios rigidizadores transversales.			
Donde:			
h: Distancia libre entre alas, menos el radio de acuerdo	h :	138.80	mm
t _w : Espesor del alma	t. :	8.10	mm
E: Módulo de elasticidad del acero	Ε:	200000.00	MPa
F _v : Límite elástico mínimo especificado	F_{γ} :	250.00	MPa

3.2.3. Resultados ETABS

ETABS desarrolla un reporte según la combinación de cargas más desfavorable para cada una de las solicitaciones. Antes de proceder al análisis de la estructura o elemento, se debe seleccionar la norma a seguir, para esta comprobación se utiliza el AISC 360-16. El informe presenta los resultados de los esfuerzos generados e indica si no se cumple con las capacidades requeridas.

3.2.3.1. Momento (M), cortante (P) y carga axial (V) máximas

Figura 3.6: Diagrama de momento, cortante y axial ETABS

Fuente: Autores

3.2.3.2. Dimensiones del perfil seleccionado

El perfil seleccionado es un perfil H 152x37.2.

		Secti	on Propertie	es		
A (m²) J(m⁴)	I ₃₃ (m⁴)	l₂₂ (m⁴)	A _{v3} (n	1²) A _{v2} (m²)
0.0047	7 1.869E-07	0.000022	0.00000	7 0.003	6 0.00	13
		Desi	gn Propertie	S		
S ₃₃ (m³)	S ₂₂ (m³)	Z ₃₃ (m³)	Z ₂₂ (m³)	r ₃₃ (m)	r ₂₂ (m)	C _w (m⁵)
0.000272	0.000092	0.000308	0.00014	0.06851	0.03879	0
		Mate	rial Propertie	es		
	E (kN/r	n²) f _y (ki	N/m²)	Ry d	α	
	200000	000 250	000	1 N	IA	
	L	LRF and De	emand/Capa	city Ratio		
	L (I	m) LL	RF Stres	ss Ratio Lim	nit	
	3.0	0000 1		1		

3.2.3.3. Secciones compactas

Element Details							
Level	Element	Unique Name	Location (m)	Combo	Element Type	Section	Classification
Story1	C2	3	3	1.2D+1.6L	Ordinary Moment Frame	Col 152x37.2	Compact

3.2.3.4. Diseño de miembros en tensión

Axial Force and Capacities				
Pu Force (kN)	φPnt Capacity (kN)			
72.3041	1056.843			
año de mierch	neg en een negión			

3.2.3.5. Diseño de miembros en compresión

Axial Force & Biaxial Moment Design Factors (H1-1b)						
	L Factor	K 1	K ₂	B ₁	B ₂	Cm
Major Bending	0.8	0.8	1	1	1	1
Minor Bending	0.8	0.8	1	1	1	1

Parameters for Lateral Torsion Buckling

Litb	Kltb	Cb				
1	1	1				
Axial Force and Capacities						
Pu Force (kN)	ϕP_{nc}	Capacity (k	N)			
72.3041		862.7321				

3.2.3.6. Diseño de miembros en flexión

3.2.3.7. Diseño de miembros en corte

Shear Design				
	Vu Force (kN)	φVn Capacity (kN)	Stress Ratio	
Major Shear	22.7028	196.83	0.115	

3.2.4. Comparación de resultados

La tabla 3.7 expone los resultados de las resistencias de la columna sujeta a tensión, compresión, flexión y corte según los cálculos en los dos softwares (CYPE y ETABS) y el diseño manual.

CYPE 3D no realiza el cálculo para esfuerzos de tensión ya que, el esfuerzo último generado lo asigna a tensión o compresión según corresponda. El programa ETABS asigna el mismo valor del esfuerzo último ya sea para el cálculo de la capacidad a tensión o compresión, se tomaron las mismas consideraciones para el cálculo manual. En las tablas 3.8, 3.9 y 3.10 se presentan las variaciones que existen entre los resultados de las capacidades a tensión, compresión, flexión y corte de la columna (cálculo manual vs CYPE, cálculo manual vs ETABS y CYPE vs ETABS). Se observa que no se generan mayores variaciones en los resultados.

COLUMNA								
	DISEÑO DE MIEMBROS EN TENSIÓN		DISEÑO DE MIEMBROS EN COMPRESIÓN		DISEÑO DE MIEMBROS EN FLEXIÓN		DISEÑO DE MIEMBROS EN CORTE	
	Pu (KN)	ΦPnt (KN)	Pu (KN)	ФРпс (KN)	Mu (KNm)	ФМn (KNm)	Vu (KN)	ΦVn (KN)
CÁLCULO MANUAL	72.30	1056.85	72.30	862.74	46.06	65.59	22.70	196.83
СҮРЕ	N.A	N.A	72.30	862.73	45.99	65.59	22.63	196.83
ETABS	72.30	1056.84	72.30	862.73	46.06	65.59	22.70	196.83
CAPACIDADES								
CÁLCULO MANUAL	6.8	6.84% 8.38%		70.23%		11.53%		
СҮРЕ	N	.A	8.38%		70.12%		11.50%	
ETABS	6.8	34%	8.38%		70.23%		11.53%	
N.A: No aplica.								

Tabla 3.7: Comparación resultados columna

Fuente: Autores

Como se puede observar en la tabla 3.8 no existe una diferencia considerable comparando los cálculos manuales con los obtenidos mediante el software CYPE 3D para las capacidades en ninguna de las solicitaciones. La mayor variación generada es en la capacidad a flexión y esta se debe a que el momento último considerado no es igual en ambos cálculos. Para cálculo manual se tomó el valor del momento último del programa ETABS.

Tabla 3.8:	· Comparación	cálculo	manual	- CYPE
------------	---------------	---------	--------	--------

COMPARACIÓN CÁLCULO MANUAL - CYPE						
	CAPACIDAD	CAPACIDAD A	CAPACIDAD	CAPACIDAD		
	A TENSIÓN	COMPRESIÓN	A FLEXIÓN	A CORTE		
CÁLCULO	6 84%	8 38%	70.23%	11 53%		
MANUAL	0.04%	0.30%	10.2370	11.55%		
СҮРЕ	N.A	8.38%	70.12%	11.50%		
DIFERENCIA	N.A	0.00%	0.11%	0.04%		
N.A: No aplica.						

Fuente: Autores

No existe variación en los resultados de las capacidades generadas en los cálculos manuales vs los resultados obtenidos en el programa ETABS.
C	COMPARACIÓN CÁLCULO MANUAL - ETABS							
	CAPACIDAD A TENSIÓN	CAPACIDAD A COMPRESIÓN	CAPACIDAD A FLEXIÓN	CAPACIDAD A CORTE				
CÁLCULO MANUAL	6.84%	8.38%	70.23%	11.53%				
ETABS	6.84%	8.38%	70.23%	11.53%				
DIFERENCIA	0.00%	0.00%	0.00%	0.00%				

Tabla 3.9: Comparación cálculo manual - ETABS

Al comparar los resultados de los dos softwares de cálculo, podemos observar una diferencia casi nula en la capacidad a flexión y corte. Las variaciones en la capacidad se deben a que los esfuerzos últimos a flexión y corte en los dos programas son diferentes, pero estos resultados son muy similares y podemos asumir que se deben a variaciones en los cálculos decimales (tabla 3.10).

Tabla 3.10: Comparación cálculo ETABS - CYPE

COMPARACIÓN ETABS - CYPE							
	CAPACIDAD A TENSIÓN	CAPACIDAD A COMPRESIÓN	CAPACIDAD A FLEXIÓN	CAPACIDAD A CORTE			
ETABS	6.84%	8.38%	70.23%	11.53%			
СҮРЕ	N.A	8.38%	70.12%	11.50%			
DIFERENCIA	N.A	0.00%	0.11%	0.04%			
N.A: No aplica.							

Fuente: Autores

Tras analizar todos los resultados, podemos concluir que el análisis por elementos en los dos softwares de cálculo es fiable y no se generan mayores variaciones. Es importante considerar todas las variables para obtener resultados óptimos.

En la figura 3.7 se presenta un diagrama con el diseño del pórtico a cargas gravitacionales con las secciones transversales que cumplen con las solicitaciones del diseño a capacidad. Se cumplieron con las comprobaciones por elementos en los dos softwares (CYPE y ETABS) y los cálculos manuales siguiendo las normativas vigentes.

Figura 3.7: Diseño de pórtico a gravedad

CAPÍTULO 4

4. PÓRTICO RESISTENTE A MOMENTO -METODOLOGÍA

El pórtico a analizarse en esta sección está conformado por tres niveles y dos vanos donde la altura de piso es de 3 m y la separación entre columnas es de 6 m como se muestra en la figura 4.1.

Figura 4.1: Pórtico resistente a momento Fuente: Autores

4.1. Cargas

Las cargas aplicadas al pórtico se dividen en tres categorías: cargas permanentes (muertas), cargas variables (vivas) y cargas accidentales (sísmicas).

4.1.1. Cargas permanentes o cargas muertas

Las cargas muertas que se aplican en este pórtico son las mismas que se aplicaron en el pórtico a gravedad y se encuentran descritas en la tabla 2.2 en la sección 2.1 Cargas.

Debido a que se realizará un análisis únicamente bidimensional y no se modelarán las losas, las cargas serán ingresadas como distribuidas linealmente a lo largo de las vigas. Para esto se asume un área tributaria de 3 m de ancho por 6 m de longitud, obteniendo así una carga lineal distribuida de 11,77 kN/m a lo largo de cada viga.

4.1.2. Cargas variables o cargas vivas

Según la NEC-SE-CG, la carga uniforme para residencias de viviendas unifamiliares y bifamiliares es de 2 kN/m^2 .

Al igual que para la carga muerta, para este análisis ingresamos la carga como lineal, por lo que asumimos un área tributaria de 3 m de ancho por 6 m de longitud, obteniendo así una carga lineal distribuida a lo largo de la viga de 6 kN/m.

4.1.3. Cargas accidentales o sísmicas

Las fuerzas sísmicas laterales pueden calcularse mediante procedimientos estáticos o dinámicos. Para el presente pórtico se realizarán los cálculos de las fuerzas mediante procedimientos estáticos siguiendo el diseño basado en fuerzas (DBF) como se indica a continuación en el apartado 4.5. Procedimiento de cálculo del DBF.

4.2. Combinaciones de cargas

Símbolos y notación

- D Carga permanente
- L Sobrecarga (carga viva)
- E Carga de sismo
- L_r Sobrecarga cubierta (carga viva)
- S Carga de granizo

W Carga de viento

Combinaciones básicas

Las combinaciones básicas que se deben tomar en cuenta para el diseño de estructuras son las siguientes.

1,4 D	Ecuación 25. Combinación 1
$1,2 D + 1,6 L + 0,5 max [L_r; S; R]$	Ecuación 26. Combinación 2
$1,2 D + 1,6 max [L_r; S; R] + max [L; 0.5W]$	Ecuación 27. Combinación 3
$1,2 D + 1,0 W + L + 0,5 max[L_r; S; R]$	Ecuación 28. Combinación 4
1,2 D + 1,0 E + L + 0,2 S	Ecuación 29. Combinación 5
0,9 D + 1,0 W	Ecuación 30. Combinación 6
0,9 D + 1,0 E	Ecuación 31. Combinación 7

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014

Para determinar la capacidad de una estructura o elemento estructural debida a un evento extraordinario se debe considerar la siguiente combinación.

$$(0,9 \ o \ 1,2) \ D + A_k + 0,5 \ L + 0,2 \ S$$
 Ecuación 32

Donde A_k es la carga o el efecto de la carga resultante del evento extraordinario A (American Society of Civil Engineers ASCE, 2016).

En el diseño de este pórtico resistente a momento, se cuenta con cargas permanentes, sobrecarga y sísmica. Las combinaciones de carga a utilizarse se encuentran a continuación. Para el diseño de los elementos, se debe tomar en cuenta la combinación más desfavorable para el cálculo.

1,4 D	Ecuación 33. Combinación 1
1,2 <i>D</i> + 1,6 <i>L</i>	Ecuación 34. Combinación 2
1,2 D + E + 0,5 L	Ecuación 35. Combinación para chequeo de capacidad

4.3. Filosofía de diseño sismo resistente

Según la NEC-SE-DS, el diseño sismorresistente tiene como objetivo:

- Prevenir daños en elementos no estructurales y estructurales ante posibles sismos, que pueden ocurrir durante la vida útil de la estructura.
- Prevenir daños estructurales graves y controlar daños no estructurales ante posibles sismos, que pueden ocurrir durante la vida útil de la estructura.
- Evitar el colapso ante terremotos severos que pueden ocurrir rara vez durante la vida útil de la estructura.

Se deben diseñar las estructuras para que estas sean capaces de resistir las fuerzas especificadas por las normas, sus derivas de piso sean inferiores a las admisibles y para que esta pueda disipar energía de deformación inelástica.

Se clasifican las estructuras por tres niveles de desempeño estructural (prevención). Aquellas con un nivel de desempeño estructural de servicio no se deben generar daños estructurales ni no estructurales, para un nivel de desempeño de daño no deben generarse daños en elementos estructurales y pueden generarse daños en elementos no estructurales. Por último, para el nivel de desempeño estructural de colapso, puede generarse cierto grado de daño en elementos estructurales y daños considerables en elementos no estructurales.

4.4. Diseño basado en fuerzas (DBF)

Se aplicará como mínimo el método estático para todo tipo de estructura.

4.4.1. Componentes horizontales: espectro elástico horizontal de diseño en aceleraciones (Sa)

Se expresa como fracción de la aceleración de la gravedad y consiste en: el factor de zona sísmica Z, el tipo de suelo del sitio de emplazamiento de la estructura, la consideración de los valores de los coeficientes de amplificación de suelo (Ministerio de Desarrollo Urbano y Vivienda, 2014).

En la figura 4.2 se observa la gráfica del espectro sísmico elástico de aceleraciones que representa el sismo de diseño y las fórmulas para calcular las aceleraciones Sa según los periodos de vibración de la estructura.

Figura 4.2: Espectro sísmico elástico de aceleraciones que representa el sismo de diseño Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

Dónde:

 η Razón entre la aceleración espectral Sa (T = 0,1 s) y el PGA para el período de retorno seleccionado.

 $\eta = 1,80$: Provincias de la Costa (excepto Esmeraldas),

 $\eta = 2,48$: Provincias de la Sierra, Esmeraldas y Galápagos,

 $\eta = 2,60$: Provincias del Oriente

Fa Coeficiente de amplificación de suelo en la zona de período corto.

Fd Coeficiente de amplificación de suelo.

Fs Coeficiente de amplificación de suelo.

Sa Espectro de respuesta elástico de aceleraciones (expresado como fracción de la aceleración de la gravedad g).

Si
$$T < T_0$$
, entonces: $Sa = z Fa\left(1 + (\eta - 1)\frac{T}{T_0}\right)$ Ecuación 36

Si
$$T_0 < T < T_c$$
, entonces: $Sa = \eta z Fa$ Ecuación 37

Si
$$T > T_c$$
, entonces: $Sa = \eta z Fa \left(\frac{T}{T_0}\right)^r$ Ecuación 38

T Período fundamental de vibración de la estructura.

T0 Período límite de vibración en el espectro sísmico elástico de aceleraciones que representa el sismo de diseño.

$$T_0 = 0.1 Fs \frac{Fd}{Fa} \qquad Ecuación 39$$

TC Período límite de vibración en el espectro sísmico elástico de aceleraciones que representa el sismo de diseño.

$$T_0 = 0,55 Fs \frac{Fd}{Fa} \qquad Ecuación \, 40$$

Z Aceleración máxima en roca esperada para el sismo de diseño, expresada como fracción de la aceleración de la gravedad g.

r Factor usado en el espectro de diseño elástico, cuyos valores dependen de la ubicación geográfica del proyecto.

r = 1 para todos los suelos, con excepción del suelo tipo E.

r = 1.5 para tipo de suelo E.

4.4.2. Zonificación sísmica y factor de zona Z

El valor de Z se expresa como fracción de la aceleración de la gravedad. Esta representa la aceleración máxima en roca esperada para el sismo de diseño.

En la figura 4.3 se presenta un mapa de zonificación sísmica del Ecuador. Y en la tabla 4.1 se presentan los valores de Z en función de la zona sísmica.

Figura 4.3: Ecuador, zonas sísmicas para propósitos de diseño y valor del factor de zona Z Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

Tabla 4.1: Valores de Z

Zona sísmica	1	II	III	IV	V	VI
Valor factor Z	0.15	0.25	0.30	0.35	0.40	≥ 0.50
Caracterización del peligro sísmico	Intermedia	Alta	Alta	Alta	Alta	Muy alta

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

El pórtico a diseñarse se encuentra ubicado en la ciudad de Cuenca – Ecuador, por lo que se toma el valor Z de 0,25 (Tabla 4.2). Valor obtenido de la tabla de Poblaciones ecuatorianas y valor del factor Z del capítulo NEC – SE – DS.

Tabla 4.2: Poblaciones ecuatorianas y valor del factor Z

Población	Parroquia	Cantón	Provincia	Z
Cuenca	Cuenca	Cuenca	Azuay	0,25

Fuente: Elaboración propia a partir de los datos de Ministerio de Desarrollo Urbano y Vivienda, 2014

4.4.3. Geología local

Se definen seis tipos de perfiles de suelo. Estos se clasifican según los 30 m superiores del perfil para los cinco primeros perfiles (A, B, C, D y E). Para suelos de tipo F se aplican otros criterios y estos no se limitan a los 30 m superiores del perfil.

<i>Tabla 4.3:</i>	Clasificación	de los	perfiles	de suelo
	,		1 2	

Tipo de perfil	Descripción
А	Perfil de roca competente.
В	Perfil de roca de rigidez media.
С	Perfiles de suelos muy densos o roca blanda, que cumplan con el criterio de velocidad de la onda de corte o
	Perfiles de suelos muy densos o roca blanda, que cumplan con cualquiera de los dos criterios.
D	Perfiles de suelos rígidos que cumplan con el criterio de velocidad de la onda de cortante, o
	Perfiles de suelos rígidos que cumplan cualquiera de las dos condiciones.
E	Perfil que cumpla el criterio de velocidad de la onda de cortante, o
	Perfil que contiene un espesor total H mayor de 3 m de arcillas blandas.
F	Los perfiles de suelo tipo F requieren una evaluación realizada explícitamente en el sitio por un ingeniero geotecnista.

Fuente: Elaboración propia a partir de los datos de Ministerio de Desarrollo Urbano y Vivienda, 2014

4.4.4. Coeficientes de perfil de suelo Fa, Fd y Fs

a) F_a: Coeficiente de amplificación de suelo en la zona de período corto

El coeficiente F_a amplifica las ordenadas del espectro de respuesta elástico de aceleraciones para diseño en roca, tomando en cuenta los efectos de sitio (Ministerio de Desarrollo Urbano y Vivienda, 2014). Estos valores se encuentran en la tabla 4.4.

	Zona sísmica y factor Z					
Tipo de perfil del subsuelo	1	II	ш	IV	V	VI
	0.15	0.25	0.30	0.35	0.40	≥0.5
A	0.9	0.9	0.9	0.9	0.9	0.9
В	1	1	1	1	1	1
С	1.4	1.3	1.25	1.23	1.2	1.18
D	1.6	1.4	1.3	1.25	1.2	1.12
E	1.8	1.4	1.25	1.1	1.0	0.85
F	Véase <u>Ta</u>	bla 2 : Clas	ificación de <u>10.</u>	los perfiles	de suelo y	la sección

Tabla 4.4:	Tipo de	suelo y	Factores	de sitio	F_a

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

b) F_d: amplificación de las ordenadas del espectro elástico de respuesta de desplazamientos para diseño en roca

El coeficiente F_d amplifica las ordenadas del espectro elástico de respuesta de desplazamientos para diseño en roca (Ministerio de Desarrollo Urbano y Vivienda, 2014). Estos valores se encuentran en la tabla 4.5.

	Zona sísmica y factor Z					
Tipo de perfil del subsuelo	I	II	Ш	IV	V	VI
	0.15	0.25	0.30	0.35	0.40	≥0.5
A	0.9	0.9	0.9	0.9	0.9	0.9
В	1	1	1	1	1	1
С	1.36	1.28	1.19	1.15	1.11	1.06
D	1.62	1.45	1.36	1.28	1.19	1.11
E	2.1	1.75	1.7	1.65	1.6	1.5
F	Véase <u>T</u>	abla 2 : Cla	asificación o	de los perfil	es de suelo	y 10.6.4

Tabla 4.5: Tipo de suelo y Factores de sitio F_d

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

c) Fs: comportamiento no lineal de los suelos

El coeficiente F_d considera el comportamiento no lineal de los suelos la degradación del período del sitio que depende de la intensidad y contenido de frecuencia de la excitación sísmica y los desplazamientos relativos del suelo, para los espectros de aceleraciones y desplazamientos (Ministerio de Desarrollo Urbano y Vivienda, 2014). Estos valores se encuentran en la tabla 4.6.

Tabla 4.6.	: Tipo de	e suelo y Facto	ores de compo	rtamiento	inelástico d	del subsuelo	F_s
------------	-----------	-----------------	---------------	-----------	--------------	--------------	-------

	Zona sísmica y factor Z					
Tipo de perfil del subsuelo	I	Ш	Ш	IV	V	VI
	0.15	0.25	0.30	0.35	0.40	≥0.5
A	0.75	0.75	0.75	0.75	0.75	0.75
В	0.75	0.75	0.75	0.75	0.75	0.75
С	0.85	0.94	1.02	1.06	1.11	1.23
D	1.02	1.06	1.11	1.19	1.28	1.40
E	1.5	1.6	1.7	1.8	1.9	2
F	Véase <u>T</u>	abla 2 : Cla	asificación o	de los perfil	es de suelo	y 10.6.4

4.4.5. Categoría de edificio y coeficiente de importancia I

Se clasifican a las estructuras en tres diferentes categorías para las que se les asignará un factor de importancia I. Este factor pretende incrementar la demanda sísmica de diseño para estructuras, ya que según su importancia estas deben sufrir menores daños o permanecer operativas durante y después de la ocurrencia del sismo de diseño (Ministerio de Desarrollo Urbano y Vivienda, 2014).

Categoría	Tipo de uso, destino e importancia	Coeficiente I
Edificaciones esenciales	Hospitales, clínicas, Centros de salud o de emergencia sanitaria. Instalaciones militares, de policía, bomberos, defensa civil. Garajes o estacionamientos para vehículos y aviones que atienden emergencias. Torres de control aéreo. Estructuras de centros de telecomunicaciones u otros centros de atención de emergencias. Estructuras que albergan equipos de generación y distribución eléctrica. Tanques u otras estructuras utilizadas para depósito de agua u otras substancias anti-incendio. Estructuras que albergan depósitos tóxicos, explosivos, químicos u otras substancias peligrosas.	1.5
Estructuras de ocupación especial	Museos, iglesias, escuelas y centros de educación o deportivos que albergan más de trescientas personas. Todas las estructuras que albergan más de cinco mil personas. Edificios públicos que requieren operar continuamente	1.3
Otras estructuras	Todas las estructuras de edificación y otras que no clasifican dentro de las categorías anteriores	1.0

Tabla 4.7: Tipo de uso, destino e importancia de la estructura

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

4.4.6. Límites permisibles de las derivas de piso

La deriva máxima para cualquier piso no debe exceder los límites de deriva inelástica establecidos en la tabla 4.8. La deriva máxima está representada como un porcentaje de la altura de piso (Ministerio de Desarrollo Urbano y Vivienda, 2014).

Tabla 4.8: Valores de derivas de piso máximas, expresadas como fracción de la altura de piso

Estructuras de:	∆ _M máxima (sin unidad)
Hormigón armado, estructuras metálicas y de madera	0.02
De mampostería	0.01

4.5. Procedimiento de cálculo del DBF

4.5.1. Pasos del método

- Determinación del espectro de diseño Sa(T).
- Cálculo aproximado del período fundamental de vibración Ta.
- Determinación del cortante de base V con los resultados de los pasos anteriores.
- Determinación de las distribuciones vertical y horizontal de V.
- Dirección de aplicación de estas fuerzas sísmicas y verificación de que los índices de deriva no sobrepasen el valor permitido.

4.5.2. Cortante basal de diseño V

Se trata de la fuerza lateral total de diseño generada por cargas laterales como resultado de una carga sísmica de diseño (Ministerio de Desarrollo Urbano y Vivienda, 2014). Se aplica en la base de la estructura y se determina mediante la ecuación 41.

$$V = \frac{I S_a (T_a)}{R \phi_P \phi_E} W$$
 Ecuación 41

Donde:

$S_a(T_a)$	Espectro de diseño en aceleración
$\phi_{\scriptscriptstyle P}$ у $\phi_{\scriptscriptstyle E}$	Coeficientes de configuración en planta y elevación
Ι	Coeficiente de importancia
R	Factor de reducción de resistencia sísmica
V	Cortante basal total de diseño
W	Carga sísmica reactiva
T _a	Período de vibración

4.5.3. Determinación del período de vibración

Existen varios métodos para determinar el valor del período de vibración, a continuación, se presenta en la ecuación 42 uno de los métodos aproximados.

$$T = C_t h_n^{\alpha} \qquad Ecuación 42$$

Donde:

- C_t Coeficiente que depende del tipo de edificio (tabla 4.9).
- h_n Altura máxima de la edificación de n pisos, medida desde la base de la estructura, m.

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

Tabla 4.9: Valores de $C_t y \alpha$ según tipo de estructura

Tipo de estructura	Ct	α
Estructuras de acero		
Sin arriostramientos	0.072	8.0
Con arriostramientos	0.073	0.75
Pórticos especiales de hormigón armado		
Sin muros estructurales ni diagonales rigidizadoras	0.055	0.9
Con muros estructurales o diagonales rigidizadoras y para otras estructuras basadas en muros estructurales y mampostería estructural	0.055	0.75

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

Una vez dimensionada la estructura, los períodos fundamentales deben recalcularse por medio de un análisis modal.

4.5.4. Factor de reducción de resistencia sísmica R

El factor R permite una reducción de las fuerzas sísmicas de diseño. Esto se permite únicamente si las estructuras y sus conexiones se diseñan para desarrollar un mecanismo de falla previsible y con adecuada ductilidad. El daño debe concentrarse en secciones especialmente detalladas para funcionar como rótulas plásticas (Ministerio de Desarrollo Urbano y Vivienda, 2014).

Este factor depende del tipo de estructura, suelo, período de vibración considerado y factores de ductilidad, sobre resistencia, redundancia y amortiguamiento de una estructura en condiciones límite.

Tabla 4.10: Factor de reducción de resistencia sísmica R

Sistemas Estructurales Dúctiles	R
Pórticos resistentes a momentos	
Pórticos especiales sismo resistentes, de hormigón armado con vigas descolgadas.	8
Pórticos especiales sismo resistentes, de acero laminado en caliente o con elementos armados de placas.	8
Pórticos con columnas de hormigón armado y vigas de acero laminado en caliente.	8

Fuente: Elaboración propia a partir de los datos de Ministerio de Desarrollo Urbano y Vivienda, 2014.

4.5.5. Distribución vertical de fuerzas sísmicas laterales

La distribución de fuerzas verticales se asemeja a una distribución lineal (triangular), estas deben ser distribuidas en la altura de la estructura (Ministerio de Desarrollo Urbano y Vivienda, 2014).

$V = \sum_{i=1}^{n} F_i$	Ecuación 43
--------------------------	-------------

$$V_x = \sum_{i=1}^n F_i$$
 Ecuación 44

$$F_{\chi} = \frac{w_{\chi} h_{\chi}^{k}}{\sum_{i=1}^{n} w_{i} h_{i}^{k}} V \qquad Ecuación 45$$

Donde:

V Cortante total en la base de la estructura.

Vx Cortante total en el piso x de la estructura.

- Fi Fuerza lateral aplicada en el piso *i* de la estructura.
- Fx Fuerza lateral aplicada en el piso *x* de la estructura.
- n Número de pisos de la estructura.
- wx Peso aginado al piso o nivel x de la estructura, siendo una fracción de la carga reactiva W (incluye la fracción de la carga viva correspondiente).
- wi Peso aginado al piso o nivel *i* de la estructura, siendo una fracción de la carga reactiva W (incluye la fracción de la carga viva correspondiente).
- hx Altura del piso *x* de la estructura.
- hi Altura del piso *i* de la estructura.
- k Coeficiente relacionado con el período de vibración de la estructuraT.

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

Tabla 4.11: Determinación de k

Valores de T (s)	k
≤ 0.5	1
0.5 < T ≤ 2.5	0.75 + 0.50 T
> 2.5	2

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

4.5.6. Control de la deriva de piso (derivas inelásticas máximas de piso Δ_M)

Se debe realizar una comprobación de deformaciones, a través del cálculo de las derivas inelásticas máximas de piso. Para su revisión se debe utilizar el valor de la respuesta máxima inelástica en desplazamientos Δ_M de la estructura (ecuación 46), causada por el sismo de diseño.

$$\Delta_M = 0,75R\Delta_E$$
 Ecuación 46

Donde:

 Δ_M Deriva máxima inelástica.

- Δ_E Desplazamiento obtenido en aplicación de las fuerzas laterales de diseño reducidas.
- R Factor de reducción de resistencia.

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

Se debe verificar que:

 $\Delta_M < \Delta_M$ máxima

 Δ_M máxima se tiene en la tabla 4.8.

4.5.7. Índice de estabilidad Q_i

Se trata de la relación entre el momento de segundo orden y el momento de primer orden. Se calcula por medio de la ecuación 47.

$$Q_i = \frac{P_i \Delta_i}{V_i h_i}$$
 Ecuación 47

Dónde:

- Q_i Índice de estabilidad del piso *i*.
- P_i Suma de la carga vertical total sin mayorar (incluye peso muerto y sobrecarga por carga viva, del piso *i* y aquellos ubicados sobre este).
- Δ_i Deriva del piso *i* calculada en el centro de masas del piso (ecuación 46).
- *V_i* Cortante sísmico del piso *i*.
- h_i Altura del piso *i*.

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

Se debe cumplir $Q_i \leq 0,30$.

4.5.8. Efectos de segundo orden P- Δ

Estos no necesitan ser considerados si $Q_i < 0,10$.

Para considerar el efecto P- Δ en la dirección bajo estudio y cuando 0,1 < Q_i < 0,3, se determina un factor de mayoración (ecuación 48).

$$f_{P-\Delta} = \frac{1}{1-Q_i}$$
 Ecuación 48

Las derivas de piso calculadas (Δ_{Ei}), las fuerzas internas y los momentos de la estructura que aparecen como producto de la aplicación de las cargas laterales de diseño se deben multiplicar por el factor de mayoración $f_{P-\Delta}$ (Ministerio de Desarrollo Urbano y Vivienda, 2014).

4.6. Diseño de miembros

El chequeo de diseño de miembros en tensión, compresión, flexión y corte se las realiza con la misma metodología que se indicó anteriormente en la sección 2.3 Diseño de miembros.

4.6.1. Secciones sísmicamente compactas

Los miembros deben tener alas continuamente conectadas al alma y las relaciones ancho-espesor de sus elementos a compresión no deben exceder las relaciones máximas ancho-espesor, λ_{ps} , de la tabla 4.12 presentada a continuación.

	Máxima	s relaciones	ancho-espesor para eleme	entos a compresión
	Tipo de elemento	Razón ancho- espesor	Límites λ _{ps}	Ejemplos
	Flexión en alas de perfiles I roladas o armadas, canales y tes.	b/t	$0.3\sqrt{\frac{E}{Fy}}$	$\underbrace{\begin{array}{c} \underline{b}_{\underline{i}}}_{\underline{i}} t \\ \underline{b}_{\underline{i}} \underline{i}_{\underline{i}} t \\ \underline{b}_{\underline{i}} t \\ \underline{b}_{\underline{i}} \underline{i}_{\underline{i}} t \\ \underline{b}_{\underline{i}} t \\ \underline{b}_{i$
Elementos No-Rigidizados	Almas de perfiles "I" armados o rolados usados para vigas o columna	h/tw	Para $C_a \leq 0,125$ $2,45 \sqrt{\frac{E}{Fy}} (1 - 0,93C_a)$ Para $C_a > 0,125$ $0.77 \sqrt{\frac{E}{Fy}} (2.93 - C_a)$ $\geq 1,49 \sqrt{\frac{E}{Fy}}$ Donde: $C_a = \frac{P_u}{\phi_b P_y}$	$\frac{t_{w}}{h} = \frac{t_{w}}{h} + \frac{t_{w}}{h} = \frac{t_{w}}{h}$

Tabla 4.12: Máximas relaciones ancho – espesor para elementos a compresión

Fuente: Elaboración propia a partir de los datos de Ministerio de Desarrollo Urbano y Vivienda, 2014

4.6.2. Diseño de miembros para solicitaciones combinadas y torsión

a) Cuando
$$\frac{P_r}{P_c} \ge 0.2$$

 $\frac{P_r}{P_c} + \frac{8}{9} \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) \le 1.0$ Ecuación 49
b) Cuando $\frac{P_r}{P_c} < 0.2$
 $\frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) \le 1.0$ Ecuación 50
Donde:

 P_r Resistencia de compresión axial requerida, usando combinaciones de carga LRFD, N.

- *P_c* Resistencia de compresión axial disponible, N.
- M_r Resistencia de flexión requerida, usando combinaciones de carga LRFD, N-mm.
- M_c Resistencia de flexión disponible, N-mm.
- x Subíndice que indica flexión en torno al eje fuerte.
- y Subíndice que indica flexión en torno al eje débil.

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

4.7. Diseño de conexión con viga de sección reducida

4.7.1. Factores de resistencia

Para estados límites dúctiles, el factor de resistencia ϕ_d debe tomarse como $\phi_d = 1,00$ (Ministerio de Desarrollo Urbano y Vivienda, 2014).

4.7.2. Máximo momento probable en la articulación plástica

$$M_{pr} = C_{pr}R_{y}F_{y}Z_{e}$$
 Ecuación 51

Donde:

Cpr Factor que toma en cuenta la resistencia máxima de la conexión, incluyendo el endurecimiento por deformación, restricciones locales, reforzamiento adicional y otras condiciones de conexión.

$$c_{pr} = \frac{F_y - F_u}{2F_y} \le 1,2$$
 Ecuación 52

- Fy Mínimo esfuerzo de fluencia especificado del tipo de acero usado en el elemento.
- Fu Resistencia mínima a tensión especificada del acero.
- Mpr Máximo momento probable en la articulación plástica.
- Ze Módulo plástico efectivo de la sección (o conexión) en la articulación plástica.

Ry Factor de esfuerzo de fluencia probable (Tabla 4.13).

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

Tabla 4.13: Factor de fluencia probable (Ry)

Especificación ASTM	Factor de Fluencia Probable (Ry)
ASTM A36	1,3

Fuente: Elaboración propia a partir de los datos de Ministerio de Desarrollo Urbano y Vivienda, 2014.

4.7.3. Placa de continuidad para alas de viga

Si uno de los siguientes casos se cumple, no se deben colocar placas de continuidad.

 a) Cuando el ala de la viga esté conectada al ala de una columna de ala ancha o sección "I" armada que tenga un espesor que satisfaga las siguientes ecuaciones.

$$t_{cf} \ge 0.4 \sqrt{1.8b_{vf}t_{vf}\frac{F_{yv}R_{yv}}{F_{yc}R_{yc}}}$$
 Ecuación 53
$$t_{cf} \ge \frac{b_{vf}}{6}$$
 Ecuación 54

Donde:

 b_{vf} Ancho del ala de la viga.

- F_{yv} Mínimo esfuerzo de fluencia especificado para el ala de la viga.
- F_{yc} Mínimo esfuerzo de fluencia especificado para el ala de la columna.
- $R_{\nu\nu}$ Factor de esfuerzo de fluencia probable de la viga.
- R_{vc} Factor de esfuerzo de fluencia probable de la columna.
- t_{cf} Espesor mínimo requerido para el ala de la columna cuando no se requiera placa de continuidad.
- t_{vf} Espesor del ala de la viga.

 b) Cuando el ala de la viga esté conectada al ala de una columna de una sección "I" con ala ancha encajonada con un espesor que satisfaga las siguientes ecuaciones.

$$t_{cf} \ge 0.4 \sqrt{\left[1 - \frac{b_{vf}}{b_{cf}^2} \left(b_{cf} - \frac{b_{vf}}{4}\right)\right] 1.8 b_{vf} t_{vf} \frac{F_{yv}R_{yv}}{F_{yc}R_{yc}}} \qquad Ecuación 55$$
$$t_{cf} \ge \frac{b_{vf}}{12} \qquad Ecuación 56$$

Donde:

- b_{vf} Ancho del ala de la viga.
- F_{yv} Mínimo esfuerzo de fluencia especificado para el ala de la viga.
- F_{yc} Mínimo esfuerzo de fluencia especificado para el ala de la columna.
- R_{yv} Factor de esfuerzo de fluencia probable de la viga.
- R_{vc} Factor de esfuerzo de fluencia probable de la columna.
- t_{cf} Espesor mínimo requerido para el ala de la columna cuando no se requiera placa de continuidad.
- t_{vf} Espesor del ala de la viga.

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

Si ninguno de los dos casos anteriores se cumple, el espesor de la placa se determinará según el tipo de conexión exterior o interior. Para conexiones exteriores, el espesor de la placa de continuidad deberá ser menor o igual a la mitad del espesor del ala de la viga. Para conexiones interiores, el espesor de la placa de continuidad deberá ser menor o igual al espesor de mayor valor de las alas de las vigas ubicadas a cada lado de la columna.

4.7.4. Espesor de la zona panel

La zona de panel se trata del área limitada por las alas de la columna y las placas de continuidad a través de la conexión viga-columna. Su espesor debe cumplir con el requerimiento mínimo indicado en la ecuación 57.

$$t \ge \frac{d_z + w_z}{90} \qquad \qquad Ecuación 57$$

Donde:

- t Espesor del alma de la columna o de la doble placa, mm.
- d_z Peralte de la zona de panel medido entre las placas de continuidad, mm.
- w_z Ancho de la zona de panel entre alas de columna, mm.

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

4.7.5. Procedimiento de diseño viga de sección reducida

Figura 4.4: Conexión con viga de sección reducida

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

4.7.5.1. Determinación de a, b y c

Los valores de *a*, *b* y *c* de la figura 4.4, se determinan según los siguientes límites.

$0,5b_f \le a \le 0,75b_f$	Ecuación 58
$0,65d \le b \le 0,85d$	Ecuación 59
$0,1b_f \le c \le 0,25b_f$	Ecuación 60

Donde:

- b_f Ancho del ala de la viga.
- d Peralte de la viga.
- a Distancia desde la cara de la columna hasta donde empieza el corte de la viga de sección reducida (VSR).
- b Longitud del corte de la viga de sección reducida (VSR).
- c Profundidad del corte al centro de la viga de sección reducida.

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

4.7.5.2. Módulo plástico de la viga al centro de la viga de sección reducida Z_{VSR}

$$Z_{VSR} = Z_V - 2ct_f(d - t_f)$$
 Ecuación 61

Donde:

- t_f Espesor del ala de la sección.
- Z_V Módulo Plástico de la sección transversal de la viga.
- *d* Peralte de la viga.
- Z_{VSR} Módulo plástico en la viga de sección reducida.

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

4.7.5.3. Máximo momento probable al centro de la viga de sección reducida M_{pr}

$$M_{pr} = C_{pr} R_y F_y Z_{VSR}$$
 Ecuación 62

Donde:

 C_{pr} Factor que toma en cuenta la resistencia máxima de la conexión, incluyendo el endurecimiento por deformación, restricciones locales, reforzamiento adicional y otras condiciones de conexión (Ecuación 52).

- M_{pr} Momento máximo probable al centro de la viga de sección reducida.
- F_{v} Mínimo esfuerzo de fluencia especificado para el tipo de acero usado.
- Ry Factor de esfuerzo de fluencia probable (Tabla 4.13).

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

4.7.5.4. Fuerza cortante al centro de la viga de sección reducida V_{VSR}

$$V_{VSR} = \frac{2M_{pr}}{L_h} + V_{grav}$$
 Ecuación 63

Donde:

 V_{VSR} Mayor de los dos valores de la fuerza cortante en el centro de la viga de sección reducida en cada extremo de la viga.

L_h Distancia entre articulaciones plásticas.

 V_{grav} Fuerza cortante en la viga que resulta de la siguiente combinación de carga: 1,2 D + f1 L en donde f1 es el factor de carga determinado según el capítulo 1, pero no puede ser menor a 0.5.

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

4.7.5.5. Máximo momento probable en la cara de la columna M_f

$$M_f = M_{pr} + V_{VSR}S_h \qquad Ecuación \, 64$$

- M_f Máximo momento probable en la cara de la columna.
- S_h Distancia desde la cara de la columna hasta el centroide de la articulación plástica.

$$S_h = a + \frac{b}{2}$$
 Ecuación 65

 M_{pr} Máximo momento probable en la articulación plástica.

4.7.5.6. Momento plástico de la viga basado en el esfuerzo de fluencia probable M_{pe}

$$M_{pe} = R_y Z_v F_y$$
 Ecuación 66

Donde:

 R_{v} Factor de esfuerzo de fluencia probable.

 F_v Mínimo esfuerzo de fluencia.

 Z_{ν} Módulo plástico de la viga.

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

4.7.5.7. Determinar si se cumple la siguiente condición

Se debe verificar que se cumpla con la comprobación de la ecuación 67, si no es así, se debe ajustar los valores de a, b y c y repetir los pasos desde la sección 4.7.5.2 hasta 4.7.5.7.

$$M_f < \phi_d M_{pe}$$
 Ecuación 67

Donde:

 M_f Máximo momento probable en la cara de la columna.

 M_{pe} Esfuerzo de fluencia probable.

 $\emptyset_d = 1$

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

4.7.5.8. Determinar la resistencia requerida al cortante V_u de la viga y en la conexión viga-columna

$$V_u = V_{VSR} + V_g Ecuación 68$$

Donde:

 V_u Resistencia requerida al cortante de la viga y en la conexión vigacolumna. V_g Fuerza cortante debido a las cargas gravitacionales en el sector de la viga comprendido entre la cara de la columna y el centroide de la articulación plástica.

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

4.7.5.9. Diseño de la placa de cortante en la unión alma de la viga con ala de la columna

Donde:

 $\phi_{\nu}V_{\nu}$ Resistencia de diseño de la placa de cortante.

 V_u Resistencia requerida al cortante de la viga y en la conexión vigacolumna.

 F_{ypc} Mínimo esfuerzo de fluencia especificado de la placa de cortante.

 d_{pc} , t_{pc} Peralte y espesor de la placa de cortante.

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

4.7.5.10. Diseño de la zona de panel

Donde:

- R_u Resistencia requerida al cortante de la zona de panel
- d, t_f Peralte y espesor del ala de la viga

4.7.6. Criterio columna fuerte – viga débil

El objetivo principal de este criterio es controlar que las columnas sean más fuertes que las vigas, generando así un estado límite de fluencia por flexión en las vigas. Cuando la estructura se encuentre bajo fuerzas sísmicas, esta debe lograr un alto nivel de disipación de energía. Para cumplir con este criterio, la relación de la ecuación 73 debe cumplirse.

$$\frac{\sum M_{pc}^*}{\sum M_{pv}^*} \ge 1,0$$
 Ecuación 73

Donde:

 $\sum M_{pc}^*$ Suma de momentos plásticos nominales de las columnas que llegan a la junta (ecuación 74).

Se determina por la suma de las resistencias nominales a flexión de las columnas que llegan a la junta evaluadas en la cara de la junta, tomando en cuenta la reducción debido a la carga axial presente en la columna.

$$\sum M_{pc}^* = \sum Z_c \left(F_{yc} - \frac{P_{uc}}{A_g} \right)$$
 Ecuación 74

Donde:

- A_g Área gruesa.
- F_{yc} Mínimo esfuerzo de fluencia del acero en columnas.
- P_{uc} Resistencia a carga axial requerida de una columna sometida a las combinaciones de carga.
- Z_c Módulo plástico de la columna.

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

 $\sum M_{pv}^*$ Suma de momentos plásticos nominales de las vigas que llegan a la junta (ecuación 75).

Se determina por la suma de las resistencias probables de las vigas en las zonas de las articulaciones plásticas incluyendo el momento, M_{uv} , producido por el cortante desarrollado en las articulaciones plásticas con respecto a la cara de la columna.

$$\sum M_{pv}^* = \sum (1, 1R_y F_{yv} Z_v + M_{uv})$$
 Ecuación 75

Dónde:

- $F_{\nu\nu}$ Mínimo esfuerzo de fluencia del acero en vigas.
- M_{uv} Momento adicional basado en combinaciones DFCR, generado por la fuerza cortante en la articulación plástica cuyo brazo es igual a la distancia existente entre la articulación plástica y la cara de la columna.
- R_{v} Factor de esfuerzo de fluencia probable.
- Z_{ν} Módulo plástico de la viga

Fuente: Tomado de Ministerio de Desarrollo Urbano y Vivienda, 2014.

Figura 4.5: Determinación de M_{pv}^* para el caso de una columna interior de un pórtico especial a momento

4.8. Ingreso de datos en CYPE

El software CYPE cuenta con varios entornos para el análisis de estructuras, para este pórtico utilizaremos CYPECAD Y CYPE 3D.

En CYPE 3D se modela la estructura como se indicó en la sección 2.4 Ingreso de datos en CYPE. El ingreso de la carga sísmica se la realiza de la misma forma en la que se indicará a continuación para el programa CYPECAD.

CYPECAD realiza sus análisis sísmicos haciendo uso de la carga sísmica dinámica. En este entorno, se pueden obtener informes con resultados bajo estas cargas estáticas para el cortante basal, y dinámicas para las fuerzas sísmicas equivalentes y derivas. Para esto se deben seguir los siguientes pasos:

Al momento de ingresar a CYPECAD se presenta una pantalla de datos generales (Figura 4.6). Aquí se escogen las normativas que el programa utilizará para el análisis, el tipo de materiales y sus características, así como los coeficientes de pandeo. También se ingresan las hipótesis adicionales de la misma forma como se ingresan en CYPE 3D (sección 2.4 Ingreso de datos en CYPE).

Figura 4.6: Datos generales CYPECAD

Fuente: Autores

Se debe hacer clic en la opción "con acción sísmica" en donde se abrirá una pantalla nueva, aquí se ingresa la normativa para el cálculo de la acción sísmica (figura 4.7).

Contraction of the local state o	- Official Res	CONTRACTOR OF			
CUE CUE		NORMA ECUATORIANIA DE LA CO	DISTRUCCIÓN		
O Mitodo general	🔤 🔾 Enuador	Palgo sianico. Useno sano resal	erte.		E.
Menania 🔿	C B Salvador	🖾 Accóri siawca segán X			Acción stanice según Y
C Beigen	H O Guatemala	Método de análisis			
Bugeta	= O Hondware	O Dinámico (modal espectral)	C Estático (fueros lateral equivalente)		
Cotte	ET O Medos	Definición del espectra			1
Change	- O Provingue	O Secto norma O Expecticat	o por el unatero		
	C Deci		11101000		
Oftenenia	E O Parte Box	For anothros de calculo	0.00	Selena conclural	×
ORusa	People Contricana	fadaan kalaada di aarata	1.00	The deside of the second	
Aveta	Verezuela	estin unstanzaria de estecua	100 0	Tipo de estructura	O Hegular Creeguer 10
Manuecos	O USA				
Sudáfica	Circle .	Caracterización del emplazam	iento -		
C Argentina	Mdese O	Zona sisesco		01	OILON OV OV OIL
		and the second se		and the second sec	the set of the local set
C Dolivia	💻 🔿 Singapur	Región siemica	O Sierro, Eane	roldas y Galápagos 🗇 Costa lev	cepto Esmenaldas) 🔿 Oviento 🗧
Dolivia	C Singeour	Regiún sienéce	O Sierro, Eane	rahdan y Galápagan () Costa (ex	oepto Esmenaldas) 🔿 Oviento 🖕
C Dolvie C Dolvie C Onle	C Singapor	Pogein sianica Apicar reducción a todos los mo Tipo de atados	O Sierre, Earne dos escapto al redo fundamental	raldas y Galápages 🔿 Cota (o	cepto Esmendidae) 🔿 Oriento 🛉
Obivie Obvie Obie Obie Obie	C Segur	Región stanica Asicar reducción a todos los mo Tapo de asolo A B C O D E	© Serra, Esmo Se excepto al moio fundamental Porfiles de suelos rigidos (360 m/k > Vs 2 10	raklas y Galápagos () Corta (or 20 m/s)	cepto Exemutidae) Otivente 🔶
C Dolvis C Dovid C Orde Cotombe	C Sequer	Peggin signicu Alicar netucción a todos los nos Tapo de suels A B C OD E Importancio de la otra	O Serve, Earee De excepto al molo fundamental Porties de suelos ripidos (362 m/k > Ve a 16	raktas y Galápagos () Costa (or 20 m/n)	oogto Eanmaidee) Otimoto 🔶
C Dolivia D Dolivia D Orde	C Singapor	People sienica Ascar reducción e todas los nos Tapo de suelo A B C D E Importancia de la obra Stafficaciones esercieles y/o pelo	O Serve, Earee Dos excepto al modo fundamental Portes de suelos ripidos (362 m % > Ve a 16 grass — Estuctores de oroapació	rakkes y Galipagee () Cota (or 20m/s) respeciel () Otras salmust	oopto Emmaddee) O'Orande 🔶
Colve Colver Colve Colve	C Singapor	People sienica Actor reductin a todas los no Tipo de suelo A B C D C D E Importancio de la obra Esfluciones menciales y/o pel Esflucación del pentodo fuedar	O Serve, Earee Do excepto al modo fundamental Porties de suelos rópidos (SED m.Vo. Ve.a. 15 grans CEntractares de coupeción mental de la estructura	rakkes y Galipagee () Cota (or 23 m/k) respeciel () Otros estruct	oopto Emmaddee) O'Orando (* * uraa
Colive	C Singeour	Pegide sienica Actor reducción e todos los nor Tajos de suels A B C D E Importancia de la obra Estituación del periodo fundar O Según nerma	© Serre, Earer De excepto al molo fundamental Portes de suelos ripidos (200 m/k > Ve a 10 genes	rakkes y Galipagae () Cota (or Chung) respecial () Otras estruct	oresto Emmandden) O'Orendro (* areas
Colonte	C Singapor	Pegión sienica Attantica de la cora Bipo de suelo A B C D E Importancio de la cora Esfluciones menciales y/o pel Estimación del persido fuedar Giegón neresa Especificado por el suarto	Serve, Earen Serve, Earen Serve, Earen Sesecuto al molo fundamental Portes de suelos ripidos (SCE m.V.) Ve a N prese Catuchares de suepació sertal de lo restructure Teología estructure Toología estructure() Ol Ol Ol Ol	rakkes y Galipagee () Cota (or Bank) respecial () Okras estruct	oresto Emmandden) ○Oriente (* srass (*) ≤ (*) ○1 ○1 ○1 ○1 ○1 (*)
Colive	C Singuour	People simica People simica People simica People simica People simication People sim	Serve, Energy Desexcepto al modo fundamental Perfere de suelos ripidos (SED m. N. 7. Vr. a. 15 preses Distucciones de compación mental de las extructuras Peuro del edificio Tipología extructural (A) O I O I n que informeren en el antalase	rakkes y Galipagee () Cota (o Elm/k) • especial () Okras estructu • () II () // Tpologia estructu • () Gradus de II	oresto Esemendades) O Grandes (*) uras
Colonbe	C Singapor	Pegión sienica Attantica de suela Attantica de la obra Espontancia de la obra Esfecacione eserciales y/o pel Esfecación del pentado fuedar Esfecación del pentado fuedar Espontando per el suelato Monero de modos de vibració Según normo	Serve, Eaver Serve, Eaver se societo al modo fundamental Porfere de sueles répoles (ACE m.V.n. Vr. a. N prese Calculates de societations Porton del extracture Troclog in estructurel (A) O I O I Topolog in estructurel (A) O I O I O I O I O I O I O I O I O I O I O I O I O I O I O I O	rakkes y Galipagee () Cotta (or Bank) • expected () Otras estruct • () II () W Tpologia estructu • () Grados de 18 • () Considerar ()	orepto Esementidae) Oriente arras (9) arras (9) arra
Colive	C Brgaevr	Pegión sienica Pegión sienica Actor reducción é todos los nor Tajos de suels A B C D D E Importancia de la obra Estinación del periodo funda Gisportancia de periodo funda Gisportancia de sucado Nueseto de suctos de vitracció Sogún memo Adomico, heta sicance un pr	Serre, Earce S	rakker y Galipagee () Costa (or Bhu/k) • expected () Otras estruct • () H () W Tpologia estructu • () Granker de B • () Considerar la • () Sin obra esta	oresto Eanemaidden) Oriente arraes el (7) Ol Ol Ol Ol Oliverte sol dans index visconars en el anolitado an plantas hajo caparte en el modelo dinàmico dibero estructuras 30 relegadas.
Colve Cove Cove Cove	C Brgaevr	Región siseica Astor restucción a todos los mo Tipo de suelo A. B. C. D. E. Importancio de la obra Estilicaciones merciains y/o pel Estilicación del periodo fundas Según norma Singún norma Astorialos de velocado Según norma Astorialos de velocado Según norma Astorialos de velocado Según norma Astorialos de velocado	Serve, Erren Serve, Erren Serve, Erren Seven,	rakke y Galipagee () Costa (or 20m/k) respected () Otras estructur (s) Costa (or s) Costa (or (s) Co	oopto Eanmaiddes) O'Grande (*) ureas (*) at (*) O 1 O 1 O 1 O 1 O 1 O 1 O 1 O 1 O 1 O

Figura 4.7: Normativa para el cálculo de la acción sísmica

En la pestaña introducción se deben generar las líneas de replanteo (figura 4.8).

Líneas de replanteo	×
Punto para el origen de replanteo	
Introducir linea horizontal	
Introducir linea vertical	
Modificar linea	
Moverlinea	
Borrar linea	
Borrar linea	_
Salir	

Figura 4.8: Líneas de replanteo

Fuente: Autores

Para crear niveles, se procede a seleccionar el ícono de nuevas plantas. Aquí se ingresarán las alturas correspondientes. En caso de ser necesario también se pueden ingresar las cargas distribuidas por área en cada piso (figura 4.9).

Número de plantas a insertar 3 Planta Nombre Altura Categoria de uso Q (kN/m²) CM (kN/m 3 Folçado 3 3.00 Uso 1 2 Folçado 2 3.00 Uso 1
Planta Nombre Altura Categoria de uso Q (kN/m²) CM (kN/m²) 3 Foşado 3 3.00 Uso 1 2 5 2 3.00 Uso 1
3 Fojado 3 3.00 Ueo 1
2 Fotado 2 3.00 Uso 1
1 Foşado 1 3.00 Uso 1
Þ

Para comenzar a modelar la estructura procedemos a hacer clic en el ícono de nuevo pilar. En esta pestaña se pueden definir las vinculaciones y los coeficientes que se requieran aplicar en las columnas (figura 4.10).

Peterencia Gupo final: Forgado 3 Commitación Argula 0.8 grados Sin vinculación extenior Porgado 2 Peterencia 30 Argula 0.8 grados Sin vinculación extenior Porgado 2 Peterencia 30 Vincular gio altectori de quo yo 0.00 m Contro de apoyo 0.00 m 200 m Coeficientes de pandeo Caracteristicas del plat diferentes Coeficientes de regolez anl Sin vinculación Rocuerserio Sin vinculación Sin vinculación extenior Sin vinculación extenior Sin vinculación extenior Coeficientes de exporte O con contro de apoyo 0.00 m Fary do 2 Fary do 2 Coeficientes de regolez anl Sin vinculación Sin vinculación extenior Sin vinculación extenior Reserverento Sin vinculación Sin vinculación extenior Sin vinculación extenior Sin vinculación extenior Coeficientes de exporte Coeficientes de exporte Sin vinculación extenior Sin vinculación extenior Coeficientes de exporte Sin vinculación Sin vinculación extenior Sin vinculación extenior Resource Sin vinculación extenior Sin vinculación extenior Sin vi	
Arguis 0.0 gradue 0 lin vinculación extension 30 O con vinculación extension 0 con vinculación extension 30 Image: Con vinculación extension 1 model de extension 30 Image: Control de apoyo 0.0 m 30 Conficientes de pandeo Creactoristicas del plan diferentes. Forgado 1 30 Conficientes de regolare ante Centoristicas del plan diferentes. Forgado 2 Forgado 1 Conficientes de regolare ante Centoristicas del plan diferentes. Conficientes de regolare ante Conficientes de regolare ante Conficientes de regolare ante Recubersiento Conficientes de regolare ante Conficientes de regolare ante Conficientes de regolare ante Conficientes de regolare ante Recubersiento Conficientes de regolare ante Conficientes de regolare ante Conficientes de regolare ante Recubersiento Conficientes de regolare ante Conficientes de regolare ante Conficientes de regolare ante Conficientes de regolare ante Recubersiento Conficientes de regolare ante Conficientes de regolare ante Conficientes de regolare ante Conficientes de regolare ante Recubersiento Conficientes de regolare ante Conficientes de regolare ante	Grupo final: Forjado 3 v Onupe inicial: Cimentación v Forjado 3 (A) 30 30
Conficiente de rigidez ant 🙆	Sin vinculación exterior Fojado 1 30 O Con vinculación exterior Fojado 1 30 O Con vinculación exterior Fojado 1 30 O Vincular gros alrededor del que X Fojado 1 30 Descrivel de apoyo 0.00 m Forgi do 2 5.30 m Canto de apoyo 0.00 m Forgi do 1 3.00 m Canto de apoyo 0.00 m 0.00 m Forgi do 2 5.30 m
Residencia del homiglin	2 2 2

Figura 4.10: Nuevo pilar

Fuente: Autores

Al hacer clic junto al forjado como se indica en la figura 4.10, se despliega una pestaña (figura 4.11) donde se asignan las secciones transversales y los materiales. Se pueden seleccionar perfiles predeterminados o crear nuevos.

Figura 4.11: Tipo de sección

Una vez seleccionados los perfiles, se modelan las columnas en la ventana principal.

En las pestañas inferiores procedemos a cambiarnos de entorno a la entrada de vigas (figura 4.12).

Fuente: Autores

Aquí en la pestaña vigas, seleccionamos la opción entrar viga y se elige la viga requerida ya sea por un perfil predeterminado o se crea uno nuevo (figura 4.13).

🛃 Viga actual		×
Trpo		
	Uge so	2
Aceptar	Copier de viga	Cancelar

Figura 4.13: Sección transversal viga

Una vez seleccionados los perfiles se modelan las vigas en la ventana principal.

A continuación, en la pestaña cargas se selecciona la opción cargas, aquí se escoge entre puntual, lineal o superficial y el valor a asignarse según la hipótesis (figura 4.14).

O Puntus	as al OLine		Supe	ficial		
O Unifo Valor	rme_OTra	pecial n				
Hpótesis	Cargas mue	tas	Ŷ			
	Hpóter	is adicid	onales	i (cargas e	speciales)	
Nueva	Editor	Aug	ar	Bonar	Mover	Cancelar

Figura 4.14: Cargas

Fuente: Autores

Una vez asignadas las cargas en las barras se procede a calcular la obra. En este caso no se diseñan las cimentaciones por lo que escogemos la opción calcular la obra (sin dimensionar cimentación) (figura 4.15).

Calcul	ar Ayyda
bit .	Calcular la obra (incluso cimentación)
N	Calcular la obje (sin dimensionar cimentación)
	Calcular la gstructura sin obtener el armado
	Bearmar pórticos con cambios
	Rearmar todos los pórticos
	Rearmar gilares
-*	Comprobar geometría del grupo actual
∎¥.	Comprobar geometría del grupo actual y superiores
1 Comprobar geometría de todos	Comprobar geometría de todos los grupos
	Permitir introducir armados en losas y reticulares sin calcular
	Centro <u>d</u> e masas y centro de rigidez
0	Informe final de cálculo

Figura 4.15: Calcular la obra (sin dimensionar cimentación)

Con la estructura ya calculada se pueden desplegar los listados (figura 4.16).

Listados			
Listados personalizados	Listado de datos de la obra	Combinaciones usadas en el cálculo	
Untados de cimentación	Tensiones del terreno bajo vigas de carrentación	Listado de mériculas costas]
antado de munue de bloques de hormigrin	Listado de eduerzos en vigas	Latado de esfuerzos en viguetza	
Latado de esfuerzos en placas algenadas	Latada de estuerzos en losas mistas	Listado de amado de vigas	
Medición de vigas	Medición de viguetas	Mediciles de las bovesillas	I
Nedción de amaduras de fojados de viguetas	Medicatre de placas aligeradas	Medición de armados de placas aligenadas	
Nedición de Italia mistas	Medición de amados de losas motas	Listado de eliquetas	
Listado de intercambio de vigas	Listado de internantios de viguetas		
Comprobaciones de punzunamiento	Desplazamientos en nuclos de losas y reticulares	Eduation en rautos de loans y reliculares	
Listado de losies elgangulares	Superficies/Volúmenes	Cuantias de obra	
Cuantilas de armadura, por diámetro	Esfuerzos y armados de pilares, pantallas y muros	Desplazamientos de pilares	
Distorsiones de pilares, pantallas y muros	Cargos horzontales de viento	duttificación de la accelo del vento	
Justificación de la acción sismica	Aniliss de la establidad gobal	Eduezos y amados de vigas inclinadas	
Comprobaciones E.L.U. de plares y vigas	Estructuras 3D vitegrades	Escalenta	
Uniones	Comprobación de resistencia al fuego	Postesados	

Figura 4.16: Listados

Fuente: Autores

Los valores del cortante basal se pueden obtener en el listado justificación de la acción sísmica y las derivas de piso en el listado desplazamientos de pilares.

El ingreso de la carga sísmica en el entorno CYPE 3D se lo realiza de la misma forma que para CYPECAD.
Ecuación 76

4.9. Ingreso de datos en ETABS

En ETABS se modela la estructura como se indicó en la sección 2.5 Ingreso de datos en ETABS. Para el ingreso y diseño de la estructura bajo cargas sísmicas, adicionalmente se realizan los pasos que se indican a continuación.

En la pestaña define se escoge la opción load patterns (figura 4.17). Aquí se debe ingresar la carga sísmica y editar la carga lateral en modify lateral load (figura 4.18). Adicionalmente se debe tener una hoja de cálculo con el diseño del cortante basal en donde se obtienen los factores del coeficiente sísmico (C) y el coeficiente relacionado con el período de vibración de la estructura T (k) con la información de la tabla 4.11.

Donde el coeficiente sísmico C se calcula mediante la ecuación 76.

 $C = \frac{I S_a (T_a)}{R \phi_P \phi_F}$

Figura 4.17: Definición de cargas

Fuente: Autores

X Dir	Y Dir	Rase Shear Coefficient C	0.1085
X Dir + Eccentricity	Y Dir + Eccentricity	Building Height Exp., K	1.015283
X Dir - Eccentricity	Y Dir - Eccentricity	Story Range	
Ecc. Ratio (All Diaph.)		Top Story	Story3
Overwrite Eccentricities	Overwrite	Bottom Story	Base

Figura 4.18: Definición de carga sísmica

Adicionalmente, se debe ingresar el origen de la masa. Para esto se selecciona la pestaña *define – mass source* y se modifica la existente o se crea una nueva (figura 4.19).

Mass Sources	Click to:
MsSrc1	Add New Mass Source
	Add Copy of Mass Source
	Modify/Show Mass Source
	Delete Mass Source
	Default Mass Source
	MsSrc1 ~

Figura 4.19: Ingreso de masas

Fuente: Autores

En la figura 4.20 se presentan las fuentes de masas que se escogieron para el diseño de esta estructura.

Hans Sauras Nama	Mass Multipliers for Load Patterns
mass source warne	Load Pattern Multiplier
lass Source	Add
Element Self Mass	Modify
Additional Mass	Deiete
Specified Load Patterns	
Adjust Diaphragm Lateral Mass to Move Mass Centroid by:	Mass Options
This Ratio of Diaphragm Width in X Direction	Include Lateral Mass
This Ratio of Diaphragm Width in Y Direction	Include Vertical Mass
	☑ Lump Lateral Mass at Story Levels

Figura 4.20: Edición de fuente de masas

Fuente: Autores

ETABS permite crear una viga de sección reducida, esto se puede hacerlo en la sección assign - frame - moment frame beam connection type. Al seleccionar la opción de viga de sección reducida, se despliegan tres opciones para determinar los valores de *a*, *b* y *c* (figura 4.21).

Standard Moment Connection	Reduced Beam Section SidePlate® Option	0
Reduced Beam Section Options		
O Program Defaults:	a = 0.625 bf b = 0.75 db c = 0.20 bf	L
O User Specify x1, x2 and x3 where:	a=x1°bf b=x2°db c=x3°bf	
User Specify x1, x2 and x3 where:	a=x1 b=x2 c=x3	[ج
x1 0.127 x2 0.45	72 x3 0.04064 m	

Figura 4.21: Editar viga de sección reducida

CAPÍTULO 5

5. PÓRTICO RESISTENTE A MOMENTO – ANÁLISIS Y DISCUSIÓN

Figura 5.1: Pórtico resistente a momento a diseñar

Fuente: Autores

5.1. Diseño basado en fuerzas (DBF)

5.1.1. Cálculos manuales

5.1.1.1. Cortante basal de diseño V y espectro de diseño

Iniciamos determinando el espectro de diseño. Para esto tenemos que la estructura está ubicada en la ciudad de Cuenca – Ecuador, la misma que se encuentra en la zona sísmica II y el perfil de suelo es de tipo D (Suelos rígidos). En cuanto a la categoría del edificio se toma el valor de 1, ya que no se trata de una edificación esencial ni de ocupación especial. Para el factor de reducción de resistencia sísmica R se toma el valor de 8 ya que se trata de un pórtico especial sismo resistente, de acero laminado en caliente. Se asume que la estructura no cuenta con irregularidades en planta ni en elevación (tabla 5.1).

Ciudad	Cuenca
Provincia	Sierra, Esmeraldas y Galápagos
Tipo de Suelo	D
Zona sísmica	2
Tipo de estructura	1
I	1
R	8
IRREGUL	ARIDADES
#Irregularidades en Planta	0
#Irregularidades en Elevación	0

Fuente: Autores

En la tabla 5.2 se presentan los diferentes factores y coeficientes necesarios para el gráfico del espectro de respuesta, estos se obtuvieron mediante tablas y fórmulas presentadas en la sección 4.4 Diseño basado en fuerzas (DBF).

Tabla	5.2:	Factores y	v coe	ficientes
			•	

Z	0.25
n	2.48
r	1
ØP	1
ØE	1
Fa	1.4
Fd	1.45
Fs	1.06

Fuente: Autores

Se determina el período de vibración de la estructura según la sección 4.5.3 Determinación del período de vibración. El período de vibración 2 se lo recalculó por medio de un análisis modal a través del programa ETABS (tabla 5.3).

Ct	0.072	
α	0.8	
hn (m)	9	
Ta1	0.41756732	
Ta2 0.27427234		

Tabla 5.3: Período de vibración

Fuente: Autores

Los valores para el coeficiente relacionado con el período de vibración de la estructura k se tomaron de la tabla 4.11. Los períodos T0, Tc y el espectro de diseño en aceleración $S_a(T_a)$ se calcularon con las ecuaciones de la sección 4.4.1 Componentes horizontales: espectro elástico horizontal de diseño en aceleraciones (Sa) (tabla 5.4).

k1	1
k2	1
ТО	0.109785714
Тс	0.603821429
Sa1	0.868
Sa2	0.868
Coef. Sísmico 1	0.1085
Coef. Sísmico 2	0.1085

Fuente: Autores

A continuación, en la figura 5.2 se presenta la gráfica del espectro de respuesta de diseño.

Figura 5.2: Espectro de respuesta

Se calcula el peso por elementos de la estructura utilizando el peso específico, el área de las secciones transversales y la longitud de los elementos (tabla 5.5).

	Peso específico (kN/cm3)	Área sección transversal (cm2)	Longitud (cm)	Peso (KN)
Columnas	0.00007701	397.17	300	9.176
Vigas	0.00007701	165.392	600	7.642

Tabla 5.5: Peso por elementos vigas y columnas

Fuente: Autores

La carga super muerta representa el peso generado por la estructura (vigas y columnas) y la carga muerta se obtuvo a través del programa ETABS por las cargas muertas que se asignaron por piso (tabla 5.6 y 5.7).

Tabla 5.6: Pesos por piso

NT1		Р	
Nivei	Tipo de carga	KN	
Nivel 3	Super muerta	29.05	
Nivel 2	Super muerta	71.86	
Nivel 1	Super muerta	114.67	
Nivel 3	Muerta	141.24	
Nivel 2	Muerta	282.48	
Nivel 1	Muerta	423.72	

Fuente: Autores

Tabla 5.7: Sumatoria de pesos por piso

Nivel	Total	Acumulado
	kN	kN
Nivel 3	170.290	170.290
Nivel 2	184.050	354.340
Nivel 1	184.050	538.390
Sumatoria	538.390	

Fuente: Autores

El cortante basal se calculó mediante la ecuación 41. En este caso se calcularon dos valores, el primero tomando el período de vibración calculado manualmente y el segundo con el período de vibración obtenido mediante un análisis modal en ETABS (tabla 5.8).

Tabla 5.8: Cortante basal

W (kN)	538.391
V1 (kN)	58.415
V2 (kN)	58.415

Por último, para obtener las fuerzas sísmicas laterales, se tomaron las ecuaciones presentadas en la sección 4.5.5. Distribución vertical de fuerzas sísmicas laterales (tabla 5.9).

Nivel	W	Н	Wi	Hi	Wx*Hx^k	F(x)
	KN	m	KN	m		KN
Nivel 3	170.288	3.000	170.288	9.000	1532.591	28.073
Nivel 2	354.340	3.000	184.052	6.000	1104.310	20.228
Nivel 1	538.391	3.000	184.052	3.000	552.155	10.114
				Sumatoria	3189.056	58.415

Tabla 5.9: Fuerzas sísmicas laterales

Fuente: Autores

Se puede observar que, al sumar las fuerzas sísmicas laterales se obtiene el mismo valor del cortante basal.

5.1.1.2. Control de la deriva de piso (derivas inelásticas máximas de piso Δ_M)

Según la tabla 4.8, el valor de la deriva inelástica no debe superar 0.02. En la tabla 5.10 se presentan los valores obtenidos para las derivas inelásticas por piso y se comprueban que estas cumplan con el valor máximo permitido.

Tabla 5.10: Control de derivas inelásticas máximas

Nivel	Deriva inelástica ΔΜ	Chequeo		
Nivel 3	0.001978	CUMPLE		
Nivel 2	0.002556	CUMPLE		
Nivel 1	0.001662	CUMPLE		

Fuente: Autores

5.1.1.3. Índice de estabilidad Q_i

En la tabla 5.11 se presentan los valores del índice de estabilidad y en base a estos se comprueba si se deben o no considerar los efectos P-Delta. En este caso se obtienen valores menores a 0,10, por lo que no se deben considerar estos efectos.

Nivel	Deriva inelástica ΔΜ	Chequeo	Pi	Vi	hi	Qi	Chequeo
Nivel 3	0.001978	CUMPLE	256.052	28.07	3	0.00601	No se consideran los efectos P-Delta
Nivel 2	0.002556	CUMPLE	512.103	48.30	3	0.00903	No se consideran los efectos P-Delta
Nivel 1	0.001662	CUMPLE	768.155	58.42	3	0.00729	No se consideran los efectos P-Delta

Tabla 5.11: Índice de estabilidad Q_i

Fuente: Autores

5.1.1.4. Efectos de segundo orden P- Δ

No se consideran ya que $Q_i < 0,10$.

5.1.2. Resultados CYPE

Los resultados que se presentan a continuación son calculados para cargas estáticas o dinámicas. Esto se indicará en cada apartado según corresponda.

5.1.2.1. Cortante basal estático de diseño V y espectro de diseño

El informe con la justificación de la acción sísmica se lo obtiene mediante el entorno CYPECAD. Este realiza un análisis modal espectral siguiendo la norma NEC-SE-DS 2014. A continuación, se presentan los resultados obtenidos en el informe.

1.1. Datos generales de sismo

_	
Caracterización del emplazamiento	
Zona sísmica (NEC-SE-DS 2014, 3.1.1): II	
Región sismica (NEC-SE-DS 2014, 3.3.1): Sierra, Esmeraldas y Galápagos Tipo de suelo (NEC-SE-DS 2014, 3.2.1): D	
Sistema estructural	
Rx: Factor de reducción (X) (NEC-SE-DS 2014, Tabla 15 y 16)	R _x : <u>8.00</u>
Factor de reducción (Y) (NEC-SE-DS 2014, Tabla 15 y 16)	R _Y : <u>8.00</u>
Coeficiente de regularidad en planta (NEC-SE-DS 2014, 5.2.3a)	Φ_{P} : <u>1.00</u>
Coeficiente de regularidad en elevación (NEC-SE-DS 2014, 5.2.3b)	Φ _ε : <u>1.00</u>
aometria en altura (NEC-SE-DS 2014, 5.2.3): Regular	
Etimación del periodo fundamental de la estructura: Según norma	
Stema estructural (X) (NEC-SE-DS 2014, 6.3.3a): 1	
Altura dal adificia	h
	n : <u>9.00</u> m
mportancia de la obra (NEC-SE-DS 2014, 4.1): Otras estructuras	
Parametros de cálculo	
vymero de modos de vibración que intervienen en el analisis: Según norma	
ección de sobrecarga de uso	0.00
Tactor multiplicador del espectro	: 1.00
Alectos de la componente sismica vertical	
vo se consideran	
/erificacion de la condicion de cortante basal: Segun norma	
No se realiza análisis de los efectos de 2º orden	
Criterio de armado a aplicar por ductilidad: Según NEC-SE-DS 2014	
Factores reductores de la inercia (NEC-SE-DS 2014, 6.1.6 b)	
Vigas primarias frente a la acción sísmica: 0.5	
Forjados primarios frente a la acción sísmica: 0.5	
Pilares primarios frente a la acción sismica: 0.8	
Pantallas: 0.6	
Muros: 0.6 Muros de fábrica: 0.5	
Direcciones de análisis	
Acción sísmica según X	
Parámetros necesarios para la definición del espectro	
Z: Factor de zona (NEC-SE-DS 2014, Tabla 1)	Z : 0.25
Zona sísmica (NEC-SE-DS 2014, 3.1.1): II	0.20
a: Relación de amplificación espectral (NEC-SE-DS 2014, 3.3.1)	n : 248
Región sísmica (NEC-SE-DS 2014, 3.3.1): Sierra, Esmeraldas y Galánagos	i i <u>2.40</u>
E: Factor de sitio (NEC-SE-DS 2014, Tabla 3)	E 1 1 40
E.: Factor de sitio (NEC-SE-DS 2014, Tabla 4)	Fa : 1.40
F.: Factor de sitio (NEC-SE-DS 2014, Tabla 5)	F. : 1.05
Tipo de suelo (NEC-SE-DS 2014, 3.2.1): D	1.00
Zona sísmica (NEC-SE-DS 2014, 3.1.1): II	
I: Factor de importancia (NEC-SE-DS 2014, Tabla 6)	I: 100
Importancia de la obra (NEC-SE-DS 2014, 4.1): Otras estructuras	1.00
: Exponente que define la rama descendente del espectro (NEC-SE-DS 2014. 3.3.1)	F; 100
Tipo de suelo (NEC-SE-DS 2014, 3.2.1): D	1.00
2014, 3.3.1)	T _c : 0.60 s

Espectro elástico de aceleraciones

Fuente: Autores

En la figura 5.3 se presentan los periodos de vibración calculados mediante un análisis modal.

Figura 5.3: Coeficientes de participación

1.3. Coeficientes de participación

Modo	Т	L	L_{gr}	Mx	Hipótesis X(1)
Modo 1	1.124	0	0	0 %	R = 8 A = 0.572 m/s ² D = 18.3001 mm
Modo 2	0.941	0.0016	1	0 %	R = 8 A = 0.683 m/s ² D = 15.3295 mm
Modo 3	0.259	1	0	82.78 %	R = 8 A = 1.064 m/s ² D = 1.81369 mm
Modo 4	0.172	0	0	0 %	R = 8 A = 1.064 m/s ² D = 0.79741 mm
Modo 5	0.148	0	1	0 %	R = 8 A = 1.064 m/s ² D = 0.59382 mm
Modo 6	0.073	1	0	13.59 %	R = 8 A = 1.064 m/s ² D = 0.14204 mm
Total				96.37 %	

de CYPE tiva

Periodo de vibración en segundos.

Coeficientes de participación normalizados en cada dirección del análisis. Ľ

📮: Coeficiente de participación normalizado correspondiente al grado de libertad rotacional.

N: Porcentaje de masa desplazada por cada modo en cada dirección del análisis.

Relación entre la aceleración de cálculo usando la ductilidad asignada a la estructura y la aceleración de calculo obtenida sin ductilidad.

culo obtenida sin ductilidad.

Aceleración de cálculo, incluyendo la ductilidad. Ağ,

Coeficiente del modo. Equivale al desplazamiento máximo del grado de libertad dinámico. Do

Cortante basal estático y peso sísmico de la estructura

1.5.2. Cortante basal est	ático									
El cortante sísmico en la ba las direcciones de análisis:	ise de la estructura se dete	rmina para cada una de								
V _{s,x} : Cortante sísmico en la	V _{s,x} :	<u>58.980</u> kN								
$V_{s,x} = S_{d,x}(T_a) \cdot W$										
S _{4,x} (T _a): Aceleración e	spectral horizontal de diseñ	io (X)	S _{4x} (T _a) : _	<u>0.109</u> g						
T _a = 0.072 ·	amental aproximado (X) (N h ^{o.a}	IEC-SE-DS 2014, 6.3.3a)	1 _{8,2} :	<u>0.42</u> s						
Sistema esti h: Altura de	ructural (X) (NEC-SE-DS 20 l edificio	14, 6.3.3a): I	h :	9 <i>00</i> m						
V _{s,Y} : Cortante sísmico en la	base (Y) (NEC-SE-DS 2014	4, 6.3.2)	V _{s,y} :	58.980 kN						
$V_{s,y} = S_{d,y}(T_a) \cdot W$										
S _{d,Y} (T _a): Aceleración e	spectral horizontal de diseñ	io (Y)	S _{d,Y} (T _a) :	0.109 g						
T _{a.Y} : Periodo fund	lamental aproximado (Y) (N h ^{0.8}	IEC-SE-DS 2014, 6.3.3a)	Т _{а, т} :	<u>0.42</u> s						
Sistema esti	ructural (Y) (NEC-SE-DS 20	14, 6.3.3a): I								
h: Altura de	I edificio		h:	<u>9.00</u> m						
W: Peso sismico total de la	estructura estructura es la suma de los	- pasas císmisas da tadas	w : _ 5	43.594 KN						
las plantas.	escructura es la sulla de los	s pesos sistilicos de todas								
$\frac{\nabla O}{ V } W = \sum_{i=1}^{n} W_i$										
wi: Peso sísmico total	de la planta "i"									
Suma de la totalidad d	le la carga permanente y de	e la fracción de la								
o sobrecarga de uso con	isiderada en el calculo de la	accion sismica.								
ppr		L.								
T D D D D D D D D D D D D D D D D D D D	Planta	(kN)								
ā.	Forjado 3 173.111									

5.1.2.2. Fuerzas sísmicas equivalentes por planta

Forjado 2

Forjado 1

 $W = \sum w_i$

El análisis realizado para el cálculo de estas fuerzas laterales es mediante un análisis dinámico (figura 5.4).

185.242

185.242

543.594

1.6. Cortante sísmico combinado por planta

El valor máximo del cortante por planta en una hipótesis sísmica dada se obtiene mediante la Combinación Cuadrática Completa (CQC) de los correspondientes cortantes modales.

Si la obra tiene vigas con vinculación exterior o estructuras 3D integradas, los esfuerzos de dichos elementos no se muestran en el siguiente listado.

1.6.1. Cortante sísmico combinado y fuerza sísmica equivalente por planta

Los valores que se muestran en las siguientes tablas no están ajustados por el factor de modificación calculado en el apartado 'Corrección por cortante basal'.

Hipótesis sísmica: Sismo X1

Figura 5.4: Cortante sísmico combinado por planta

Fuente: Autores

5.1.2.3. Control de la deriva de piso

Tabla 5.12: Derivas máximas por planta

Desplome local máximo de los pilares (δ / h)								
Dianta	Situaciones persist	entes o transitorias	Situaciones sísmicas ⁽¹⁾					
Planta	Dirección X	Dirección Y	Dirección X	Dirección Y				
Forjado 3			1 / 682 (C2,)					
Forjado 2			1 / 527 (C2,)					
Forjado 1			1 / 724 (C2,)					
Notas: ⁽⁷⁾ Los desplazamientos están mayorados por la ductilidad.								

5.1.3. Resultados ETABS

El análisis realizado es mediante el método estático.

5.1.3.1. Cortante basal

Figura 5.5: Cortante basal

5.1.3.2. Fuerzas sísmicas laterales

Figura 5.6: Fuerzas sísmicas laterales

Fuente: Autores

5.1.3.3. Control de la deriva de piso

TABLE: Story Drifts								
Story	Drift							
Story3	SX+	Х	0.00033					
Story2	SX+	Х	0.000426					
Story1	SX+	Х	0.000277					

Tabla 5.13: Derivas máximas por planta

Fuente: Autores

5.1.3.4. Índice de estabilidad Q_i

Para determinar el índice de estabilidad se complementaron los resultados obtenidos en ETABS (Δ_M , P_i , V_i y h_i) mediante cálculos en una hoja de cálculo como se presenta a continuación en la tabla 5.14.

Tabla 5.14: Índice de estabilidad Q_i

	Nivel	Deriva inelástica ΔM	Chequeo	Pi	Vi	hi	Qi	Chequeo
ſ	Nivel 3	0.001980	CUMPLE	256.052	28.071	3	0.00602	No se consideran los efectos P-Delta
ſ	Nivel 2	0.002556	CUMPLE	512.103	48.2977	3	0.00903	No se consideran los efectos P-Delta
ſ	Nivel 1	0.001662	CUMPLE	768.155	58.411	3	0.00729	No se consideran los efectos P-Delta

5.1.4. Comparación de resultados

En la tabla 5.15 a continuación, se presentan los resultados de las fuerzas sísmicas laterales, cortante basal y derivas inelásticas de piso mediante los tres métodos de cálculo.

Se debe tomar en cuenta que los resultados de las fuerzas sísmicas laterales y las derivas de piso obtenidas mediante el programa CYPECAD, son calculadas por el método dinámico. Por esta razón se obtienen valores con una mayor diferencia.

JUSTIFICACIÓN DE ACCIÓN SÍSMICA									
	FUERZAS SÍ	ÍSMICAS LA	ATERALES	CORTANTE BASAL ESTÁTICO	DERIVAS INELÁSTICAS DE PISO				
	NIVEL 3 (KN)	NIVEL 2 (KN)	NIVEL 1 (KN)	(KN)	NIVEL 3	NIVEL 2	NIVEL 1		
CÁLCULO MANUAL	28.073	20.228	10.114	58.415	0.001978	0.002556	0.001662		
СҮРЕ	25.041	18.875	10.872	58.980	0.001466	0.001898	0.001381		
ETABS	28.071	20.227	10.113	58.411	0.001980	0.002556	0.001662		

Tabla 5.15: Justificación de acción sísmica

Fuente: Autores

Los resultados obtenidos entre los cálculos manuales y ETABS son casi idénticos, su variación se puede considerar como despreciable (tabla 5.16).

COMPARACIÓN DE ACCIÓN SÍSMICA CÁLCULO MANUAL - ETABS									
	FUERZAS SÍSMICAS LATERALES			CORTANTE BASAL	DERIVAS INELÁSTICAS DE PISO				
	NIVEL 3 (KN)	NIVEL 2 (KN)	NIVEL 1 (KN)	(KN)	NIVEL 3	NIVEL 2	NIVEL 1		
CÁLCULO MANUAL	28.073	20.228	10.114	58.415	0.001978	0.002556	0.001662		
ETABS	28.071	20.227	10.113	58.411	0.001980	0.002556	0.001662		
DIFERENCIA	0.002	0.001	0.001	0.004	-0.000002	0.000000	0.000000		

Tabla 5.16: Comparación de acción sísmica cálculo manual vs ETABS

Fuente: Autores

En las tablas 5.17 y 5.18 realizamos la comparación del cortante basal, ya que este este es el único valor calculado por el método estático por los tres métodos. En el programa CYPECAD se obtiene un valor del cortante superior al obtenido mediante cálculos manuales y mediante ETABS. Al analizar los resultados obtenidos en cada método, podemos observar que esta variación se debe al peso de la estructura.

COMPARACIÓN DE ACCIÓN SÍSMICA CÁLCULO MANUAL - CYPE				
CORTANTE BASA ESTÁTICO				
(KN)				
CÁLCULO MANUAL	58.415			
СҮРЕ	58.980			
DIFERENCIA	-0.565			

Tabla 5.17: Comparación de acción sísmica cálculo manual vs CYPECAD

Fuente: Autores

Tabla 5.18: Comparación de acción sísmica CYPE vs ETABS

COMPARACIÓN DE ACCIÓN SÍSMICA CÁLCULO CYPE - ETABS				
	CORTANTE BASAL			
	ESTÁTICO			
	(KN)			
СҮРЕ	58.980			
ETABS	58.411			
DIFERENCIA	0.569			

5.2. Diseño de columna

5.2.1. Cálculos manuales

Para el cálculo de los momentos, cortantes y carga axial última se utilizará la solicitación más desfavorable para cada caso. Estos valores serán obtenidos mediante el software ETABS.

5.2.1.1. Momento (M), cortante (P) y carga axial (V) máximas según combinaciones de carga

Para la combinación 1,4 D se tiene:

$$Mu1 \coloneqq 0 \ \mathbf{kN} \cdot \mathbf{m} \qquad Pu1 \coloneqq 374.6160 \ \mathbf{kN} \qquad Vu1 \coloneqq 0 \ \mathbf{kN}$$

Para la combinación 1,2 D + 1,6 L se tiene:

$$Mu2 \coloneqq 0 \ \mathbf{kN} \cdot \mathbf{m} \qquad Pu2 \coloneqq 497.7775 \ \mathbf{kN} \qquad Vu2 \coloneqq 0 \ \mathbf{kN}$$

Para la combinación 1,2 D + E + 0,5 L se tiene:

$Mu3 \coloneqq 52.5581 \ kN \cdot m$ P	u3:=376.3113 kN	$Vu3 = 22.6751 \ kN$
--	------------------------	----------------------

5.2.1.2. Dimensiones del perfil seleccionado

El perfil seleccionado es un perfil W 305 x 313.

Figura 5.7: Dimensiones del perfil

Fuente: Tomado de Gerdau Corsa, s.f.

d

$$= 374 \ mm$$
 $bf := 325 \ mm$

$$tw \coloneqq 30 \ mm$$
 $tf \coloneqq 48.3 \ mm$

Propiedades de la sección

$A \coloneqq 39717 \ mm^2$	$T \coloneqq 240 \ mm$
$Ix = 892068021.4 \ mm^4$	$Iy = 276965556.3 \ mm^4$
$Cw \coloneqq 7.329 \cdot 10^{12} \ \boldsymbol{mm}^6$	$J \! \coloneqq \! 27344993.9 \ cm^4$
$Sx = 4770417.2 \ mm^3$	$Sy = 1704403.4 \ mm^3$
$Zx = 5689806.5 \ mm^3$	$Zy = 2613258.8 \ mm^3$
$rx \coloneqq \sqrt{\frac{Ix}{A}} = 14.987 \ cm$	$ry \coloneqq \sqrt{\frac{Iy}{A}} = 8.351 \ cm$

El perfil analizado es de acero estructural A36, por lo que cuenta con las siguientes características:

$Fy \coloneqq 250 \ MPa$	Fu=375 MPa
$E \coloneqq 200000 \ MPa$	G≔76923.08 MPa
$ ho \coloneqq 1.3$	Cd = 5.5
$\Omega_0 \coloneqq 3$	$Ry \coloneqq 1.3$

5.2.1.3. Secciones compactas

Se chequea que los elementos componentes del perfil sean compactos.

Elementos comprimidos con miembros sujetos a flexión.

Flexión en alas de perfiles I laminados, canales y tes.

$$\lambda ala \coloneqq \frac{bf}{2 \cdot tf} = 3.364 \qquad \qquad \lambda p \coloneqq 0.3 \cdot \sqrt{\frac{E}{Fy}} = 8.485$$

 $\lambda ala < \lambda p$

Para flexión en alas de perfiles I roladas o armadas, canales y tes.

$$\lambda alma \coloneqq \frac{T}{tw} = 9.247 \qquad \qquad \lambda p \coloneqq 2.45 \cdot \sqrt{\frac{E}{Fy}} = 69.296$$

$$T \coloneqq d - 2 \cdot tf = 277.4 \ mm \qquad \qquad Ca \coloneqq \frac{Pu}{\phi \cdot Fy \cdot A} = 0.056 \qquad \qquad Ca \le 0.125$$

Para el perfil seleccionado, las relaciones ancho-espesor de sus elementos a compresión (tanto las alas como el alma) no exceden las relaciones máximas ancho-espesor, λ_p , por lo tanto, toda la sección es compacta.

5.2.1.4. Diseño de miembros en tensión

```
\phi = 0.9
```

$$\phi Pnt \coloneqq \phi \cdot Fy \cdot A = 8936.325 \ kN$$

$$P \coloneqq Pu2 = 497.778 \ kN$$

$$\frac{P}{\phi Pnt} = 0.0557$$

5.2.1.5. Diseño de miembros en compresión

En base a la tabla 2.5 se determina el valor del factor de longitud efectiva, K. En este caso se toma un valor de 0,80 al tratarse de una columna empotrada en su base y articulada en su extremo.

 $k \coloneqq 0.8$

$L \coloneqq 3000 \ mm$

Se determina la longitud efectiva a continuación.

 $Lc \coloneqq k \cdot L = 2400 \ mm$

$$\frac{Lc}{ry} \le 200 \qquad \qquad 28.74 \le 200$$

Se cumple esta condición, por lo tanto, el elemento no es esbelto.

Resistencia nominal a la compresión

 $Pn := Fcr \cdot A = 9503.873 \ kN$

 $\phi Pnc := 0.9 \cdot Fcr \cdot A = 8553.485 \ kN$

 $P \coloneqq Pu2 = 497.778 \ kN$

$$Fcr \coloneqq \left(0.658^{\frac{Fy}{Fe}}\right) \cdot Fy = 239.29 \ MPa$$

$$Fe \coloneqq \frac{\boldsymbol{\pi}^2 \cdot \boldsymbol{E}}{\left(\frac{\boldsymbol{L}\boldsymbol{c}\boldsymbol{y}}{\boldsymbol{r}\boldsymbol{y}}\right)^2} = 2389.773 \ \boldsymbol{MPa}$$

$$\frac{P}{\phi Pnc} = 0.0582$$

La columna está trabajando al 5,8% por lo que cumple con la capacidad requerida.

5.2.1.6. Diseño de miembros en flexión en el eje fuerte

Se asume un valor conservador de $C_b=1$.

 $Mp \coloneqq Fy \cdot Zx = 1422.452 \ kN \cdot m$

 $\phi Mn = 0.9 \cdot Fy \cdot Zx = 1280.206 \ kN \cdot m$

$$Lp := 1.76 \cdot ry \cdot \sqrt{\frac{E}{Fy}} = 4157.022 \ mm$$

$$Lry \coloneqq 1.95 \cdot rtsy \cdot \frac{E}{0.7 \cdot Fy} \cdot \sqrt{\frac{J}{Sx \cdot h0}} + \sqrt{\left(\frac{J}{Sx \cdot h0}\right)^2 + 6.76 \cdot \left(\frac{0.7 \cdot Fy}{E}\right)^2} = 4063337.08 \ mm$$

$$Lb = 3000 \ mm$$
$$Lb \le Lpy$$
$$Mn := Mp = 1422.452 \ kN \cdot m$$
$$0.9 \cdot Mn = 1280.2065 \ kN \cdot m$$
$$Mu = 52.558 \ kN \cdot m$$
$$\frac{Muy}{0.9 \cdot Mny} = 0.041$$

La columna está trabajando al 4,1% por lo que cumple con la capacidad requerida.

5.2.1.7. Diseño de miembros en flexión en el eje débil

Se asume un valor conservador de C_b=1.

 $Mp \coloneqq Fy \cdot Zy = 653.315 \ kN \cdot m$

$$\phi Mn \coloneqq 0.9 \cdot Fy \cdot Zy = 587.983 \ kN \cdot m$$

$$Lp \coloneqq 1.76 \cdot rx \cdot \sqrt{\frac{E}{Fy}} = 7460.508 \ mm$$

$$Lrx \coloneqq 1.95 \cdot rtsx \cdot \frac{E}{0.7 \cdot Fy} \cdot \sqrt{\frac{J}{Sy \cdot h0} + \sqrt{\left(\frac{J}{Sy \cdot h0}\right)^2 + 6.76 \cdot \left(\frac{0.7 \cdot Fy}{E}\right)^2}} = 15235610.932 \ mm$$

$$Lb = 3000 \ mm$$

 $Lb \leq Lpx$

$$Mn \coloneqq Mp = 653.315 \ kN \cdot m$$

$Mu \coloneqq 0 \ \mathbf{kN} \cdot \mathbf{m}$

 $\frac{Mu}{0.9 \cdot Mn} = 0$

5.2.1.8. Diseño de miembros en corte

$$\frac{T}{tw} \le 2.24 \cdot \sqrt{\frac{E}{Fy}}$$

$$9.247 \le 63.357$$

Por lo tanto:

 $\Phi v \coloneqq 1$

 $Vn := 0.6 \cdot Fy \cdot Aw \cdot Cv1 = 1683 \ kN$

 $Aw \coloneqq d \cdot tw = 11220 \ mm^2$

 $\Phi v \cdot V n = 1683 \ kN$

Vu=22.675 kN

$$\frac{Vu}{\Phi v \cdot Vn} = 0.013$$

 $\Phi v \cdot Vn > Vu$

La sección resiste a la fuerza cortante.

Atiesadores transversales

$$\frac{T}{tw} \le 2.46 \cdot \sqrt{\frac{E}{Fy}}$$

$$9.247 \le 69.579$$

No se requieren atiesadores transversales.

5.2.1.9. Diseño de miembros para solicitaciones combinadas y torsión

Los mayores esfuerzos solicitantes de cálculo se producen para la combinación de acciones 1,2 D + E + 0,5 L.

Secciones con simetría doble y simple sometidas a flexión y compresión

Resistencia a compresión requerida

Pu=376.311 kN

Resistencia de diseño a compresión

 $\phi Pnc := 0.9 \cdot Fcr \cdot A = 8553.485 \ kN$

Resistencia a flexión requerida en el eje fuerte

 $Mu3_3 \coloneqq Mu = 52.558 \ kN \cdot m$

Resistencia de diseño a flexión en el eje fuerte

 $\phi Mnx = 0.9 \cdot Mn = 1280.206 \ kN \cdot m$

Resistencia a flexión requerida en el eje débil

 $Mu2_2:=0 \ kN \cdot m$

Resistencia de diseño a flexión en el eje débil

 $\phi Mny = 0.9 \cdot Mn = 587.983 \ kN \cdot m$

$$\frac{Pu}{\phi Pn} < 0.2$$
 0.044 < 0.2

$$\frac{Pu}{2 \cdot \phi Pn} + \left(\frac{Mu3_3}{\phi Mnx} + \frac{Mu2_2}{\phi Mny}\right) = 0.063$$

Secciones doblemente simétricas sometidas a flexo compresión simple

$$n2 \coloneqq \frac{Pu}{\phi Pn} + \left(\frac{Mu3_3}{\phi Mnx}\right)^2 = 0.046$$

5.2.2. Resultados CYPE

CYPE 3D emite un listado con todas las comprobaciones realizadas para cada uno de los elementos siguiendo la norma ANSI/AISC 360-16 (LRFD). El informe se lo obtiene desde la opción listados y este presenta las combinaciones de carga utilizadas, los pasos, fórmulas y los resultados para cada una de las comprobaciones.

5.2.2.1. Momento (M), cortante (P) y carga axial (V) máximas

Figura 5.8: Diagrama de momento, cortante y axial CYPE 3D para la combinación 1,4 D

		Ť	N máx.: -487.638 kN	
) Todas las barras			X: 3.000 m	
Solo las barras seleccior Consultar valores	nadas	1		
Axil (N)	0.050	<		
Cortante y (Vy)	0.100			
Cortante z (Vz)	0.100			
Momento torsor (Mt)	0.100			
Momento y (My)	0.100			
Momento z (Mz)	0.100			
Deformada (D)	100.000			
Eecha xy (Fxy)	100.000	R		
Flecha xz (Fxz)	100.000			
Recha (F)	100.000			
) Ejes sobre el plano de la vent	tana			
Dibujar valores máximos y mir	nimos			
Ver valores máximos y minimo	26			
omb. seleccionada cero laminado y armado	×	[[[N min.: -498.649 kt X: 0.000 m

Figura 5.9: Diagrama de momento, cortante y axial CYPE 3D para la combinación 1,2 D + 1,6 L

Fuente: Autores

Esfuerzos en barras, por combinación									
		Combinación		Posiciones en la barra					
Barra	Tipo	Descripción U		1.5	2.571	3			
	인 1.4·PP+1.4·CM1	1.4·PP+1.4·CM1	Ν	-375.246	-368.823	-364.235	-362.4		
			Vz	0	0	0	0		
		My	0	0	0	0			
na	iina	eiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	Ν	-498.649	-493.143	-489.211	-487.638		
um	lam		Vz	0	0	0	0		
Col	Sro		My	0	0	0	0		
	⁸ ↓ 1.2·PP+1.2·CM1+0.5·Q1+SX	Ν	-376.955	-371.449	-367.517	-365.944			
		1.2·PP+1.2·CM1+0.5·Q1+SX	1.2·PP+1.2·CM1+0.5·Q1+SX	Vz	-18.758	-18.758	-19.306	-18.96	
			My	-43.83	-15.69	4.21	12.14		

Dimensiones del perfil seleccionado 5.2.2.2.

El perfil seleccionado es un perfil H 356x134,2.

Tabla 5.20: Características del perfil CYPE 3D

Fuente: Autores

Diseño de miembros en tensión 5.2.2.3.

Resistencia a tracción (Capítulo D) comprobación no procede, ya que no hay axil de tracción.

5.2.2.4. Diseño de miembros en compresión

Ĕ	mitación de esbeltez para compresión (Capítulo E)				
و م	esbeltez máxima admisible en una barra sometida a compresión es*:				
una versi	$\lambda \leq 200$	λ	:	29	_√
D	onde:				
0	λ: Coeficiente de esbeltez				
oducid	$\lambda = \frac{L_c}{r}$	λ	:	29	_
ā	Siendo:				
	L _c : Longitud efectiva				
	$L_{c} = KL$				
	Donde:				
	L: Longitud de la barra	L	:	3000	mm
	K: Factor de longitud efectiva.	K	:	0.80	
	r _y : Radio de giro respecto al eje Y	r,	:	8.35	cm
	Donde:				
	$r_y = \sqrt{\frac{I_y}{A}}$	ry	:	8.35	_cm

Donde:

I,: Momento de inercia respecto al eje Y	I,	:	27696.56	cm4
A: Área total de la sección transversal de la barra.	Α	:	397.17	cm ²

Notas:

*: La esbeltez máxima admisible está basada en las Notas de Usuario de la sección E2.

Resistencia a compresión (Capítulo E)

Todas las secciones deben cumplir con las especificaciones LRFD desarrolladas en Capítulo E de ANSI/AISC 360-16 (LRFD). Se debe satisfacer el siguiente criterio:

 $\eta_{\tau} = \frac{P_r}{P_r} \leq 1$

El axil de compresión solicitante de cálculo pésimo P, se produce en el nudo N3, para la combinación de hipótesis 1.2-PP+1.2-CM1+1.6-Q1. Donde:

Pr: Resistencia a compresión requerida para las combinaciones de carga LRFD

P.: Resistencia de diseño a compresión

 $P_c = \phi_0 P_a$

La resistencia de diseño a compresión en secciones comprimidas es el menor valor de los obtenidos según los estados límite descritos en el Capítulo E.

Donde:

educativa de CYPE

Producido por una

φ_p: Factor de resistencia a compresión, tomado como: P.: Resistencia nominal a compresión, calculada según el Artículo E3-A:

 $P_n = F_{cr}A$

para el pandeo por flexión de secciones con elementos compactos y no compactos (ANSI/AISC 360-16 (LRFD), Capítulo E - E3-A). Donde:

A: Área bruta de la sección de la barra. F_a: Tensión de pandeo por flexión, tomada como:

i) Cuando:
$$\frac{r_y}{F_e} ≤ 2.25$$

 $F_{cr} = \left| 0.658^{\frac{r_r}{p_s}} \right| F_{v}$

Donde:

Fy: Límite elástico mínimo especificado del acero de las barras

F.: Tensión crítica elástica de pandeo, tomada como la menor de:

π²8

Donde:

Siendo:

L.: Longitud efectiva

 $L_c = KL$

E: Módulo de elasticidad del acero	Ε:	200000.00	MPa
K: Factor de longitud efectiva.	K _* :	0.80	_
	К, :	0.80	_
L: Longitud de la barra	L :	3000	mm

φ_P : 0.90 P. : 9503.87 kN

Α	:	397.17	cm ²
F_{cr}	:	239.29	MPa

F_y: 250.00 MPa

F.: 2389.77 MPa

Fex : 7697.13 MPa

F., : 2389.77 MPa

r: Radio de giro dominante	г. :	14.99	cm
	Fy :	8.35	cm
$r = \sqrt{\frac{I}{A}}$			
Donde:			
I: Momento de inercia	$\mathbf{I}_{\mathbf{x}}$:	89206.80	cm4
	I_y :	27696.56	cm4
A: Área total de la sección transversal de la barra.	A :	397.17	_cm²

5.2.2.5. Diseño de miembros en flexión

Resistencia a flexión eje X (Capítulo F)	
Todas las secciones deben cumplir con las especificaciones LRFD desarrolladas en Capítulo F de ANSI/AISC 360-16 (LRFD).	
Se debe satisfacer el siguiente criterio:	
$\eta_{tt} = \frac{M_{c}}{M_{c}} \leq 1$	η _κ : <u>0.034</u> ✔
El momento flector solicitante de cálculo pésimo, M, se produce en el nudo N3, para la combinacion de acciones 1.2·PP+1.2·CM1+SX. Donde:	
M.: Resistencia a flexión requerida para las combinaciones de carga LRED	M.: 43.83 kN-m
M.: Resistencia de diseño a flexión	M _c : <u>1280.21</u> kN·m
$M_{-} = \phi_{+}M_{-}$	
La resistencia de diseño a flexión para secciones sometidas a momento flector es el menor valor de los obtenidos según los estados límite descritos en el Capítulo F: Donde:	
φ _b : Factor de resistencia a flexión	Φ ; 0.90
Mn: La resistencia nominal a flexión calculada según Artículo 2,	
Sección 1	M.: <u>1422.45</u> kN·m
1 Fluencia	
Mn=Mp=F,Zx	M.: <u>1422.45</u> kN·m
😴 Donde:	
Fy: Límite elástico mínimo especificado	F _y : <u>250.00</u> MPa
Z _x : Módulo resistente plástico respecto al eje X	Z _* : <u>5689.81</u> cm ³
2 Pandeo lateral-torsional	
a) Si L _s ≤ L _s :, el estado limite de pandeo lateral-torsional no es de el aplicación	
Donde:	
2 L _b : Distancia entre puntos de arriostramiento al desplazamiento lateral del ala comprimida o de la torsión de la sección transversal	L _b + : <u>3000</u> mm
/	L _b -: <u>1000</u> mm
$L_p = 1.76r_y \sqrt{\frac{E}{F_y}}$	L _p : <u>4157.02</u> mm
Donde:	
E: Módulo de elasticidad del acero	E : 200000.00 MPa
Fy: Límite elástico mínimo especificado	F _y : 250.00 MPa
$r_v = \sqrt{\frac{I_v}{A}}$	r _y : <u>8.35</u> cm
Donde:	
I _v : Momento de inercia respecto al eje Y	I, : 27696 56 cm4
A: Área total de la sección transversal de la barra.	A : 397.17 cm ²

Resistencia a corte Y (Capítulo G)		
Todas las secciones deben cumplir con las especificaciones LRFD desarrolladas en Capítulo G de ANSI/AISC 360-16 (LRFD).		
Se debe satisfacer el siguiente criterio:		
$\eta_{\rm v} = \frac{V_{\rm r}}{V_{\rm c}} \le 1$	η _v : <u>0.011</u>	√
El esfuerzo cortante solicitante de cálculo pésimo V, se produce en un punto situado a una distancia de 2.571 m del nudo N3, para la combinación de motesis 1.2·PP+1.2·CM1-SX.		
 V.: Resistencia a cortante requerida para las combinaciones de carga LRFD V.: Resistencia de diseño a cortante 	Vr : <u>19.31</u>	kN
$V_e = \phi_v V_n$	V _€ : <u>1683.00</u>	kN
Za resistencia de diseño a cortante viene dada por:		
- Donde:		
En la Sección G2.1 a:		
φ.: Factor de resistencia a cortante	φ.: 1.00	_
V _n : se define según lo detallado en el Capítulo G, de la siguiente forma:		
ra almas de secciones con simetría simple o doble y en U sometidas a cortante el plano del alma (ANSI/AISC 360-16 (LRFD), Capítulo G - G2.1).		
$V_n = 0.6F_vA_wC_v$	V. : 1683.00	kN
Donde:		
Fy: Límite elástico mínimo especificado	F _y : 250.00	MPa
$A_w = dt_w$	A. : 112.20	cm ²
Donde:		_
d: Canto total	d : 374.00	mm
t _# : Espesor del alma	t _w : 30.00	mm

Atiesadores transversales

 Resistencia nominal a cortante a) para almas de perfiles laminados de sección en doble T cuando se cumple: 			
$\frac{h}{t_w} \le 2.24 \sqrt{\frac{E}{F_v}}$			
C _v : Coeficiente de cortante del alma Donde:	С, :	1.00	
h: Distancia libre entre alas, menos el radio de acuerdo	h :	277.40	mm
E: Módulo de elasticidad del acero	Ε:	200000.00	MPa
2. Comprobación de rigidizadores transversales			
(a) si $\frac{h}{t_w} \le 2.46 \sqrt{\frac{E}{F_y}}$			
No son necesarios rigidizadores transversales.			
Donde:			
h: Distancia libre entre alas, menos el radio de acuerdo	h :	277.40	mm
t _w : Espesor del alma	t., :	30.00	mm
E: Módulo de elasticidad del acero	Ε:	200000.00	MPa
F _y : Límite elástico mínimo especificado	F_{y} :	250.00	MPa

5.2.2.7. Diseño de miembros para solicitaciones combinadas y torsión

Esfuerzos combinados y torsión (Capítulo H)	
Se debe cumplir el siguiente criterio:	
$\eta \le 1$	η: <u>0.056</u>
Las esfuerzos solicitantes de cálculo pésimos se producen en el nudo N3, para la combinación de acciones 1.2·PP+1.2·CM1+0.5·Q1-SX. En nde: no calculado según Artículo 1, Sección 1 12 Secciones con simetría doble y simple sometidas a flexión y	
b) Para $\frac{P_r}{P_c} < 0.2$	
$\eta = \frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) $ (H1-1b)	η: <u>0.06</u>
용 Donde:	
Pr: Resistencia a compresión requerida	Pr : 376.95 kN
P.: Resistencia de diseño a compresión, calculado según el Capítulo E	P. : <u>8553.49</u> kN
M _{rx} : Resistencia a flexión requerida en el eje fuerte	M _{rx} : <u>43.83</u> kN⋅m
M_{α} : Resistencia de diseño a flexión en el eje fuerte, calculado según el Capítulo F	M _{ex} : <u>1280.21</u> kN⋅m
M _n : Resistencia a flexión requerida en el eje débil	M _n v: <u>0.00</u> kN⋅m
M _e y: Resistencia de diseño a flexión en el eje débil, calculado según el Capítulo F	M _{er} : <u>587.98</u> kN∙m

5.2.3. Resultados ETABS

ETABS desarrolla un reporte según las combinaciones de cargas que se asignen. A continuación, se presentan los resultados para la combinación más desfavorable de acuerdo a cada solicitación. Antes de proceder al análisis de la estructura o elemento, se debe seleccionar la norma a seguir, para esta comprobación se utiliza el AISC 360-16. El informe presenta los resultados de los esfuerzos generados e indica si no se cumple con las solicitaciones de la normativa seleccionada.

5.2.3.1. Momento (M), cortante (P) y carga axial (V) máximas según combinaciones de carga

 Shear V2
 0.0000 kN at 3.0000 m

 Moment M3
 0.0000 kN-m at 3.0000 m

 Axial Force P
 -374.6160 kN at 0.0000 m

Para la combinación 1,4 D se tiene:

Para la combinación 1,2 D + 1,6 L se tiene:

Shear V2		0.0000 kN at 3.0000 m
Moment M3		0.0000 kN-m at 3.0000 m
Axial Force P		-497.7775 kN at 0.0000 m

Para la combinación 1,2 D + E + 0,5 L se tiene:

5.2.3.2. Dimensiones del perfil seleccionado

El perfil	seleccionado	es un perfil	W	305 x 313.
-----------	--------------	--------------	---	------------

Section Properties					
A (m²)	J (m⁴)	l₃₃ (m⁴)	l₂₂ (m⁴)	A _{v3} (m²)	A _{v2} (m²)
0.0397	0.000027	0.000892	0.000277	0.0314	0.0112

Design Properties						
S ₃₃ (m³)	S ₂₂ (m³)	Z ₃₃ (m³)	Z ₂₂ (m³)	r ₃₃ (m)	r ₂₂ (m)	C _w (m⁵)
0.00477	0.001704	0.00569	0.002613	0.14987	0.08351	7.329E-06

 Material Properties				
E (kN/m²)	f _y (kN/m²)	Ry	α	
200000000	250000	1	NA	

LLRF a	LLRF and Demand/Capacity Ratio			
L (m)	Stress Ratio Limit			
3.00000	1	1		

5.2.3.3. Secciones compactas

	Element Details								
Level	Element	Unique Name	Location (m)	Combo	Element Type	Section	Classification		
Story1	C3	10	0	1.2D+1SX++0.5L	Special Moment Frame	Col W305x313	Seismic HD		

Element Details								
Level	Element	Unique Name	Location (m)	Combo	Element Type	Section	Classification	
Story1	C3	10	0	1.2D+1.6L	Special Moment Frame	Col W305x313	Compact	

5.2.3.4. Diseño de miembros en tensión

Axial Force and Capacities					
Pu Force (kN)	φP _{nt} Capacity (kN)				
497.7775	8936.325				

5.2.3.5. Diseño de miembros en compresión

Parameters for Lateral Torsion Buckling

Litb	Kltb	Сь
1	1	1

Axial Force & Biaxial Moment Design Factors (H1-1b)

	L Factor	K 1	K ₂	B ₁	B ₂	Cm
Major Bending	0.8	0.8	1	1	1	1
Minor Bending	0.8	0.8	1	1	1	1

Axial Force and Capacities					
P _u Force (kN)	φP _{nc} Capacity (kN)				
497.7775	8553.4854				

Moments and Capacities						
M _u Moment (kN-m) φM _n (kN-m)						
Major Bending	52.5581	1280.2065				

5.2.3.6. Diseño de miembros en flexión en el eje fuerte

5.2.3.7. Diseño de miembros en flexión en el eje débil

Moments and Capacities							
M _u Moment (kN-m) φM _n (kN-m)							
Minor Bending	0	587.9832					

5.2.3.8. Diseño de miembros en corte

Shear Design							
	V _u Force (kN)	φV _n Capacity (kN)	Stress Ratio				
Major Shear	22.6751	1683	0.013				

5.2.3.9. Diseño de miembros para solicitaciones combinadas y torsión

Los esfuerzos solicitantes de cálculo pésimos se producen para la combinación de acciones 1,2 D + E + 0,5 L.

Demand/Capacity (D/C) Ratio Eqn.(H1-1b)						
D/C Ratio =	(Pr /2Pc) + (Mr33 /Mc33) + (Mr22 /Mc22)					
0.063 =	0.022 + 0.041 + 0					

5.2.4. Comparación de resultados

La tabla 5.21 expone los resultados de las resistencias y capacidades de la columna sujeta a tensión, compresión, flexión y corte, así como las capacidades del diseño de miembros en solicitaciones combinadas, según los cálculos en los dos softwares (CYPE y ETABS) y el diseño manual.

Al igual que en el diseño de la columna bajo cargas gravitacionales, CYPE 3D no realiza el cálculo para esfuerzos de tensión ya que, el esfuerzo último generado lo asigna a tensión o compresión según corresponda. El programa ETABS asigna el mismo valor del esfuerzo último, ya sea para el cálculo de la capacidad a tensión o compresión; se tomaron las mismas consideraciones para el cálculo manual.

En la tabla 5.21 se puede observar que los esfuerzos nominales obtenidos son los mismos para todos los métodos de cálculo. Se tienen valores diferentes únicamente para los esfuerzos últimos. Para el diseño manual se tomaron los esfuerzos últimos obtenidos en el programa ETABS, por lo que estos siempre son iguales en ambos métodos.

	COLUMNA										
	DISEI MIEMB TEN	ÑO DE BROS EN SIÓN	DISE MIEMB COMPI	ÑO DE ROS EN RESIÓN	DISEÑ MIEMB FLEX	ÑO DE ROS EN KIÓN	DISE MIEMBROS	ŇO DE 5 EN CORTE	DISEÑO DE		
	Pu (KN)	ФPnt (KN)	Pu (KN)	ФРпс (KN)	Mu (KNm)	ФМn (KNm)	Vu (KN)	ΦVn (KN)	MIEMBROS EN SOLICITACIONES		
CÁLCULO MANUAL	497.78	8936.33	497.78	8553.49	52.56	1280.21	22.68	1683.00	COMBINADAS		
CYPE	N.A	N.A	498.65	8553.49	43.83	1280.21	19.31	1683.00			
ETABS	497.78	8936.33	497.78	8553.49	52.56	1280.21	22.68	1683.00			
					CAPAC	IDADES					
CÁLCULO MANUAL	5.57%		5.8	32%	4.1	1%	1.3	5%	6.30%		
СҮРЕ	N.A		5.8	3%	3.4	2%	1.1	5%	5.60%		
ETABS	5.57%		5.8	32%	4.1	1%	1.3	5%	6.30%		
N.A: No aplica.											

Tabla 5.21: Comparación resultados columna

Fuente: Autores

En las tablas 5.22, 5.23 y 5.24 a continuación, se presentan las variaciones que existen entre los resultados de las capacidades a tensión, compresión, flexión, corte y bajo solicitaciones combinadas de la columna (cálculo manual vs CYPE, cálculo manual vs ETABS y CYPE vs ETABS). Se observa que no se generan variaciones representativas entre los resultados.

Como se puede observar en la tabla 5.22 no existe una diferencia considerable comparando los cálculos manuales con los obtenidos mediante el software CYPE 3D para las capacidades en ninguna de las solicitaciones. La mayor variación generada es en la capacidad a flexión y esta se debe a que el momento último considerado no es igual en ambos cálculos. Para el cálculo manual se tomó el valor del momento último del programa ETABS.

Tabla 5.22:	Comparación	cálculo	manual -	CYPE
-------------	-------------	---------	----------	------

COMPARACIÓN CÁLCULO MANUAL - CYPE							
	CAPACIDAD A TENSIÓN	CAPACIDAD A COMPRESIÓN	CAPACIDAD A FLEXIÓN	CAPACIDAD A CORTE	CAPACIDAD A SOLICITACIONES COMBINADAS		
CÁLCULO MANUAL	5.57%	5.82%	4.11%	1.35%	6.30%		
CYPE	N.A	5.83%	3.42%	1.15%	5.60%		
DIFERENCIA	N.A	-0.01%	0.68%	0.20%	0.70%		
N.A: No aplica.							

Al comparar los resultados obtenidos en el cálculo manual contra los de ETABS, no se obtienen diferencias (tabla 5.23).

COMPARACIÓN CÁLCULO MANUAL - ETABS							
	CAPACIDAD A TENSIÓN	CAPACIDAD A COMPRESIÓN	CAPACIDAD A FLEXIÓN	CAPACIDAD A CORTE	CAPACIDAD A SOLICITACIONES COMBINADAS		
CÁLCULO MANUAL	5.57%	5.82%	4.11%	1.35%	6.30%		
ETABS	5.57%	5.82%	4.11%	1.35%	6.30%		
DIFERENCIA	0.00%	0.00%	0.00%	0.00%	0.00%		

Tabla 5.23: Comparación cálculo manual - ETABS

Fuente: Autores

Las diferencias generadas entre los resultados de los dos softwares de cálculo, son las mismas que comparando los resultados del cálculo manual con CYPE 3D. Nuevamente estas diferencias se deben únicamente a la variación en los momentos últimos obtenidos entre los dos programas. Los programas toman diferentes consideraciones para el cálculo de esfuerzos últimos, a pesar de esto se obtienen resultados muy similares (tabla 5.24).

COMPARACIÓN ETABS - CYPE							
	CAPACIDAD A TENSIÓN	CAPACIDAD A COMPRESIÓN	CAPACIDAD A FLEXIÓN	CAPACIDAD A CORTE	CAPACIDAD A SOLICITACIONES COMBINADAS		
ETABS	5.57%	5.82%	4.11%	1.35%	6.30%		
СҮРЕ	N.A	5.83%	3.42%	1.15%	5.60%		
DIFERENCIA	N.A	-0.01%	0.68%	0.20%	0.70%		
N.A: No aplica.							

Tabla 5.24: Comparación cálculo ETABS – CYPE

Fuente: Autores

Tras analizar todos los resultados, se puede concluir que el análisis por elementos en los dos softwares de cálculo es fiable y no se generan mayores variaciones. Es importante considerar todas las variables para obtener resultados óptimos.

5.3. Diseño de viga

5.3.1. Cálculos manuales

Se analizan las diferentes combinaciones de carga y se realizan los cálculos en base a la combinación más desfavorable para cada caso.
5.3.1.1. Momento (M), cortante (P) y carga axial (V) máximas según combinaciones de carga

Para la combinación 1,4 *D* se tiene:

$Mu1 \coloneqq 56.4697 \ kN \cdot m$	$Pu1 := 6.5549 \ kN$	$Vu1 := 55.8172 \ kN$
Para la combinación 1,2 D -	+ 1,6 <i>L</i> se tiene:	
$Mu2 \coloneqq 78.0891 \ \mathbf{kN} \cdot \mathbf{m}$	$Pu2 = 9.0645 \ \mathbf{kN}$	Vu2:=77.1867 kN
Para la combinación 1,2 D -	+E + 0,5L se tiene:	
$Mu3 = 81.4568 \ kN \cdot m$	<i>Pu</i> 3≔10.387 <i>kN</i>	Vu3≔65.1454 kN

5.3.1.2. Dimensiones del perfil seleccionado

El perfil seleccionado es un perfil H 356x134,2.

Figura 5.10: Dimensiones del perfil

Fuente: Tomado de Gerdau Corsa, s.f.

 $d \coloneqq 356 \ mm$ $bf \coloneqq 325 \ mm$

 $tw \coloneqq 11.2 \ mm$

 $tf \approx 20 \ mm$

Propiedades de la sección

$A \coloneqq 16539.2 \ \boldsymbol{mm}^2$	
$Cw \coloneqq 3229590 \ cm^6$	$J \coloneqq 1890685.3 \ mm^4$
$Ix = 396796196.3 \ mm^4$	$Iy = 114464079.8 \ mm^4$
$Sx = 2229192.1 \ mm^3$	$Sy \coloneqq 704394.3 \ mm^3$
$Zx = 2463596.8 \ mm^3$	$Zy \coloneqq 1066159.8 \ mm^3$
$rx \coloneqq \sqrt{\frac{Ix}{A}} = 154.891 \ mm$	$ry \coloneqq \sqrt{\frac{Iy}{A}} = 83.191 \ mm$

El perfil será de acero estructural A36, por lo que cuenta con las siguientes características:

$$Fy \coloneqq 250 \ MPa \qquad \qquad E \coloneqq 200000 \ MPa$$

 $Ry \coloneqq 1.3$

5.3.1.3. Secciones compactas

Se chequea que los elementos componentes del perfil sean compactos.

Elementos comprimidos con miembros sujetos a flexión.

Flexión en alas de perfiles I laminados, canales y tes.

$$\lambda ala := \frac{bf}{2 \cdot tf} = 8.125 \qquad \qquad \lambda p := 0.3 \cdot \sqrt{\frac{E}{Fy}} = 8.485$$

$$\lambda ala < \lambda p$$

Almas de doble T simétricas y canales.

$$\lambda alma \coloneqq \frac{T}{tw} = 28.214 \qquad \qquad \lambda p \coloneqq 2.45 \cdot \sqrt{\frac{E}{Fy}} = 69.296$$

$$Ca \coloneqq \frac{Pu}{\phi \cdot Fy \cdot A} = 0.003 \qquad \qquad Ca \le 0.125$$

$$T \coloneqq d - 2 \cdot tf = 316 \ mm$$

Para el perfil seleccionado, las relaciones ancho-espesor de sus elementos a compresión (tanto las alas como el alma) no exceden las relaciones máximas ancho-espesor, λ_p , por lo tanto, toda la sección es compacta.

5.3.1.4. Diseño de miembros en tensión

$$Pu = 10.387 \ kN$$
 $\phi Pnt := 0.9 \ Fy \cdot A = 3721.32 \ kN$

$$\frac{Pu}{\phi Pnt} = 0.003$$

5.3.1.5. Diseño de miembros en compresión

No se consideran arriostramientos laterales que pueden deberse a viguetas, ya que se está realizando un análisis únicamente en dos dimensiones. En este caso se analiza la viga apoyada en ambos extremos a las columnas y se toma el valor de la longitud no arriostrada lateralmente de 6 m.

$$\phi Pnc \! \coloneqq \! 0.9 \boldsymbol{\cdot} Fcr \boldsymbol{\cdot} A \! = \! 2824.509 \ \mathbf{kN}$$

$$\frac{Pu}{\phi Pnc} = 0.004$$

$$Fcr \coloneqq \left(0.658^{\frac{Fy}{Fe}}\right) \cdot Fy = 189.752 \ MPa$$

$$Fe \coloneqq \frac{\pi^2 \cdot E}{\left(\frac{Lcy}{ry}\right)^2} = 379.474 \ MPa$$

5.3.1.6. Diseño de miembros en flexión en el eje fuerte

Cálculo factor de modificación por pandeo lateral-torsional (Cb)

$$Cb \coloneqq \frac{12.5 \cdot Mu}{2.5 \cdot Mu + 3 \cdot MA + 4 \cdot MB + 3 \cdot MC} = 2.505$$

$$MA = 22.842 \ kN \cdot m \ MB = 30.043 \ kN \cdot m$$

$$MC = 4.723 \ kN \cdot m$$
 $Mu = 80.307 \ kN \cdot m$

$$C_{b} < 3$$

Ya que el factor de modificación por pandeo lateral-torsional cumple con un valor menor a 3, se utilizará el valor de 2,505 para los cálculos necesarios a continuación.

 $Mp \coloneqq Fy \cdot Zx = 615.899 \ kN \cdot m$

$$Lp \coloneqq 1.76 \cdot ry \cdot \sqrt{\frac{E}{Fy}} = 4141.284 \ mm$$

$$Lr \coloneqq 1.95 \cdot rtsy \cdot \frac{E}{0.7 \cdot Fy} \cdot \sqrt{\frac{J}{Sx \cdot h0} + \sqrt{\left(\frac{J}{Sx \cdot h0}\right)^2 + 6.76 \cdot \left(\frac{0.7 \cdot Fy}{E}\right)^2}} = 15927.811 \text{ mm}$$

 $Lb \coloneqq L = 6000 \ mm$

$$Mn \coloneqq Cb \cdot \left(Mpy - (Mpy - 0.7 \cdot Fy \cdot Sx) \cdot \left(\frac{Lb - Lpy}{Lry - Lpy} \right) \right) = 1443.184 \ kN \cdot m$$

El valor de la resistencia nominal a flexión M_n no puede ser mayor al de M_P , por lo que se asume M_n =615,899 kN m.

 $Mn = 615.899 \ kN \cdot m$ $0.9 \cdot Mn = 554.31 \ kN \cdot m$ $Mu = 81.457 \ kN \cdot m$

$$\frac{Mu}{0.9 \cdot Mn} = 0.147$$

La viga está trabajando al 14,7% por lo que cumple con la capacidad requerida.

5.3.1.7. Diseño de miembros en flexión en el eje débil

 $Mp \coloneqq Fy \cdot Zy = 266.54 \ kN \cdot m$

$$Lp := 1.76 \cdot rx \cdot \sqrt{\frac{E}{Fy}} = 7710.529 \ mm$$

$$Lr \coloneqq 1.95 \cdot rtsx \cdot \frac{E}{0.7 \cdot Fy} \cdot \sqrt{\frac{J}{Sy \cdot h0} + \sqrt{\left(\frac{J}{Sy \cdot h0}\right)^2 + 6.76 \cdot \left(\frac{0.7 \cdot Fy}{E}\right)^2}} = 64131.154 \text{ mm}$$

 $Lb \coloneqq L = 6000 \ mm$

 $Lb \leq Lpx$

 $Mn \coloneqq Mp = 266.54 \ \mathbf{kN} \cdot \mathbf{m}$

 $0.9 \cdot Mn = 239.89 \ kN \cdot m$

$$Mu \coloneqq 0 \ kN \cdot m$$

 $\frac{Mu}{0.9 \cdot Mn} = 0$

5.3.1.8. Diseño de miembros en corte

$$\frac{T}{tw} \le 2.24 \cdot \sqrt{\frac{E}{Fy}}$$

$$28.214 \le 63.357$$

Por lo tanto:

 $\Phi v \coloneqq 1$

 $Vn \coloneqq 0.6 \cdot Fy \cdot Aw \cdot Cv1 = 598.08 \ kN$

$$Aw \coloneqq d \cdot tw = 3987.2 \ mm^2$$

 $\Phi v \cdot Vn = 598.08 \ kN$

Vu=77.187 kN

$$\frac{Vu}{\varPhi v \cdot Vn} = 0.129 \qquad \qquad \varPhi v \cdot Vn > Vu$$

La sección resiste a la fuerza cortante.

Atiesadores transversales

$$\frac{T}{tw} \le 2.46 \cdot \sqrt{\frac{E}{Fy}}$$

$$28.214 \le 69.579$$

No se requieren atiesadores transversales.

5.3.1.9. Diseño de miembros para solicitaciones combinadas y torsión

Los mayores esfuerzos solicitantes de cálculo se producen para la combinación de acciones 1,2 D + E + 0,5 L.

Secciones con simetría doble y simple sometidas a flexión y compresión

Resistencia a tracción requerida

 $Pu = 10.387 \ kN$

Resistencia de diseño a tracción

 $\phi Pn \coloneqq \phi Pnt = 3721.32 \ kN$

Resistencia a flexión requerida en el eje fuerte

 $Mu3_3 = Mu = 80.307 \ kN \cdot m$

Resistencia de diseño a flexión en el eje fuerte

$$\phi Mnx \coloneqq 0.9 \cdot Mn = 554.309 \ kN \cdot m$$

Resistencia a flexión requerida en el eje débil

 $Mu2_2 = 0 \ \mathbf{kN} \cdot \mathbf{m}$

Resistencia de diseño a flexión en el eje débil

 $\phi Mny = 0.9 \cdot Mn = 239.886 \ kN \cdot m$

$$\frac{Pu}{\phi Pn} < 0.2$$
 0.003<0.2

$$\frac{Pu}{2 \cdot \phi Pn} + \left(\frac{Mu3_3}{\phi Mnx} + \frac{Mu2_2}{\phi Mny}\right) = 0.148$$

5.3.2. Resultados CYPE

CYPE 3D genera el siguiente informe de resultados basado en la combinación de cargas más desfavorable para cada una de las solicitaciones siguiendo la norma ANSI/AISC 360-16 (LRFD).

5.3.2.1. Momento y cortante máximo

Figura 5.11: Gráfica de momento y cortante máximo CYPE 3D combinación de cargas 1.4 D

Figura 5.12: Gráfica de momento y cortante máximo CYPE 3D combinación de cargas 1.2 D + 1.6 L

Fuente: Autores

	Esfuerzos en barras, por combinación								
		Combinación	02	Posiciones en la barra					
Barra	Tipo	Descripción	Esfuerz	0	1.5	3	4.5	6	
		0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ν	6.806	6.806	6.806	6.806	6.806	
	0 1.4·PP+1.4·CM1 0 1.2·PP+1.2·CM1+1.6·Q1 1.2·PP+1.2·CM1+0.5·Q1+SX 1.2·PP+1.2·CM1+0.5·Q1+SX		Vz	-53.669	-26.278	1.114	28.506	55.897	
			My	-49.91	10.05	28.92	6.7	-56.6	
J			Ν	9.412	9.412	9.412	9.412	9.412	
/ig:			Vz	-74.217	-36.338	1.541	39.419	77.298	
		My	-69.02	13.89	39.99	9.27	-78.27		
		Ν	8.453	8.453	8.453	8.453	8.453		
		1.2·PP+1.2·CM1+0.5·Q1+SX	$1.2 \cdot PP + 1.2 \cdot CM1 + 0.5 \cdot Q1 + SX$	Vz	-48.052	-20.074	7.905	35.884	63.862
			My	-30.11	20.98	30.11	-2.81	-77.7	

Tabla 5.25: Esfuerzos en barras, por combinación CYPE 3D

5.3.2.2. Características del perfil seleccionado

El perfil seleccionado es un perfil H 356X134,2.

Tabla 5.26: Características del perfil CYPE 3D

Barra N7/N12									
Perfil: H356X134.2 Material: Acero (A36)									
E	Nudos				Características mecánicas				
۲ ۲	Inicial	Final	(m)	Área (cm²)	I (ci	m4)	I _y ⁽¹⁾ (cm4)	It ⁽²⁾ (cm4)
/9	N7	N12	6.000	165.39	396	79.62	11446.	.41	189.07
ducati	Notas: ⁽¹⁾ Inercia respecto al eje indicado ⁽²⁾ Momento de inercia a torsión uniforme								
ē		Pandeo			Pandeo lateral			al	
×		Pla	no ZX	Plano ZY		Ala sup.		Ala inf.	
20	β	1	1.00 1.0		1.00		00		1.00
	Lĸ	6	.000	6.000		6.0	000		6.000
	C₀		-				2.4	87	
	Notación: β: Coel L _k : Lon C _b : Fac	ficiente de gitud de pa tor de mod	pandeo andeo (m) dificación para e	l momento crí	tico				

Fuente: Autores

$\eta_{\rm T} = \frac{P_{\rm r}}{P_{\rm c}} \leq 1$	η _τ : <u>0.003</u>
El axil de tracción solicitante de cálculo pésimo P, se produce para la combinación de hipótesis 1.2·PP+1.2·CM1+1.6·Q1.	
Donde:	
Pr: Resistencia a tracción requerida para las combinaciones de carga LRFD	Pr: 9.41 kN
P _e : Resistencia de diseño a tracción	P _€ : <u>3721.32</u> kN
$P_c = \phi_c P_n$	
La resistencia de diseño a tracción es el menor valor de los obtenidos según el estado límite de fluencia a tracción de la sección bruta y el de rotura a tracción de la sección neta	
Donde:	
 φ_t: Factor de resistencia a tracción, tomado como: a) Para fluencia bajo tracción en la sección bruta: 	φ _t : <u>0.90</u>
$P_n = F_y A$ (D2 – 1)	P _n : <u>4134.80</u> kN
Donde:	
A: Área bruta de la sección de la barra.	A : 165.39 cm ²
F _y : Límite elástico mínimo especificado	F _y : <u>250.00</u> MPa

5.3.2.3. Diseño de miembros en tensión

Resistencia a tracción (Capítulo D)

Se debe satisfacer:

5.3.2.4. Diseño de miembros en compresión

-	
Ē	mitación de esbeltez para compresión (Capítulo E)
ß	comprobación no procede, ya que no hay axil de compresión.
2	
R	esistencia a compresión (Capítulo E)
.:ŏ	and the state of the second state of the second state of the

comprobación no procede, ya que no hay axil de compresión.

5.3.2.5. Diseño de miembros en flexión

Resistencia a flexión eje X (Capítulo F)

Todas las secciones deben cumplir con las especificaciones LRFD desarrolladas en Capítulo F de ANSI/AISC 360-16 (LRFD). Se debe satisfacer el siguiente criterio: $\eta_{M} = \frac{M_{r}}{M_{r}} \leq 1$ 0.141 ηм : El momento flector solicitante de cálculo pésimo, M, se produce en el nudo N12, para la combinación de acciones 1.2 PP+1.2 CM1+1.6 Q1. Donde: Mr: Resistencia a flexión requerida para las combinaciones de carga LRFD kN⋅m M. : 78.27 M.: Resistencia de diseño a flexión M. : kN∙m 554.31 $M_c = \phi_b M_c$ La resistencia de diseño a flexión para secciones sometidas a momento flector es el menor valor de los obtenidos según los estados límite descritos en el Capítulo F: Donde: φ_b: Factor de resistencia a flexión **Фь**: 0.90 Mn: La resistencia nominal a flexión calculada según Artículo 2, Sección 2, División b M. : 615.90 kN·m 1. Fluencia M_=M_=F,Z, kN∙m M. : 615.90 Donde: F_v: Límite elástico mínimo especificado MPa Fy : 250.00 Z_x: Módulo resistente plástico respecto al eje X Z_{*} : 2463.60 cm³ 2. Pandeo lateral-torsional b) Si L₀ ≤ L₀ ≤ L₁: $M_p = C_p \left| M_p - (M_p - 0.7F_yS_x) \left(\frac{L_b - L_p}{L_x - L_p} \right) \right| \le M_p$ M. : kN•m 615.90 Donde: Fy: Límite elástico mínimo especificado MPa F. : 250.00 C_b: Factor de modificación del pandeo lateral-torsional tomado, Сь : de forma conservadora, como: 2.49 M_=F_Z_ oor una versión educativa de CYPE M_p: 615.90 kN•m Donde: Z_x: Módulo resistente plástico respecto al eje X Z_x : 2463.60 cm³ $S_x = \frac{I_x}{I_x}$ S_x: 2229.19 cm³ Donde: I.: Momento de inercia respecto al eje X I_x : <u>39679.62</u> cm4 y: Distancia a la fibra extrema en flexión Y: 178.00 mm L_b: Distancia entre puntos de arriostramiento al desplazamiento lateral del ala comprimida o de la torsión de la sección transversal L_b : 6000 mm

Donde:			
E: Módulo de elasticidad del acero	Ε:	200000.00	MPa
$r_{v} = \sqrt{\frac{I_{v}}{A}}$	r, :	8.32	cm
Donde:			
I _v : Momento de inercia respecto al eje Y	I, :	11446.41	cm4
A: Área total de la sección transversal de la barra.	A :	165.39	_cm ²
$L_{v} = 1.95r_{ts} \frac{E}{0.7F_{v}} \sqrt{\frac{Jc}{S_{x}h_{o}}} \sqrt{1 + \sqrt{1 + 6.76\left(\frac{0.7F_{v}}{E}\frac{S_{x}h_{o}}{Jc}\right)^{2}}}$	L, :	15927.86	_mm
Donde:			
E: Módulo de elasticidad del acero	Ε:	200000.00	MPa
J: Momento de inercia a torsión uniforme	J :	189.07	cm4
h _e : Distancia entre los baricentros de las alas	h. :	336.00	mm
$r_{ts}^{2} = \frac{\sqrt{L_{v}C_{w}}}{S_{x}}$	r _a :	92.87	mm
Donde:			
I _v : Momento de inercia respecto al eje Y	I, :	11446.41	cm4
C _w : Constante de alabeo de la sección	С":	3229590.00	cm6
Para c:	_		-
 i) para una sección doblemente simétrica en doble T: 			
c=1	c :	1.00	_

5.3.2.6. Diseño de miembros en corte

Resistencia a corte Y (Capítulo G)

Producido p

(
Todas las secciones deben cumplir con las especificaciones LRFD desarrolladas en Capítulo G de ANSI/AISC 360-16 (LRFD). Se debe satisfacer el siguiente criterio:	
$\eta_{\rm r} = \frac{V_{\rm r}}{V_{\rm c}} \leq 1$	η _v : <u>0.129</u> ✓
El esfuerzo cortante solicitante de cálculo pésimo V, se produce en el nudo N12, para la combinación de hipótesis 1.2·PP+1.2·CM1+1.6·Q1. Donde:	
V _r : Resistencia a cortante requerida para las combinaciones de carga LRFD V _c : Resistencia de diseño a cortante	V r : <u>77.30</u> kN
$V_c = \phi_v V_n$	V _e :598.08 kN
La resistencia de diseño a cortante viene dada por:	
Donde:	
En la Sección G2.1 a:	
ζ φ.: Factor de resistencia a cortante	φ.: 1.00
V _n : se define según lo detallado en el Capítulo G, de la siguiente forma:	
para almas de secciones con simetría simple o doble y en U sometidas a cortante en el plano del alma (ANSI/AISC 360-16 (LRFD), Capítulo G - G2.1).	
$V_n = 0.6F_{\gamma}A_mC_{\gamma}$	V _n : <u>598.08</u> kN

Donde:			
F _v : Límite elástico mínimo especificado	F _y :	250.00	MPa
$A_w = dt_w$	A., :	39.87	cm ²
B Donde:			
d: Canto total	d :	356.00	mm
t _w : Espesor del alma	t., :	11.20	mm
🛱 Resistencia nominal a cortante			
 a) para almas de perfiles laminados de sección en doble T cuando se cumple: 			
$\frac{h}{t_w} \le 2.24 \sqrt{\frac{E}{F_v}}$			
C _v : Coeficiente de cortante del alma Donde:	С, :	1.00	-
h: Distancia libre entre alas, menos el radio de acuerdo	h :	316.00	mm
E: Módulo de elasticidad del acero	Ε:	200000.00	MPa
2. Comprobación de rigidizadores transversales			
(a) si $\frac{h}{t_w} \le 2.46 \sqrt{\frac{E}{F_y}}$			
No son necesarios rigidizadores transversales.			
Donde:			
h: Distancia libre entre alas, menos el radio de acuerdo	h :	316.00	mm
t _w : Espesor del alma	t., :	11.20	mm
E: Módulo de elasticidad del acero	Ε:	200000.00	MPa
F _v : Límite elástico mínimo especificado	F, :	250.00	MPa

5.3.2.7. Diseño de miembros para solicitaciones combinadas y torsión

Esfuerzos combinados y torsión (Capítulo H)

Se debe cumplir el siguiente criterio:

 $\eta \leq 1$

una versión educativa de CYPE

η: 0.14

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N12, para la combinación de acciones 1.2·PP+1.2·CM1+1.6·Q1. Donde:

η: calculado según Artículo 1, Sección 2

2. Secciones con simetría doble y simple sometidas a flexión y tracción

b) Para
$$\frac{P_r}{P_c} < 0.2$$

$$n = \frac{P_r}{P_c} + \left(\frac{M_{rx}}{r_{rx}} + \right)$$

$\eta = \frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) \text{ (H1-1b)}$
Donde:
Pr: Resistencia requerida a tracción
P.: Resistencia de diseño a tracción, calcul

Pr: Resistencia requerida a tracción	$\mathbf{P}_{\mathbf{r}}$:	9.41	kN
P.: Resistencia de diseño a tracción, calculado según el Capítulo D, Sección D2	P. :	3721.32	kN
M _{rx} : Resistencia a flexión requerida en el eje fuerte	M _{rx} :	78.27	kN∙m
M∝: Resistencia de diseño a flexión en el eje fuerte, calculado según el Capítulo F	M _{ex} :	554.31	kN∙m
M _{ry} : Resistencia a flexión requerida en el eje débil	Μ ₁₇ :	0.00	kN∙m
\mathbf{M}_{cy} : Resistencia de diseño a flexión en el eje débil, calculado según el Capítulo F	M _{ey} :	239.89	kN∙m

5.3.3. Resultados ETABS

5.3.3.1. Momento (M), cortante (P) y carga axial (V) máximas según combinaciones de carga

Para la combinación 1,4 D se tiene:

Para la combinación 1,2 D + 1,6 L se tiene:

Para la combinación 1,2 D + E + 0,5 L se tiene:

5.3.3.2. Dimensiones del perfil seleccionado

El perfil seleccionado es un perfil H 356X134,2.

Section Properties							
A (m²)	J (m⁴)	I₃₃ (m⁴)	l₂₂ (m⁴)	A _{v3} (m²)	A _{v2} (m²)		
0.0165	0.000002	0.000397	0.000114	0.013	0.004		

Design Properties

S ₃₃ (m³)	S ₂₂ (m³)	Z ₃₃ (m³)	Z ₂₂ (m ³)	r ₃₃ (m)	r ₂₂ (m)	C _w (m⁰)			
0.002229	0.000704	0.002464	0.001066	0.15489	0.08319	0			

Material Properties						
E (kN/m²) f _y (kN/m²) R _y α						
20000000	250000	1	NA			

5.3.3.3. Secciones compactas

Element Details								
Level	Element	Unique Name	Location (m)	Combo	Element Type	Section	Classification	
Story1	B2	16	6	1.2D+1.6L	Special Moment Frame	Viga H 356x134.2	Compact	

Element Details								
Level	Element	Unique Name	Location (m)	Combo	Element Type	Section	Classification	
Story1	B2	16	6	1.2D+1SX++0.5L	Special Moment Frame	Viga H 356x134.2	Seismic HD	

5.3.3.4. Diseño de miembros en tensión

Axial Force and Capacities				
φP _{nt} Capacity (kN)				
3721.32				

5.3.3.5. Diseño de miembros en compresión

Axial Force and Capacities					
P _u Force (kN) φP _{nc} Capacity (kN					
10.387	2824.5093				

5.3.3.6. Diseño de miembros en flexión en el eje fuerte

Moments and Capacities						
M _u Moment (kN-m) φM _n (kN-m)						
Major Bending	81.4568	554.3093				

5.3.3.7. Diseño de miembros en flexión en el eje débil

Moments and Capacities						
M _u Moment (kN-m) φM _n (kN-m)						
Minor Bending	0	239.8859				

5.3.3.8. Diseño de miembros en corte

Shear Design						
V _u Force (kN) φV _n Capacity (kN) Stress Ratio						
Major Shear	77.1867	598.08	0.129			

5.3.3.9. Diseño de miembros para solicitaciones combinadas y torsión

Demand/Capacity (D/C) Ratio Eqn. (H1.2, H1-1b)					
D/C Ratio = $(P_r / 2P_c) + (M_{r33} / M_{c33}) + (M_{r22} / M_{c22})$					
0.148 =	0.001 + 0.147 + 0				

5.3.4. Comparación de resultados

A continuación, en la tabla 5.27 se presentan los resultados de las resistencias y capacidades del elemento sujeto a tensión, compresión, flexión y corte, así como las capacidades bajo solicitaciones combinadas obtenidos en los dos softwares de cálculo y el cálculo manual.

El software CYPE 3D no procede a realizar los cálculos para el diseño de miembros en compresión, ya que toma el valor del esfuerzo axial último para tensión o compresión según corresponda.

Los resultados de los esfuerzos nominales mediante todos los métodos de cálculo y para todos los casos son los mismos. Se obtienen diferencias en los esfuerzos últimos entre los resultados obtenidos por el programa ETABS y CYPE 3D. Los valores de los esfuerzos últimos que se utilizaron para los cálculos manuales son los mismos obtenidos en ETABS.

	VIGA								
	DISEÑO DE MIEMBROS EN TENSIÓN		DISEÑO DE MIEMBROS EN COMPRESIÓN		DISEÑO DE MIEMBROS EN FLEXIÓN MIEMBROS EN CORTE		DISEÑO DE MIEMBROS EN CORTE		DISEÑO DE
	Pu (KN)	ФРnt (KN)	Pu (KN)	ФРпс (KN)	Mu (KN-m)	ФМn (KN-m)	Vu (KN)	ΦVn (KN)	MIEMBROS EN SOLICITACIONES
CÁLCULO MANUAL	10.39	3721.32	10.39	2824.51	81.46	554.31	77.19	598.08	COMBINADAS
CYPE	9.41	3721.32	N.A	N.A	78.27	554.31	77.30	598.08	
ETABS	10.39	3721.32	10.39	2824.51	81.46	554.31	77.19	598.08	
					CAPAC	IDADES			
CÁLCULO MANUAL	0.2	.8%	0.3	7%	14.7	70%	12.9	91%	14.80%
CYPE	0.2	.5%	N	.A	14.1	12%	12.9	92%	14.20%
ETABS	0.2	.8%	0.3	7%	14.7	70%	12.91%		14.80%
N.A: No aplica.									

Tabla 5.27: Comparación resultados viga

En las tablas 5.28, 5.29 y 5.30 a continuación, se imprimen comparaciones entre los resultados de las capacidades a tensión, compresión, flexión, corte y bajo solicitaciones combinadas de la viga (cálculo manual vs CYPE, cálculo manual vs ETABS y CYPE vs ETABS). Las diferencias obtenidas entre los resultados son mínimas y pueden considerarse como no representativas.

Como se puede observar en las tablas 5.28 y 5.30, las diferencias entre las capacidades son menores al 1% y estas se deben a las diferencias entre los esfuerzos últimos. No existen variaciones en los resultados de las capacidades entre los cálculos manuales y ETABS (tabla 5.29).

	COMPARACIÓN CÁLCULO MANUAL - CYPE								
	CAPACIDAD A TENSIÓN	CAPACIDAD A COMPRESIÓN	CAPACIDAD A FLEXIÓN	CAPACIDAD A CORTE	CAPACIDAD A SOLICITACIONES COMBINADAS				
CÁLCULO MANUAL	0.28%	0.37%	14.70%	12.91%	14.80%				
СҮРЕ	0.25%	N.A	14.12%	12.92%	14.20%				
DIFERENCIA	0.03%	N.A	0.57%	-0.02%	0.60%				
N.A: No aplica.									

Tabla 5.28: Comparación cálculo manual - CYPE

Fuente: Autores

COMPARACIÓN CÁLCULO MANUAL - ETABS						
	CAPACIDAD A TENSIÓN	CAPACIDAD A COMPRESIÓN	CAPACIDAD A FLEXIÓN	CAPACIDAD A CORTE	CAPACIDAD A SOLICITACIONES COMBINADAS	
CÁLCULO MANUAL	0.28%	0.37%	14.70%	12.91%	14.80%	
ETABS	0.28%	0.37%	14.70%	12.91%	14.80%	
DIFERENCIA	0.00%	0.00%	0.00%	0.00%	0.00%	

Tabla 5.29: Comparación cálculo manual - ETABS

Tabla 5.30: Comparación ETABS - CYPE

COMPARACIÓN ETABS - CYPE						
	CAPACIDAD A TENSIÓN	CAPACIDAD A COMPRESIÓN	CAPACIDAD A FLEXIÓN	CAPACIDAD A CORTE	CAPACIDAD A SOLICITACIONES COMBINADAS	
ETABS	0.28%	0.37%	14.70%	12.91%	14.80%	
СҮРЕ	0.25%	N.A	14.12%	12.92%	14.20%	
DIFERENCIA	0.03%	N.A	0.57%	-0.02%	0.60%	
N.A: No aplica.						

Fuente: Autores

Al analizar los resultados obtenidos en las comprobaciones de diseño de los softwares de cálculo y el diseño manual, se determina que estos son confiables. Es importante siempre tomar en cuenta todas las condiciones y factores óptimos al momento del modelamiento, ya que existen muchas variables que pueden influir en las comprobaciones de diseño. Siempre se debe llevar hojas de cálculo manuales conjuntamente con los modelamientos en softwares para obtener diseños correctos.

En la figura 5.13 se presenta un diagrama con el diseño del pórtico a momentos con las secciones transversales que cumplen con las solicitaciones del diseño. Se cumplieron con las comprobaciones por elementos en los dos softwares (CYPE y ETABS) y los cálculos manuales siguiendo las normativas vigentes.

Figura 5.13: Diseño de pórtico a momentos

5.4. Diseño de conexión con viga de sección reducida

5.4.1. Cálculos manuales

Se realiza una reducción en la viga diseñada en la sección 5.3. Diseño de viga.

5.4.1.1. Máximo momento probable en la articulación plástica

 $Mpr \coloneqq Cpr \cdot Ry \cdot Fy \cdot Zvsr = 534.923 \ \textbf{kN} \cdot \textbf{m}$

Cpr = 1.2 Fy = 250 MPa Fu = 375 MPa Ry = 1.3

$$Zvsr \coloneqq Zx - 2 \cdot c \cdot tf \cdot (d - tf) = 1371596.8 \ mm^3$$

5.4.1.2. Determinación de *a*, *b* y *c*

 $0.5 \cdot bf \!=\! 162.5 \, \textit{mm} \leq a \! := \! 240 \, \textit{mm} \leq 0.75 \cdot bf \! = \! 243.75 \, \textit{mm}$

 $0.65 {\, \cdot \,} d \,{=}\, 231.4 \, \operatorname{\textit{mm}} \,{\leq} \, {}^{b \,{:=}\, 235} \, \operatorname{\textit{mm}} \,{\leq} \, 0.85 {\, \cdot \,} d \,{=}\, 302.6 \, \operatorname{\textit{mm}}$

$$0.1 \cdot bf = 32.5 \ mm \le c := 81.25 \ mm \le 0.25 \cdot bf = 81.25 \ mm$$

5.4.1.3. Secciones compactas

Espesor de la sección reducida:

$$R \coloneqq \frac{4 \cdot c^{2} + b^{2}}{8 \cdot c} = 125.587 \ mm$$

$$bfred \coloneqq 2 \cdot (R - c) + bf - 2 \cdot \sqrt{R^{2} - \frac{b^{2}}{9}} = 217.348 \ mm$$

$$\lambda ala \coloneqq \frac{bfred}{2 \cdot tf} = 5.434 \qquad \qquad \lambda p \coloneqq 0.3 \cdot \sqrt{\frac{E}{Fy}} = 8.485$$

 $\lambda ala < \lambda p$

Se cumple con el requerimiento mínimo, por lo que las alas son compactas.

Para almas de perfiles I laminados o armados, el límite de la relación anchoespesor es:

$$Pu = 10.387 \ kN$$
 $A = 16539.2 \ mm^2$

 $Ca = \frac{Pu}{\phi \cdot Fy \cdot A} = 0.003 \qquad \qquad Ca \le 0.125$

tw = 11.2 mm $T \coloneqq d - 2 \cdot tf = 316 mm$

$$\lambda p \coloneqq 2.45 \cdot \sqrt{\frac{E}{Fy}} = 69.296$$

 $\lambda alma \coloneqq \frac{T}{tw} = 28.214$

 $\lambda alma < \lambda p$

5.4.1.4. Fuerza cortante al centro de la viga de sección reducida V_{VSR}

$$Vvsr \coloneqq \left(\frac{2 \cdot Mpr}{Lh}\right) + \frac{wu \cdot Lh}{2} = 259.688 \ kN \qquad V'vsr \coloneqq \left(\frac{2 \cdot Mpr}{Lh}\right) - \frac{wu \cdot Lh}{2} = 176.005 \ kN$$
$$Lh \coloneqq L - 2 \cdot \left(\frac{dcol}{2}\right) - 2 \cdot Sh = 4911 \ mm \qquad Sh \coloneqq a + \frac{b}{2} = 357.5 \ mm$$
$$wu \coloneqq 1.2 \cdot qD + 0.5 \cdot qL = 17.04 \ \frac{kN}{m} \qquad qD = 11.7 \ \frac{kN}{m} \qquad qL = 6 \ \frac{kN}{m}$$

Se toma el máximo valor, en este caso de 259,89 kN.

5.4.1.5. Máximo momento probable en la cara de la columna M_f $Mf \coloneqq Mpr + Vvsr \cdot Sh = 627.761 \ kN \cdot m$

 $M'f := Mpr + V'vsr \cdot Sh = 597.845 \ kN \cdot m$

Se toma el máximo valor, en este caso de 627,76 kN-m.

5.4.1.6. Momento plástico de la viga basado en el esfuerzo de fluencia probable M_{pe}

 $Mpe \coloneqq Ry \cdot Zx \cdot Fy = 800.669 \ kN \cdot m$

 $\phi Mpe \coloneqq \phi \cdot Mpe = 800.669 \ kN \cdot m$

 $\phi Mpe \ge Mf$

5.4.1.7. Determinar la resistencia requerida al cortante V_u de la viga y en la conexión viga-columna

 $Vu \coloneqq Vvsr + wu \cdot Sh = 265.78 \ kN$

5.4.1.8. Diseño de la placa de cortante en la unión alma de la viga con ala de la columna

Se asume una placa con espesor mínimo de 9,5 mm.

$$dmin \coloneqq \frac{Vu}{\varPhi v \cdot 0.6 \cdot Fy \cdot tw} = 158.203 \ mm$$

5.4.1.9. Placa de continuidad para alas de viga

Si uno de los siguientes casos se cumple, no se deben colocar placas de continuidad.

$$tfc \ge 0.4 \cdot \sqrt{1.8 \cdot bfv \cdot tfv \cdot \frac{Ry \cdot Fy}{Ry \cdot Fy}}$$

48.3 *mm*≥43.267 *mm*

Cumple con la primera condición.

$$tfc \ge \frac{bfv}{6}$$
 No cumple. 48.3 mm < 54.167 mm

Al no cumplirse los límites, se colocan placas de continuidad, por lo que se tiene:

$$tplaca := bfv = 325 \ mm$$
 $anchomin := \frac{bfv}{3} + \frac{twc}{2} = 123.333 \ mm$

Se escoge un espesor de 325 mm y para el ancho, se puede tomar cualquier valor sobre los 123,33 mm.

5.4.1.10. Diseño de la zona de panel

$$\phi Rn \coloneqq 1 \cdot \left(0.6 \cdot Fy \cdot dcol \cdot twc \cdot \left(1 + \frac{3 \cdot bfc \cdot tfc^2}{dv \cdot dcol \cdot twc} \right) \right) = 2641.385 \ kN$$

$$Ru \coloneqq \frac{Mf + M'f}{dv - tfv} - Vc = 2830.566 \ kN \qquad Vc \coloneqq \frac{Mf + M'f}{2} = 817.071 \ kN$$

$\phi Rn < Ru$

La resistencia de diseño de la zona panel no cumple con la resistencia requerida al cortante de la zona panel $\emptyset R_n \ge R_u$, por lo que se procede a calcular el espesor de la zona panel. Espesor mínimo de la zona panel

$$tpz \coloneqq \frac{dz + wz}{90} = 6.593 \ mm$$

$$dz \coloneqq dv - 2 \cdot tfv = 316 mm$$

$$wz \coloneqq dcol - 2 \ tfc = 277.4 \ mm$$

5.4.1.11. Criterio columna fuerte – viga débil

$$\frac{\Sigma Mpc}{\Sigma Mpv} = 2.094$$

$$\Sigma Mpc \coloneqq Zxc \cdot \left(Fy - \frac{Puc}{Agc}\right) \cdot 2 = 2737.36 \ kN \cdot m$$

$$\Sigma M pv \coloneqq \Sigma M pr + \Sigma M uv = 1307.081 \ kN \cdot m$$

 $\Sigma Mpr \coloneqq 2 \cdot Mpr = 1069.846 \ kN \cdot m$

$$\Sigma Muv \coloneqq (Vvsr + V'vsr) \cdot \left(a + \frac{b}{2} + \frac{dcol}{2}\right) = 237.235 \ kN \cdot m$$

Se cumple con el requerimiento mínimo $\frac{\sum M_{pc}^*}{\sum M_{pv}^*} \ge 1,0.$

5.4.2. Resultados ETABS

ETABS realiza un análisis, viga/columna y no columna/viga, por lo que esta relación debe ser < 1.

			Beam/Column Capacity Ratios				
			Major Ratio	Load Combo			
		Ī	0.313	1.2D+1	SX++0.5L		
PBS Properties							
a (mm)	b (mm)	c (mm)	Z _{majorRBS} (mm ³) φM _{majc}		najorRBS Capacity (N-mm)		
240	235	81.3	1371596	.8		342899200	

5.4.3. Resultados CYPE

CYPE no cuenta con la opción para ingresar una unión de viga con sección reducida automáticamente, por lo que no se puede realizar el análisis comparativo con este programa.

5.4.4. Comparación de resultados

Se comprueba que el valor del módulo plástico de la viga al centro de la viga de sección reducida Z_{vsr} calculado mediante el cálculo manual y ETABS es el mismo (Tabla 5.31).

Para la relación columna fuerte – viga débil y el cálculo del máximo momento probable al centro de la viga de sección reducida ϕM_{pr} , se tiene un mayor rango de diferencia entre los cálculos manuales y el programa ETABS. Para realizar la comparación de la relación columna fuerte – viga débil se debe invertir el resultado de ETABS, ya que el análisis realizado es viga/columna y no columna/viga como se indica en la normativa. Por esta razón se obtiene una relación de 3.195 en ETABS (Tabla 5.31). Se tiene que el resultado obtenido en el programa es mayor que el calculado manualmente, por lo que se asume que este resultado es más desfavorable.

CONEXIÓN VIGA DE SECCIÓN REDUCIDA					
	RELACIÓN COLUMNA	Zvsr	φMpr		
	FUERTE-VIGA DÉBIL	mm3	kN/m		
CÁLCULO MANUAL	2.094	1371596.8	534.923		
ETABS	3.195	1371596.8	342.899		

Fuente: Autores

Debido a la diferencia tan grande entre los resultados, se buscó el método de cálculo utilizado por ETABS, en donde se concluyó que para calcular el momento probable, el software no toma en cuenta los coeficientes R_y y C_{pr} cómo se indica en la norma. Únicamente toma el producto de Z_{vsr} por F_y , obteniendo así un momento probable más desfavorable.

Para comprobar y poder comparar los resultados, se calculó nuevamente mediante cálculos manuales la relación columna fuerte – viga débil tomando las consideraciones para el momento probable que utiliza el software ETABS.

$Mpr \coloneqq Fy \cdot Zvsr = 342.899 \ \mathbf{kN} \cdot \mathbf{m}$

De esta forma se obtuvo el mismo valor para el momento probable que el calculado mediante ETABS. De igual forma se recalculó la relación columna fuerte - viga débil con el valor de M_{pr} que utiliza ETABS y se obtuvo una relación columna/viga de 3.267 o viga/columna de 0.306. Estos resultados se encuentran más próximos a los presentados por ETABS, con una diferencia que se puede considerar como aceptable.

CONCLUSIONES Y RECOMENDACIONES

Conclusiones

Luego de modelar y analizar los resultados obtenidos mediante CYPE, ETABS y por el método tradicional, podemos concluir que los dos softwares de cálculo realizan un diseño a capacidad que cumple con todas las normativas vigentes. Por lo tanto, cualquiera de los dos es fiable para este tipo de análisis.

CYPE es un software muy sencillo de utilizar y sus entornos son amigables con el usuario, pero su capacidad de análisis todavía es limitada, ya que como se pudo observar, no es capaz de modelar automáticamente una conexión de viga de sección reducida (por lo tanto, tampoco realiza la comprobación de columna fuerte – viga débil) y para el análisis sísmico presenta en su mayoría resultados dinámicos. Los informes que presenta el programa son completos e intuitivos, presenta las normativas utilizadas con sus respectivas fórmulas y presenta todos los factores y coeficientes utilizados para los cálculos. Esto ayuda mucho al momento de verificar los resultados, ya que se presentan los valores que se están utilizando a lo largo de todo el procedimiento de cálculo y diseño.

Por otro lado, la interfaz de usuario de ETABS está disponible únicamente en inglés, por lo que para profesionales con poco conocimiento del idioma esto se vuelve un impedimento al momento de modelar una estructura. Este software tiene una gran capacidad de análisis, ya que permite una gran variedad de métodos para el ingreso de datos y presentación de resultados mediante diferentes métodos. A comparación de CYPE, para los cálculos y el modelamiento realizado en este trabajo, si se pudieron obtener todos los resultados para el análisis de sismo estáticos. En cuanto a la comprobación de la conexión de viga de sección reducida, el programa permite ingresar esta reducción, pero no toma todas las consideraciones establecidas en la NEC al momento de comprobar la resistencia de columna fuerte - viga débil.

En ambos softwares siempre es importante destacar que se debe tener un conocimiento previo de análisis y diseño estructural para poder ingresar los datos correctamente, para esto se realizó la metodología para el ingreso de datos en ETABS y CYPE. Es importante destacar que siempre se deben verificar toda la información que se ingresen a los programas ya que, si estos se ingresan erróneamente los

resultados obtenidos también serán erróneos. Adicionalmente al modelamiento básico de la estructura en donde se deben comprobar las propiedades de los materiales, dimensiones, condiciones de apoyo, cargas y combinaciones de cargas asignadas, se debe llevar a cabo una comprobación de diferentes factores tales como: el factor de modificación por pandeo lateral-torsional (C_b), los coeficientes de pandeo y pandeo lateral (factor de longitud efectiva k).

Recomendaciones

Siempre es importante llevar una comprobación en hojas de cálculo paralelas al diseño estructural que se realice en los programas de cálculo, ya que estos presentarán resultados correctos únicamente si se ingresan los datos y normativas correctas. De esta forma se tendrá siempre confianza en los resultados que se obtengan.

Bibliografía

- Alves González, J. J. (Mayo de 2011). Análisis Dinámico de una Estructura irregulares Empleando el programa de Cálculo Estructural ETABS. Obtenido de https://es.scribd.com/doc/305891819/Tesis-Analisis-Dinamico-Estructura-Irregular-Con-Etabs
- American Insitute of Steel Construction. (2022). AISC.org. Obtenido de https://www.aisc.org/about-us/
- American Institute of Steel Construction. (7 de Julio de 2016). ANSI/AISC 360-16 -Specification for Structural Steel Buildings. Obtenido de https://www.aisc.org/globalassets/aisc/publications/standards/a360-16w-rev-june-2019.pdf
- American Society of Civil Engineers ASCE. (2016). ASCE/SEI 7-16 Minimum Design Loads for Buildings and Other Structures. Obtenido de https://drive.google.com/file/d/1tZe0xDVIoA1e0rcjqfiHP5qMwj4fdG6e/view
- Crisafulli, F. J. (2018). Diseño sismorresistente de construcciones de acero. Obtenido de Asociación latinoamericada del acero: https://www.construccionenacero.com/sites/construccionenacero.com/files/publicaci on/diseno_sismorresistente_de_construcciones_de_acero-5ta_ed.pdf
- CSI SPAIN. (s.f.). ETABS. ESPAÑA. Obtenido de https://www.csiespana.com/software/5/etabs
- CYPE Ingenieros SA. (s.f.). CYPE. Alicante.
- Febres Silva, K. A., & Ñahuis Suyon, R. (2019). Diseño sísmico de un edificio de 5 pisos con el uso del CYPECAD y ETABS en Villa María del Triunfo Lima 2019. Obtenido de https://hdl.handle.net/20.500.12692/66761
- Gerdau Corsa. (s.f.). Manual de perfiles estructurales. Obtenido de gerdaucorsa.com.mx
- Instituto Geográfico Militar. (2018). Atlas Espacios Geográficos Expuestos a Amenazas Naturales y Antrópicas. Quito.
- Malasree, S., I M, N., Surendranath Reddy, S., Prakasha, & Kumar, S. (6 de Junio de 2019). International Research Journal of Engineering and Technology. Obtenido de Comparative Study of high rise building subjected to seismic and wind loading using CYPECAD and ETABS: https://d1wqtxts1xzle7.cloudfront.net/60405775/IRJET-V6I636920190826-101888-65w1c7-with-cover-page-

v2.pdf?Expires=1653603988&Signature=bGup8frJYv8rKIYIUFVOOZSEZZJCQ3h ~lIOr-CGVJUJG2wNrZyrf-L2mn86CZIN3khNqll-

q~BeeeXLrenN8ASjYBbL25UIQ96d2hDOmmpSrrkhv-dvcOtgW

- McCormac, J. C., & Csernak, S. F. (2012). *Diseño de Estructuras de Acero* (Quinta ed.). México: Alfaomega Grupo Editos.
- McCormac, J. C., & Csernak, S. F. (2013). *Diseño de estructuras de acero* (Quinta ed.). México: Alfaomega.
- Ministerio de Desarrollo Urbano y Vivienda. (Diciembre de 2014). NEC SE AC: Estructuras de acero. Obtenido de https://www.habitatyvivienda.gob.ec/wpcontent/uploads/downloads/2015/02/NEC-SE-AC-Estructuras-de-Acero.pdf
- Ministerio de Desarrollo Urbano y Vivienda. (Diciembre de 2014). *NEC SE DS: Peligro sísmico diseño sismo resistente*. Obtenido de https://www.habitatyvivienda.gob.ec/wp-content/uploads/downloads/2015/02/NEC-SE-DS-Peligro-S%C3%ADsmico-parte-1.pdf
- Ministerio de Desarrollo Urbano y Vivienda. (Diciembre de 2014). *NEC-SE-CG: Cargas (no sísmicas)*. Obtenido de Ministerio de Desarrollo Urbano y Vivienda: https://www.habitatyvivienda.gob.ec/wp-content/uploads/downloads/2015/02/NEC-SE-CG-Cargas-S%C3%ADsmicas.pdf
- Ministerio de Desarrollo Urbano y Vivienda. (2016). Guía práctica para el diseño de estructuras de acero de conformidad con la Norma Ecuatoriana de la Construcción

NEC 2015. Obtenido de https://www.habitatyvivienda.gob.ec/wp-content/uploads/downloads/2016/10/GUIA-3-ACERO.pdf

- Pardo Soucase, Ĉ., & Valiente Ochoa, E. (Noviembre de 2012). Manual del ingeniero de edificación. Obtenido de Guía para el cálculo de estructuras con cypecad: https://riunet.upv.es/bitstream/handle/10251/72008/TOC_0523_04_01.pdf?sequence =5
- Rivas Palma, C., Zerna Gavilanes, P., & Santos Baquerizo, E. (2 de Febrero de 2012). Utilización del software Cypecad en el diseño sismo resistente de un edificio de cinco pisos utilizando como material el hormigón armado. Obtenido de https://www.dspace.espol.edu.ec/bitstream/123456789/19727/1/ATT00019.pdf
- Saravia Ramírez, L. E. (Noviembre de 2013). Análisis y diseño con ETABS, su aplicación adecuada y comprobación de resultados, aplicado a edificios de concreto armado. Guatemala.