

UNIVERSIDAD DEL AZUAY

FACULTAD DE CIENCIA Y TECNOLOGIA

ESCUELA DE INGENIERIA CIVIL

Modelamiento hidráulico de las conducciones del sistema de agua potable de Chulco, Cuenca, Azuay.

Trabajo de graduación previo a la obtención del título de Ingeniero Civil

Autores:

Carlos Andrés Alvarado Andrade Doménica Ivette Tapia Fajardo

Director:

Ing. Carlos Javier Fernández de Córdova Webster

Cuenca, Ecuador 2023

Alvarado Andrade, Tapia Fajardo i

DEDICATORIA

Quiero empezar dedicando este trabajo a mi mamá Margoth Andrade que ha sido el pilar en estos 5 años para poder sacar esta carrera universitaria adelante.

A mi papá Carlos Alvarado por su sabiduría y consejos para poder afrontar las distintas situaciones que se han presentado en este camino.

A mis tíos y mi abuelo por el apoyo y motivación constante.

Carlos Andrés Alvarado Andrade

Alvarado Andrade, Tapia Fajardo ii

DEDICATORIA

Dedico este trabajo de grado primeramente a Dios por brindarme salud, sabiduría y conocimientos que me han permitido formarme como persona, y ahora como profesional.

A mis padres, Bolívar y Leonor, quienes son los pilares fundamentales de mi vida, por ser mi guía y apoyo incondicional para conseguir todas las metas que me he propuesto, por sus enseñanzas y valores que me han inculcado, y que junto con su amor y esfuerzo han forjado la persona que soy hoy.

A mis hermanos Bolívar y Andrés, por ser parte esencial de mi vida, por su compañía, amor y motivación que me dan día a día.

A mi familia y en especial mis abuelitas por todo s amor que me dan y ser el centro de unión familiar.

Doménica Ivette Tapia Fajardo

AGRADECIMIENTOS

Queremos agradecer primeramente a la Universidad del Azuay, que ha sido nuestra casa de estudios durante estos 5 años, por brindarnos los recursos para formarnos como profesionales íntegros y responsables con la sociedad.

A nuestros profesores, por todas las enseñanzas impartidas, de manera especial al Ing. Javier Fernández de Córdova, nuestro tutor, que gracias a su conocimiento y apoyo nos ha guiado en el desarrollo de este trabajo de grado, así mismo a la Ing, Patricia Palacios, miembro del tribunal, por brindarnos su ayuda en todo momento durante la realización de este trabajo.

A ETAPA EP, por darnos la oportunidad de realizar el trabajo de grado con ellos, y de manera especial a la Ing. Verónica Chumi, por brindarnos sus enseñanzas y conocimientos para culminar este trabajo con éxito.

A nuestro amigos y compañeros que han formado parte de estos 5 años de carrera profesional.

INDICE DE CONTENIDOS

DEDICA	TORIA	i
DEDICA	TORIA	ii
AGRADI	ECIMIENTOS	iii
INDICE I	DE CONTENIDOS	iv
ÍNDICE I	DE FIGURAS	vii
ÍNDICE I	DE TABLAS	viii
ÍNDICE	DE ANEXOS	ix
RESUME	EN	X
ABSTRA	ACT	X
INTROD	UCCIÓN	1
Antecede	entes	2
Justificac	ción	3
Alcance.		3
Objetivos	s	3
Objetivo g	general	3
Objetivos	específicos	3
CAPITUI	LO I	5
1. REC	COPILACIÓN DE INFORMACIÓN	5
1.1. Info	ormación preliminar	5
1.1.1.	Ubicación	5
1.1.2.	Zona de estudio	6
1.1.3.	Información topográfica	7
1.2. Co	nceptos generales	9
1.2.1.	Agua	9
1.2.2.	Agua Potable	9
1.2.3.	Sistema de abastecimiento de agua potable	9
1.2.4.	Conducción de agua potable	9
1.2.5.	Conducción a gravedad	10
1.2.6.	Conducción por bombeo	10
1.2.7.	Modelación hidráulica de una conducción de agua potable	10

1.3.	Con	nponentes de la línea de conducción del sistema	. 11
1.3.	1.	Tuberías	. 11
1.3.	2.	Tanques de almacenamiento	. 11
1.3.	3.	Válvulas	. 11
1.3.	4.	Cámaras rompe presión	. 13
1.3.	5.	Accesorios	. 13
1.4.	Info	ormación catastral	. 14
1.4.	1.	Topología del sistema	14
1.5.	Para	ámetros de diseño	16
1.5.	1.	Fuente de abastecimiento	16
1.5.	2.	Población actual	. 17
1.5.	.3.	Población futura	. 17
1.5.	4.	Dotación	. 18
1.5.	5.	Caudal medio diario	. 18
1.5.	6.	Caudal máximo diario	18
1.5.	7.	Caudal de diseño	. 19
1.6.	Hid	ráulica de tuberías	. 19
1.6.	1.	Cálculo hidráulico	19
1.6.	2.	Perdidas de carga	21
1.6.	.3.	Presiones máximas y mínimas	. 22
1.6.	4.	Material para las tuberías	. 23
1.6.	5.	Diámetros	. 24
1.6.	6.	Velocidades	. 24
CAP	ITUI	.O II	.25
2. 1	DES	ARROLLO DEL MODELO HIDRÁULICO	.25
2.1.	Para	ámetros de diseño para la modelación hidráulica	. 25
2.1.	1.	Población de diseño	. 25
2.1.	2.	Dotación	. 27
2.1.	.3.	Definición de la demanda	. 28
2.2.	Des	arrollo del modelo hidráulico en QGIS	. 29
2.3.	Des	arrollo del modelo hidráulico en WATERGEMS	34
CAD	TTI	O III	13

3.	MODELACIÓN HIDRÁULICA	43
3.1.	Simulación del modelo hidráulico	43
3.2.	Resultados	46
3.3.	Posibles soluciones para la mejora de las conducciones	48
CON	NCLUSIONES	50
REC	COMENDACIONES	51
ANI	EXOS	52
BIB	LIOGRAFÍA	69

ÍNDICE DE FIGURAS

Figura 1.1 Delimitación del sector Chulco Soroche	5
Figura 1.2 Mapa de la red de conducciones, reservas y planta de potabilización	6
Figura 1.3 Topografía del sistema de Chulco Soroche	8
Figura 1.4 Topología de la conducción y ubicación de tanques de reserva	14
Figura 1.5 Balance de energía para dos puntos de un fluido	20
Figura 2.1 Distribución de usuarios en el sistema Chulco Soroche	26
Figura 2.2 Esquema final de la conducción del sistema de agua potable de Chulco S	oroche
en QGIS	31
Figura 2.3 Field Calculator para nodos iniciales	32
Figura 2.4 Field Calculator para nodos finales	33
Figura 2.5 Tabla de atributos de los nodos de la tubería de conducción	34
Figura 2.6 Herramienta ModelBuilder	35
Figura 2.7 Herramienta ModelBuilder asignación de nodos y propiedades	36
Figura 2.8 Conducción ingresada en WATERGEMS	37
Figura 2.9 Herramienta TRex para el ingreso de la topografía	38
Figura 2.10 Estadísticas de los nodos ingresados	39
Figura 2.11 Ubicación de la Planta de Tratamiento de Chulco Soroche	40
Figura 2.12 Ubicación de válvula y tanque	41
Figura 2.13 Definición del caudal para la válvula	41
Figura 3.1 Resultados de la simulación	43
Figura 3.2 Disposición de válvulas a la entrada de los tanques	45

Figura 3.3 Estadísticas de las presiones en los	s nodos
---	---------

ÍNDICE DE TABLAS

Tabla 1.1 Cartas topográficas por sector del sistema Chulco Soroche	7
Tabla 1.2 Red de tubería	15
Tabla 1.3 Tanques de reserva	16
Tabla 1.4 Coeficientes "C" para Hazen Williams	21
Tabla 1.5 Presiones admisible para tuberías de hierro dúctil	22
Tabla 1.6 Materiales y normas para tuberías	23
Tabla 2.1 Número de usuarios por sector	25
Tabla 2.2 Proyección de población	27
Tabla 2.3 Dotación para el sector rural del Cantón Cuenca	28
Tabla 2.4 Población actual y futura del sistema Chulco Soroche	28
Tabla 2.5 Caudales obtenidos de los caudalímetros	42
Tabla 3.1 Válvulas	44
Tabla 3.2 Presiones en las entradas de los tanques	47
Tabla 3.3 Demandas en las entradas de los tanques	47
Tabla 3.4 Velocidades en la entrada de los tanques	48

ÍNDICE DE ANEXOS

Anexo 1.	. Variación mensual de caudales a las entradas de los tanques	52
	•	
Anexo 2.	. Presiones en los nodos de la conducción	57

RESUMEN

Este trabajo tiene su enfoque principal en la modelación hidráulica de las conducciones del sistema de agua potable de Chulco que abastece a las parroquias Checa, Octavio Cordero Palacios, Llacao y Ricaurte. Para la realización del modelo se recopiló información catastral, demográfica y topográfica brindada por ETAPA EP, además de levantar datos en campo de los tanques de reserva. Para el procesamiento de información se utilizaron softwares de tipo CAD y GIS, y para evaluar el estado actual de las conducciones se utilizó un software especializado en modelación hidráulica, con estos resultados se propuso posibles soluciones para un mejor funcionamiento del sistema.

Palabras clave: agua potable, conducción, modelación hidráulica, sistema de agua potable, software

ABSTRACT

This research paper has its focus on the hydraulic modeling of the drinking water pipelines from Chulco, which supplies the sectors Checa, Octavio Cordero Palacios, Llacao and Ricaurte. In order to build the model, cadastral, demographic and topographic information that was provided by ETAPA EP was compiled in addition to collecting field data of the reserve tanks. For the purpose of processing information, CAD and GIS softwares were used, and to evaluate the current state of the pipelines a software specialized in hydraulic modeling was used. With these results possible solutions for a better functioning of the system were proposed.

Keywords: drinking water, drinking water system, hydraulic modeling, pipeline, software

INTRODUCCIÓN

El acceso a agua potable es un derecho fundamental de los seres humanos, todos los gobiernos y entidades competentes deben garantizar la implementación de sistemas adecuados para el abastecimiento de este servicio. Las conducciones de agua potable forman parte fundamental de los sistemas de abastecimiento de agua potable, ya que deben garantizar el transporte del agua en cantidades y condiciones adecuadas para la población.

Este trabajo de titulación consiste en elaborar un modelo hidráulico para las conducciones del sistema de agua potable de Chulco Soroche, de la ciudad de Cuenca. El modelo se ha desarrollado con la utilización de softwares especializados en modelación hidráulica y con información brindada por la Empresa Pública Municipal de Telecomunicaciones, Agua Potable, Alcantarillado y Saneamiento, ETAPA EP.

La construcción del modelo hidráulico permitirá evaluar el funcionamiento actual de las conducciones de agua potable, con la finalidad de analizar los problemas que se presentan en estas y proponer posibles soluciones a la empresa encargada para que pueda mejorar el servicio y garantizar la calidad de este.

Antecedentes

Según el Código Orgánico del Ambiente (2017): "El agua es un derecho humano fundamental e irrenunciable, que constituye patrimonio nacional estratégico de uso público, inalienable, imprescriptible, inembargable y que por lo tanto es esencial para la vida" (p. 4).

El agua potable al ser un recurso primordial para el ser humano debe ser regulado con políticas para su buen manejo y aprovechamiento. En Ecuador estas políticas se reglamentan en la Ley Orgánica de Recursos Hídricos, Usos y Aprovechamiento Del Agua (2014) cuyo objetivo es: garantizar el derecho humano al agua, así como regular y controlar la autorización, gestión, preservación, conservación, restauración, de los recursos hídricos, uso y aprovechamiento del agua, la gestión integral y su recuperación, en sus distintas fases, formas y estados físicos, a fin de garantizar el sumak kawsay o buen vivir y los derechos de la naturaleza establecidos en la Constitución (p. 3).

ETAPA EP, la Empresa Pública Municipal de Telecomunicaciones, Agua Potable, Alcantarillado y Saneamiento de Cuenca, es la responsable de la operación y mantenimiento de cada componente que comprende los sistemas de agua potable en el cantón Cuenca. Con el objetivo de garantizar el mejor servicio y asegurar el suministro de agua potable a la ciudad, la empresa cuenta con 33 centros de reserva ubicados de manera estratégica en varios sectores de la ciudad, con capacidad total de 120.000 metros cúbicos para abastecer a la ciudad. En el área rural, cada planta cuenta con la cantidad necesaria y suficiente de reserva para la población abastecida. En el área urbana las redes de distribución de agua potable alcanzan una cobertura del 96%, mientras que en el área rural cubren un 88% (ETAPA EP, 2022).

Justificación

ETAPA EP en convenio con el Banco Interamericano de Desarrollo BID ha desarrollado actualizaciones de los modelos hidráulicos de las conducciones y redes de distribución de los sistemas Tomebamba, Machángara, Yanuncay y Culebrillas, sin embrago no existe un modelamiento hidráulico de las conducciones de agua potable de Chulco Soroche.

La red de conducciones provenientes de la captación del río Chulco que abastecen de agua potable a las diferentes comunidades del sector sufre de distintos problemas como: sobrepresiones a la entrada de las reservas que rondan los 400 a 500 PSI razón por la cual los accesorios instalados no son los adecuados para esas condiciones, varias reservas no tienen el nivel necesario de agua para suministrar a su respectivo sector, mientras que otras reservas sufren de reboses que afectan a los predios colindantes. Por esta razón es necesario desarrollar el modelo hidráulico de dichas conducciones, evaluar su funcionamiento y proponer soluciones.

Alcance

Con la información catastral provista por la empresa ETAPA EP se pretende elaborar un modelo hidráulico de las conducciones del sistema de agua potable de Chulco Soroche, evaluar su estado actual y proponer posibles soluciones para solventar los problemas que se presenten.

Objetivos

Objetivo general

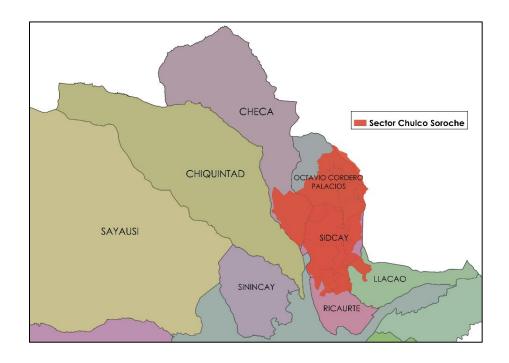
Desarrollar un modelo hidráulico para evaluar el funcionamiento de las conducciones del sistema de agua potable de Chulco Soroche e identificar los problemas que afectan a éstas.

Objetivos específicos

• Levantar la información necesaria para la elaboración del modelo hidráulico.

- Evaluar el funcionamiento de las conducciones y desarrollar su respectivo modelo hidráulico.
- Plantear posibles soluciones para el buen funcionamiento de las conducciones.

CAPITULO I

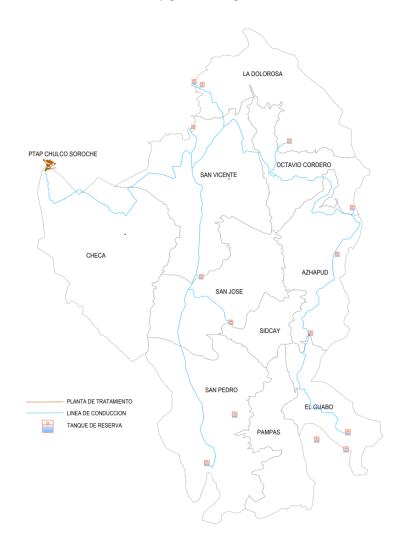

1. RECOPILACIÓN DE INFORMACIÓN

1.1. Información preliminar

1.1.1. Ubicación

El sistema de agua potable Chulco Soroche se ubica al noreste de la ciudad de Cuenca, provincia del Azuay. Comprende la parroquia de Sidcay y parte de las parroquias de Checa, Octavio Cordero Palacios, Llacao y Ricaurte. Cuenta con una superficie de aproximadamente 4290 Ha y limita al norte con la parroquia de Checa, al sur con las parroquias de Ricaurte y Llacao, al este con el cantón Déleg de la provincia del Cañar y al oeste con la parroquia Chiquintad.

Figura 1.1Delimitación del sector Chulco Soroche



Fuente: Elaboración propia.

1.1.2. Zona de estudio

El sistema de Chulco Soroche abastece de agua potable a diez sectores: Azhapud, Checa, La Dolorosa, El Guabo, Octavio Cordero, Pampas, San José, San Pedro, San Vicente y Sidcay. La red de conducciones se extiende en un total de 32.44 km y se alimenta desde la planta de potabilización Chulco Sorche ubicada a 3070 msnm aproximadamente, siendo esta la cota máxima de todo el sistema, por lo que el suministro se realiza a gravedad.

Figura 1.2 *Mapa de la red de conducciones, reservas y planta de potabilización*

Fuente: Elaboración propia, adaptado de ETAPA EP.

1.1.3. Información topográfica

La topografía es fundamental en la modelación hidráulica, ya que permite representar con precisión el relieve del terreno y las características geográficas de una determinada zona, lo que a su vez permite medir y analizar los flujos de agua, determinar pendientes de cada una de las tuberías, presiones, caudales y velocidades de manera más eficiente.

Para la realización del modelo hidráulico de las conducciones del sistema de Chulco Soroche, ETAPA EP facilito las cartas topográficas en formato CAD que cubren en su mayoría el área de estudio. En la tabla 1.1 se clasifican los sectores con sus respectivas cartas topográficas.

Tabla 1.1Cartas topográficas por sector del sistema Chulco Soroche


SECTOR	CARTAS TOPOGRÁFICAS	ESCALA
AZHAPUD	AF27, AF28, AF29, AG27, AG28, AG29	1:5000
CHECA	AD27, AD28, AE27, AE28, AE29	1:5000
LA DOLOROSA	AF26, AF27, AG27	1:5000
EL GUABO	AF29, AF30, AG30, AG31	1:5000
OCTAVIO CORDERO	AF26, AF27, AF28, AG27, AG28	1:5000
PAMPAS	AZOGUES_8417S, GUALACEO_8417S	1:50000
SAN JOSE	AE29, AF28, AF29	1:5000
SAN PEDRO	AZOGUES_8417S, GUALACE0_8417S	1:50000
SAN VICENTE	AE27, AE28, AF27, AF28	1:5000
SIDCAY	AF29, AF30	1:5000

Fuente: Elaboración propia, adaptado de ETAPA EP.

A partir de las cartas topográficas, con la ayuda del software CivilCad se creó una superficie únicamente del área de interés, de manera que se modificó las curvas de nivel, dándoles

una separación a las curvas principales de 10 m, facilitando así la exportación a WATERGEMS para la evaluación del funcionamiento de las conducciones. En la figura 1.3 podemos observar la topografía del sector Chulco Soroche en un modelo Gis, cuyas elevaciones máximas y mínimas son de 3070 msnm y 2570 msnm respectivamente.

Figura 1.3 *Topografía del sistema de Chulco Soroche*

Fuente: Elaboración propia

1.2. Conceptos generales

1.2.1. Agua

El agua es un elemento esencial tanto para la existencia de los seres humanos como para la naturaleza y se considera un recurso estratégico de carácter nacional, destinado al uso público, de dominio inalienable, imprescriptible e inembargable del Estado. (Ley Orgánica de Recursos Hídricos, Usos y Aprovechamiento Del Agua, 2014).

1.2.2. Agua Potable

"Es el agua cuyas características físicas, químicas microbiológicas han sido tratadas a fin de garantizar su aptitud para consumo humano" (NTE INEN 1 108, 2011, p.1).

1.2.3. Sistema de abastecimiento de agua potable

"El sistema de abastecimiento de agua potable incluye obras y trabajos auxiliares construidos para la captación, conducción, tratamiento, almacenamiento y distribución del agua desde las fuentes de abastecimiento hasta la conexión domiciliaria" (CPE INEN 5 parte 9-1:1992, 1992, p.26), con el objetivo de proveer a los habitantes agua de buena calidad para satisfacer sus necesidades. El desarrollo del trabajo se enfocará en las conducciones de agua potable.

1.2.4. Conducción de agua potable

Una conducción de agua potable es aquella que se compone de un conjunto de tuberías, válvulas, accesorios, y demás estructuras encargadas de transportar el agua proveniente de la fuente de abastecimiento, desde la captación hasta los tanques de almacenamiento o la planta de tratamiento (CPE INEN 5 parte 9-1:1992, 1992).

La conducción de agua puede realizarse de dos maneras: conducciones a gravedad y conducciones por bombeo.

1.2.5. Conducción a gravedad

Se presenta cuando la elevación del agua en la fuente de abastecimiento es mayor a la altura del punto de entrega del agua. El transporte del agua se realiza utilizando la energía hidráulica (Comisión Nacional del Agua, 2019). Las conducciones a gravedad pueden ser diseñadas con flujo a lamina libre o con flujo a presión.

- Conducciones a gravedad a flujo libre: Se presenta cuando la línea piezométrica coincide con la superficie del agua, pueden ser realizadas en forma de canales cerrados o tuberías que trabajan parcialmente llenos (CPE INEN 5 parte 9-1:1992, 1992).
- Conducciones a gravedad con flujo a presión: Se presenta cuando la línea piezométrica es mayor al perfil de la línea de conducción. Aquí las tuberías trabajan completamente llenas (CPE INEN 5 parte 9-1:1992, 1992).

1.2.6. Conducción por bombeo

Se da cuando la elevación del agua en la fuente de abastecimiento es menor a la altura del sitio de entrega (Comisión Nacional del Agua, 2019). La energía necesaria para el transporte del agua es provista por una bomba (CPE INEN 5 parte 9-1:1992, 1992).

1.2.7. Modelación hidráulica de una conducción de agua potable

La modelación hidráulica consiste en la simulación del estado real de cualquier obra hidráulica, a menor escala, con el objetivo de entender y evaluar su comportamiento y

funcionamiento, de manera que se pueda realizar pruebas y determinar soluciones a los posibles problemas.

1.3. Componentes de la línea de conducción del sistema

1.3.1. Tuberías

Las tuberías son el conjunto formado por tubos y sus respectivos sistemas de unión, cuya función es la conducción del agua.

Los materiales y tipos de tuberías se escogen de acuerdo a las condiciones de funcionamiento, características del suelo y la calidad del agua a conducir (Urgiles Mendieta, 2019). Entre algunos materiales de las tuberías están de PVC, hierro dúctil, polietileno, hormigón armado, acero, entre otros.

1.3.2. Tanques de almacenamiento

También llamados tanques de reserva, son depósitos cerrados cuya finalidad es almacenar una cantidad suficiente de agua para cubrir las variaciones horarias de consumo (CPE INEN 5 parte 9-1:1992, 1992). Los tanques de almacenamiento comprenden tanto el depósito de reserva como la cámara de válvulas que se describen a continuación.

1.3.3. Válvulas

Se considera la colocación de válvulas en las tuberías de conducción en el caso de que se obtengan presiones superiores a la máxima. El sistema de Chulco cuenta con válvulas de control, by pass, reguladoras de presión, sostenedoras de presión, flotadoras, de purga y de aire.

• Válvulas de control

Las válvulas de control permiten regular el paso del flujo de agua por una tubería, se utilizan para reducir el caudal a un valor requerido, estas pueden ser válvulas de tipo mariposa, esféricas o de tipo compuerta (Comisión Nacional del Agua, 2019).

• Válvulas de regulación de presión

Se instalan válvulas reguladoras de presión para reducir la presión en las tuberías, y así mismo disminuir el caudal. Estas válvulas trabajan a una presión limite, que es la presión a la cual disminuyen el flujo de agua en la salida (Aldaz Armendariz, 2020).

• Válvulas sostenedoras de presión

Se instalan válvulas sostenedoras de presión para mantener una presión fija en una zona o sector. Estas válvulas están diseñadas para abrirse automáticamente cuando la presión alcanza el valor máximo permitido, permitiendo que la presión disminuya, y cuando la presión baja, esta se cierra hasta que la presión nuevamente suba hasta el valor limite. (Aldaz Armendariz, 2020)

• Válvulas flotadoras

Estas válvulas son dispositivos que permiten controlar el nivel de agua en un tanque. Su objetivo es regular el flujo de entrada de agua al tanque, de manera que se llene hasta un nivel permitido y evite que el agua se desborde.

• Válvulas de purga

Los sedimentos que se acumulan en las tuberías provocan la reducción del área del flujo del agua, para evitar este fenómeno se instalan válvulas de purga con objetivo de limpiar estos conductos (Agüero Pittman, 1997).

• Válvulas de aire

Estas válvulas son fundamentales para controlar el aire que pueden llegar a entrar en las conducciones, ya sea cuando estas se llenan, se vacían o se encuentran en operación. Existen dos tipos de válvulas de aire; la válvula de admisión y expulsión de aire, cuya función es expulsar o admitir aire durante el llenado y vaciado de las tuberías y la válvula eliminadora de aire, que tiene como objetivo eliminar el aire que se acumula en los puntos altos de la conducción (Comisión Nacional del Agua, 2019).

• Válvulas de by pass

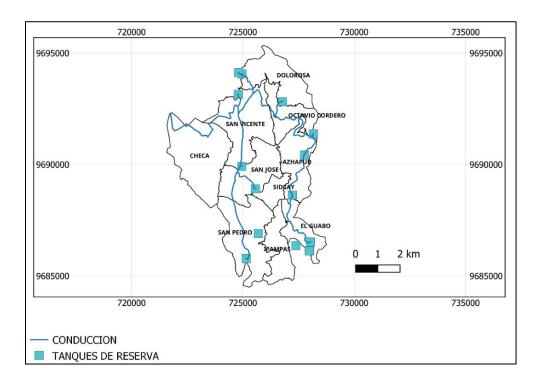
Estas válvulas son indispensables para permitir el paso de agua cuando se deba realizar mantenimiento, limpieza o cambios en las instalaciones de los elementos del sistema.

1.3.4. Cámaras rompe presión

Las cámaras o también llamados tanque rompe presión se emplean cuando existe bastante desnivel entre la captación y algunos puntos de la línea de conducción. Esto produce presiones altas en las tuberías, por lo que la función principal de este elemento es reducir el exceso de presión y garantizar un mejor funcionamiento en las tuberías (Agüero Pittman, 1997).

1.3.5. Accesorios

Los accesorios que se suelen utilizar en las conducciones son piezas de unión como juntas, codos, tees, cruces, entre otros; y elementos como tapones y tapas que se colocan en los extremos de un conducto con la finalidad de evitar la salida del agua. Estos accesorios se colocan con el fin de garantizar un buen funcionamiento en los conductos (Comisión Nacional del Agua, 2019).


1.4. Información catastral

El catastro de agua potable y saneamiento es un registro en el que constan todos los activos que están en posesión de la empresa que brinda dicho servicio. Toda la información que se presentará a continuación acerca de: disposición y tipo de tuberías y ubicación de tanques ha sido obtenida del catastro elaborado por ETAPA EP.

1.4.1. Topología del sistema

En la figura 1.4 se puede observar la topología de la conducción y la ubicación de los tanques de reserva que existen en el área de estudio representada en un modelo GIS.

Figura 1.4 *Topología de la conducción y ubicación de tanques de reserva*

Fuente: Elaboración propia, adaptado de ETAPA EP.

En la tabla 1.2 se detallan las características de la red de tuberías y en la tabla 1.3 se describen las características de los tanques.

Tabla 1.2 *Red de tubería*

DA DD COVITA	DIAMETRO	LONGIEUD	B & A CENTER TO A T
PARROQUIA	DIAMETRO (mm)	LONGITUD (m)	MATERIAL
CHECA	250	917	HIERRO DÚCTIL
CHECA	250	1132	HIERRO DÚCTIL
CHECA	250	715	HIERRO DÚCTIL
CHECA	250	561	HIERRO DÚCTIL
CHECA	250	179	HIERRO DÚCTIL
LLACAO	100	1101	HIERRO DÚCTIL
OCTAVIO CORDERO	150	897	HIERRO DÚCTIL
OCTAVIO CORDERO	150	1679	HIERRO DÚCTIL
OCTAVIO CORDERO	80	963	HIERRO DÚCTIL
OCTAVIO CORDERO	150	680	HIERRO DÚCTIL
OCTAVIO CORDERO	150	1428	HIERRO DÚCTIL
OCTAVIO CORDERO	80	86	HIERRO DÚCTIL
OCTAVIO CORDERO	250	332	HIERRO DÚCTIL
OCTAVIO CORDERO	250	1397	HIERRO DÚCTIL
OCTAVIO CORDERO	250	673	HIERRO DÚCTIL
OCTAVIO CORDERO	80	498	HIERRO DÚCTIL
OCTAVIO CORDERO	200	1141	HIERRO DÚCTIL
OCTAVIO CORDERO	100	1345	HIERRO DÚCTIL
OCTAVIO CORDERO	150	583	HIERRO DÚCTIL
OCTAVIO CORDERO	80	140	HIERRO DÚCTIL
OCTAVIO CORDERO	100	2447	HIERRO DÚCTIL
OCTAVIO CORDERO	110	42	PVC
OCTAVIO CORDERO	80	167	HIERRO DÚCTIL
SIDCAY	150	2871	HIERRO DÚCTIL

SIDCAY	150	574	HIERRO DÚCTIL
SIDCAY	100	1430	HIERRO DÚCTIL
SIDCAY	100	361	HIERRO DÚCTIL
SIDCAY	80	1304	HIERRO DÚCTIL
SIDCAY	100	406	HIERRO DÚCTIL
SIDCAY	100	2145	HIERRO DÚCTIL
SIDCAY	100	1550	HIERRO DÚCTIL
SIDCAY	100	170	HIERRO DÚCTIL
SIDCAY	100	674	HIERRO DÚCTIL

Fuente: Elaboración propia, adaptado de ETAPA EP.

Tabla 1.3 *Tanques de reserva*

TANQUE	VOLUMEN (m3)	COTA (m)
EL CISNE	100	3022
ZHOACAN BAJO	100	2996
ZHOACAN ALTO	100	3036
CORAZON DE JESUS	100	2902
LA RAYA	100	2856
SAN VICENTE ALTO (GUABIZHUN)	100	2784.48
SAN VICENTE DE SIDCAY	100	2686
SANTA MARIA	40	2720
LA DOLOROSA	100	2736
CENTRO DE SIDCAY (LA NUBE)	100	2728
BIBIN	100	2882

Fuente: Elaboración propia, adaptado de ETAPA EP.

1.5. Parámetros de diseño

1.5.1. Fuente de abastecimiento

El Sistema del Chulco se compone de una captación proveniente del rio Chulco, de una planta de potabilización de tipo convencional que en la parte baja cuenta con dos tanques de 250

m3 y un sistema de conducciones que permiten abastecer a las comunidades de Checa, Sidcay, Octavio Cordero, Llacao y Ricaurte.

1.5.2. Población actual

La población actual se calcula de acuerdo al número de usuarios obtenido en el catastro y el número de personas por hogar.

$$PA = Usuarios * # per/hog$$
 (1)

Dónde:

PA= Población actual

#per/hog= Número de personas por hogar

1.5.3. Población futura

Es aquella que se proyecta al final del periodo de diseño, se calcula usando el método geométrico definido por la siguiente formula:

$$PF = PA * (1+r)^n \tag{2}$$

Dónde:

PF= Población futura

PA= Población actual

r= Tasa de crecimiento

n= Intervalo en número de años para la proyección

1.5.4. Dotación

Es el caudal de agua consumido diariamente por cada habitante, que incluye domésticos, públicos, industriales y comerciales (CPE INEN 5 parte 9-1:1992, 1992).

- Dotación bruta: cantidad mínima de agua para satisfacer las necesidades básicas de una persona, considerando las perdidas en el sistema de conducción, distribución, en los bombeos o tanques de almacenamiento.
- Dotación neta: cantidad mínima de agua para satisfacer las necesidades básicas de una persona, sin considerar las perdidas en el sistema de conducción, distribución, en los bombeos o tanques de almacenamiento.

$$Dotacion\ bruta = \frac{Dotacion\ neta}{1 - \%perdidas} \tag{3}$$

1.5.5. Caudal medio diario

Corresponde al promedio de los consumos diarios en un periodo de un año, proyectado al periodo de diseño.

$$Qmd = \frac{Poblacion\ futura*Dotacion\ bruta}{86400} \ l/s \tag{4}$$

1.5.6. Caudal máximo diario

Corresponde al máximo caudal consumido en un periodo de 24 horas a lo largo de un año.

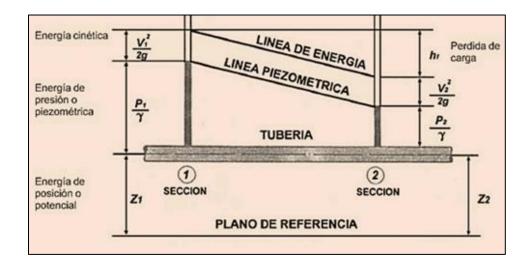
$$QMD = KMD * Qmd (5)$$

Siendo KMD (Factor Máximo Diario) = 1.25, de acuerdo a la Norma CO 10.07 – 601 (1992)

1.5.7. Caudal de diseño

Para las conducciones, o ampliaciones de esta, el caudal de diseño debe satisfacer la demanda de agua proyectada al final del periodo de diseño. Según la Norma CO 10.07 - 601 (1992) el caudal de diseño para conducciones superficiales corresponderá al caudal máximo diario QMD + 10%.

1.6. Hidráulica de tuberías


Se debe tener en cuenta las siguientes recomendaciones: identificar las obras de infraestructuras existentes en el cual se incluya el catastro de tuberías y accesorios, así como el estado estructural de tuberías y la operación hidráulica del sistema, el trazado de las conducciones tiene que ser lo más directo posible, evitar trazados que provoquen presiones excesivas y evitar tramos que puedan causar bloqueos por aire en la línea de conducción (Urgiles Mendieta,2019).

1.6.1. Cálculo hidráulico

Se debe efectuar el estudio hidráulico del flujo a través de la tubería de la conducción para poder determinar presiones en cada punto de la misma (no se deben permitir presiones nanométricas negativas).

Para esto se aplica la ecuación general de la conservación de energía que se define mediante el teorema de Bernoulli y describe el comportamiento de un fluido a lo largo de una línea corriente, expresa que, en un fluido ideal en régimen de circulación por un conducto cerrado, la energía que posee el fluido permanece constante a lo largo de su recorrido.

Figura 1.5Balance de energía para dos puntos de un fluido

Fuente: Adaptado de perdida de energía en una conducción a presión, de iagua, 2017, iagua (https://www.iagua.es/blogs/miguel-angel-monge-redondo/fbh3-energia-agua).

$$\frac{p1}{\gamma} + \frac{v_1^2}{2g} + z1 = \frac{p2}{\gamma} + \frac{v_2^2}{2g} + z2 + hf \tag{6}$$

Dónde:

p= Presión (kPa)

v= Velocidad media (m/s)

 $g = Gravedad (m/s^2)$

 γ = Peso Específico del agua (kN/m³)

z= Elevación (m)

hf = Perdida de carga por fricción (N*m/N)

1.6.2. Perdidas de carga

El cálculo de las pérdidas de carga en una conducción es muy importante en el diseño y funcionamiento de la misma, por dicho motivo es importante tener precisión al momento de calcularlas (Alegret y Martínez, 2019).

Las pérdidas se calcularán con Hazen Williams:

$$hf = 10.64 * \left[\frac{Q^{1.852}}{C^{1.852} * D^{4.871}} \right] * L$$
 (7)

Dónde:

hf = Perdida de carga

D= Diámetro de la tubería (m)

 $Q = \text{Caudal (m}^3/\text{s)}$

C= Coeficiente Hazen Williams

L= Longitud de la tubería (m)

Tabla 1.4Coeficientes "C" para Hazen Williams

Material de la Tubería	Tubería	
Material de la Tuberia	Nueva	Usada
Hierro Dúctil	140	135
PVC	150	125
Acero Soldado	120	90
Acero con Revestimiento	140	135

Fuente: Elaboración propia, adaptado de ETAPA EP.

1.6.3. Presiones máximas y mínimas

Para las presiones mínimas en conducciones no existe un valor determinado, este valor va a estar condicionado por la presión mínima que requieran los accesorios, sin embargo, se recomienda que la presión mínima en los puntos y condiciones más desfavorables sea de 5 m de columna de agua (Urgiles Mendieta, 2019).

Por otro lado, las presionas máximas van a estar dadas por las características de la tubería usada en la conducción, para este caso de estudio tomaremos como referencia las presiones máximas de trabajo sugeridas por la Norma ISO 2531 de las tuberías de hierro dúctil para diferentes diámetros que se puede observar en la tabla 1.5.

Tabla 1.5 *Presiones admisible para tuberías de hierro dúctil*

Diámetro nominal (mm)	Presión (bar)
80-300	50
350-600	40
700-1000	32
1200-2000	25
2200-2600	18

Fuente: Elaboración propia, adaptado de Norma ISO 2531 (2009).

1.6.4. Material para las tuberías

Los materiales serán escogidos dependiendo la naturaleza del terreno y del tipo de funcionamiento que este pensado y el mantenimiento que se le dé al tramo. Se debe cumplir las Normas Técnicas Ecuatorianas, en caso de que no existieran, las normas internacionales ISO (Urgiles Mendieta, 2019).

Se recomienda usar tuberías de PVC en conducciones con diámetros menores o iguales a 400mm, valores mayores a este con hierro dúctil, sin embargo, como se puede ver en la tabla 1.2, todas las tuberías de la conducción están hechas de hierro dúctil, a excepción de un tramo de 42 m que está conformada por PVC.

A continuación, se muestra las normas técnicas nacionales e internacionales a seguir sobre el material empleado para tuberías.

Tabla 1.6 *Materiales y normas para tuberías*

Material de la Tubería	Norma Ecuatoriana	Normas Internacionales
Hierro Dúctil - HD		ISO 2531 y conexas
Polietileno de Alta Densidad - PEAD	NTE INEN 1744:2009	ISO 4427 y conexas
		ISO 4065
Polivinilo de Cloruro - PVC	NTE INEN 1373-2016	ISO 3606
		ISO 161-1

- 1) Norma NTE INEN 1744:2009: "TUBOS DE POLIETILENO PARA CONDUCCIÓN DE AGUA A PRESION. REQUISITOS"
- 2) Norma NTE INEN 1373-2016: "TUBERÍA PLÁSTICA. TUBOS Y ACCESORIOS DE PVC RÍGIDO PARA PRESIÓN."
 - 3) Norma ISO 2531:"TUBERÍA EN HIERRO DÚCTIL"

Alvarado Andrade, Tapia Fajardo 24

4) Norma ISO 4427: "SISTEMA DE TUBERÍAS PLÁSTICAS. TUBOS DE

POLIETILENO (PE) Y CONEXIONES PARA ABASTECIMIENTO DE AGUA"

5) Norma ISO 4065: "Tubos termoplásticos - Tabla de espesor de pared universal"

6) Norma ISO 3606: "TUBERÍAS DE CLORURO DE POLIVINILO (PVC) SIN

PLASTIFICAR - TOLERANCIAS EN DIÁMETROS EXTERIORES Y ESPESORES DE

PARED"

7) Norma ISO 161-1: "TUBOS TERMOPLÁSTICOS PARA EL TRASNPORTE DE

FLUIDOS - DIÁMETROS NOMINALES EXTERNOS Y PRESIONES NOMINALES"

Fuente: Tomado de Urgiles Mendieta (2019).

1.6.5. Diámetros

Se debe tener en cuenta presiones y velocidades dentro del sistema, para calcular los

diámetros usualmente se usan las ecuaciones de Hazen-Williams, Darcy-Weisbach, Colebrook-

White entre otras (Urgiles Mendieta, 2019).

El diámetro mínimo de la tubería de conducción debe ser no menos de 100mm para centros

poblados y áreas industriales, y no menos de 75 mm para zonas rurales (CPE INEN 5 parte 9-

1:1992, 1992). Se puede observar en la tabla 1.2 que el diámetro mínimo de toda la red de tuberías

es de 80 mm y el diámetro máximo es de 250 mm, por lo tanto, la conducción cumple con lo

requerido en la norma ecuatoriana.

1.6.6. Velocidades

La velocidad mínima es de 0.60 m/s y para la velocidad máxima se debe verificar que la

perdida de carga acumulada (tubería y accesorios) no supere los 10 m de columna de agua por

kilómetro de conducción (Urgiles Mendieta, 2019).

CAPITULO II

2. DESARROLLO DEL MODELO HIDRÁULICO

2.1. Parámetros de diseño para la modelación hidráulica

2.1.1. Población de diseño

Para analizar el comportamiento de la población del sector se usará la información del catastro de usuarios de ETAPA EP correspondiente al mes de enero del año 2023.

Al revisar todos los datos es necesario filtrar los mismos para poder analizar y proyectar la población con la menor cantidad de errores, los criterios fueron los siguientes:

- > Se eliminaron todos los consumos que no sean de tipo residencial.
- > Se eliminaron los consumos iguales a cero.

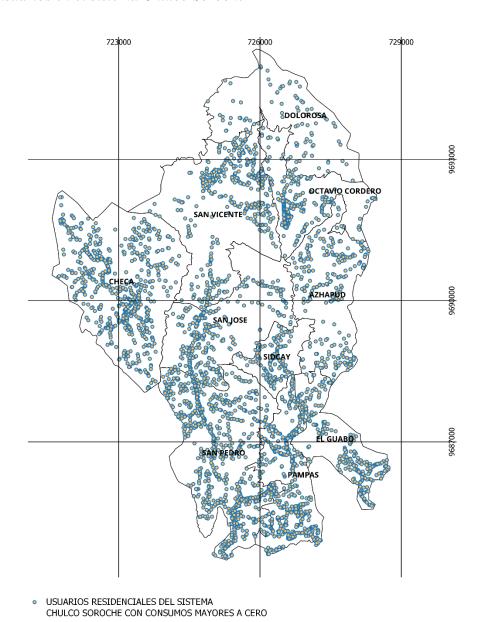

Quedando la distribución de usuarios de la siguiente manera:

Tabla 2.1 *Número de usuarios por sector*

Sectores	# Usuarios
AZHAPUD	249
CHECA	781
LA DOLOROSA	102
EL GUABO	352
OCTAVIO CORDERO	250
PAMPAS	638
SAN JOSE	333
SAN PEDRO	953
SAN VICENTE	439
SIDCAY	174
Total	4271

Fuente: Elaboración propia, tomado de ETAPA EP

Figura 2.1Distribución de usuarios en el sistema Chulco Soroche

Fuente: Elaboración propia, adaptado de ETAPA EP.

Se considero un promedio de 3.73 personas por hogar según los datos proporcionados por el INEC, teniendo así un total de 15931 habitantes en el sector del Chulco.

Con esta información ya filtrada y usando una tasa de crecimiento del 1%, valor tomado de la Norma CO 10.07-601 (1992) se proyecta la población para el año 2050 usando el método geométrico

En la siguiente tabla se presenta la población proyectada con los criterios expuestos:

Tabla 2.2Proyección de población

Sectores	# Usuarios	Pobl	ación
Sectores	# Usuarios	2023	2050
AZHAPUD	249	929	1215
CHECA	781	2913	3811
LA DOLOROSA	102	380	498
EL GUABO	352	1313	1718
OCTAVIO CORDERO	250	933	1220
PAMPAS	638	2380	3113
SAN JOSE	333	1242	1625
SAN PEDRO	953	3555	4650
SAN VICENTE	439	1637	2142
SIDCAY	174	649	849
Total	4271	15931	20841

Fuente: Elaboración propia.

2.1.2. Dotación

Los principales factores que influyen en el consumo de agua de una localidad son los siguientes: calidad del agua, tarifa del servicio, presión en la red, perdidas en el sistema, tipos de consumo, localización y otros factores.

En el Plan Maestro de Agua Potable y Saneamiento para la cuidad de Cuenca III Etapa se definió la dotación para el sector rural que se muestra a continuación.

Tabla 2.3Dotación para el sector rural del Cantón Cuenca

Año	Residencial	Comercial	Industrial	Especial	Total Tasa Consumo	Pérdida	Dotación
	(l/hab-d)	(l/hab-d)	(l/hab-d)	(l/hab-d)	(l/hab-d)	(%)	(l/hab-d)
2015	124	-	-	-	124	31%	180
2020	124	-	-	-	124	31%	180
2025	124	-	-	-	124	31%	180
2030	124	-	-	-	124	31%	180
2035	124	-	-	-	124	31%	180
2040	124	-	-	-	124	31%	180
2045	124	-	-	-	124	31%	180
2050	124	-	-	-	124	31%	180

Fuente: Elaboración propia, adaptado de Planes Maestros Fase III de ETAPA EP.

2.1.3. Definición de la demanda

Con los criterios ya definidos sobre población y dotación, se puede definir la demanda expresada en caudal (QMD) para el presente año y proyectada para el 2050 con las fórmulas (4) y (5) definidas en el capítulo anterior.

Tabla 2.4Población actual y futura del sistema Chulco Soroche

Contours		2023		
Sectores	Población (hab)	Qm (l/s)	QMD (l/s)	QMH (l/s)
AZHAPUD	929	1.93	2.651	3.46
CHECA	2913	6.07	8.349	10.91
DOLOROSA	380	0.79	1.089	1.42
EL GUABO	1313	2.74	3.773	4.93
OTAVIO CORDERO	933	1.94	2.673	3.49
PAMPAS	2380	4.96	6.82	8.91
SAN JOSE	1242	2.59	3.564	4.66

SAN PEDRO	3555	7.41	10.186	13.31
SAN VICENTE	1637	3.41	4.686	6.12
SIDCAY	649	1.35	1.859	2.43

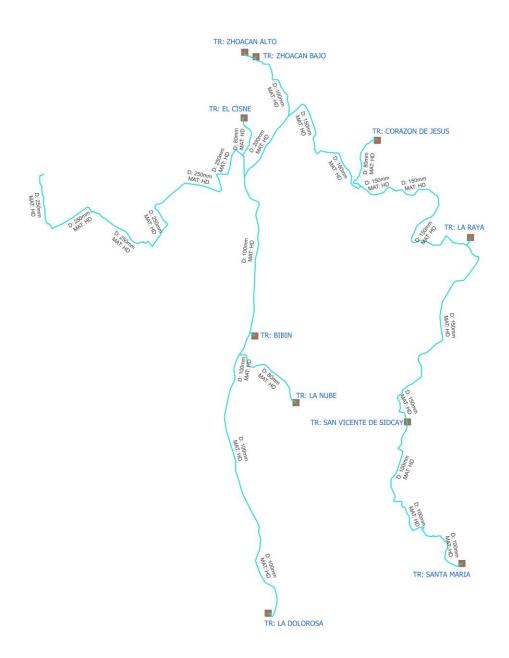
Sectores		2050		
Sectores	Población (hab)	Qm (l/s)	QMD (l/s)	QMH (l/s)
AZHAPUD	1215	2.53	3.476	4.54
CHECA	3811	7.94	10.923	14.28
DOLOROSA	498	1.04	1.43	1.87
EL GUABO	1718	3.58	4.928	6.44
OTAVIO CORDERO	1220	2.54	3.498	4.57
PAMPAS	3113	6.49	8.921	11.66
SAN JOSE	1625	3.39	4.664	6.1
SAN PEDRO	4650	9.69	13.321	17.41
SAN VICENTE	2142	4.46	6.138	8.02
SIDCAY	849	1.77	2.431	3.18

Fuente: Elaboración propia

2.2. Desarrollo del modelo hidráulico en QGIS

Toda la información de la conducción provista por ETAPA EP se encuentra en archivos shapefile, que es un formato de almacenamiento digital donde se guarda la información correspondiente a atributos y localización geométrica de la línea de conducción, la cual es procesada en el software QGIS para organizar, distribuir, manejar y analizar los datos. Para ello se realizó el siguiente procedimiento.

Primero, se comparó la información catastral entregada por ETAPA EP con los datos recolectados en la visita al área de estudio, donde se tomaron medidas de los tanques de reserva, como su diámetro, niveles máximos y mínimos de agua y sus elevaciones. Además, se conversó con los técnicos encargados del sistema sobre los tanques que efectivamente se alimentan de la


conducción, ya que en el catastro existen tanques que no se sabe con certeza si se alimentan o no de la conducción.

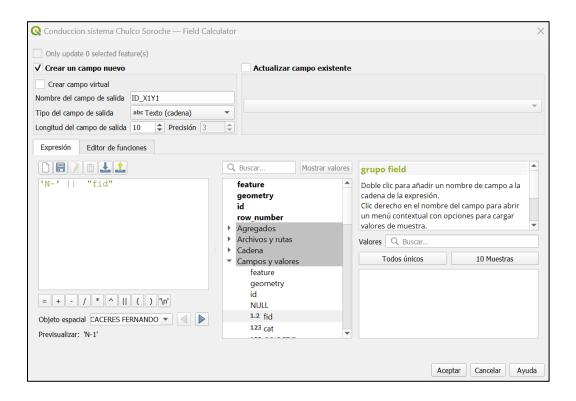
Una vez comprobada la información, se cargaron los archivos shapefile de las conducciones y de los tanques en QGIS y usando como guía el catastro del sistema entregado en formato CAD, se fueron eliminando los tanques que se verificaron que no se alimentan de la conducción y las tuberías que no se contemplaban en el área de estudio. Así mismo se ingresó el archivo de válvulas para analizar sus propiedades y posteriormente evaluarlas en WATERGEMS

El archivo de la línea de conducción entregado por Etapa tenía longitudes de tramos de tubería muy superiores a los recomendados, es por esto que para poder realizar el análisis correctamente y conseguir un modelo hidráulico acertado se dividió a toda la red en tramos menores o iguales a 30 metros, esto se hizo mediante la ayuda del software QGIS usando la herramienta "Split".

El esquema final del sistema se compone de diez tanques de reserva y las tuberías que se pueden observar en la figura 2.2 con sus propiedades, así como diámetros y materiales.

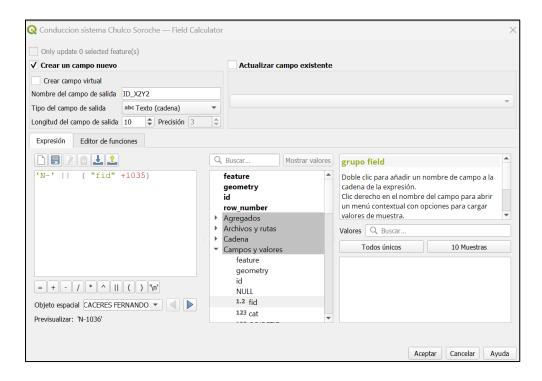
Figura 2.2Esquema final de la conducción del sistema de agua potable de Chulco Soroche en QGIS

Fuente: Elaboración propia, adaptado de ETAPA EP.


En segundo lugar, para exportar el esquema de QGIS a WATERGEMS las tuberías deben tener un punto inicial y final, para esto se definió los nodos iniciales y finales de cada tubería

agregando dos campos denominados ID_X1Y1, ID_X2Y2, donde se concatenaron tanto el campo "fid" con un texto denominado "N-".

Para realizarlo se abrió la tabla de atributos de la capa de la conducción del sistema y dentro de ella se crearon dos campos nuevos de texto seleccionando "Open Field Calculator" y se digitó lo que se puede observar en las figuras 2.3 y 2.4 con la finalidad de organizar la nomenclatura de los nodos y así el software WATERGEMS no genere un error al realizar el modelo. En la figura 2.5 se observa la tabla de atributos con los dos campos nuevos.

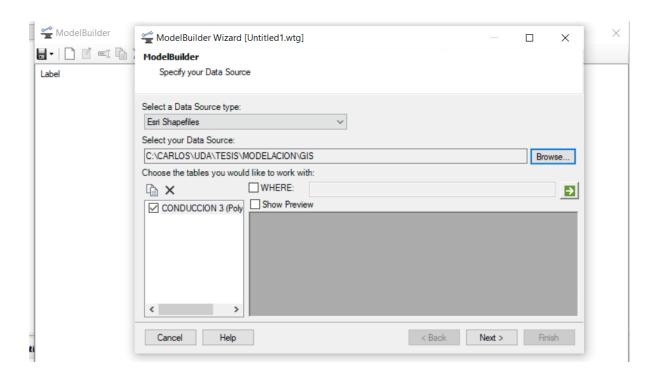

Figura 2.3

Field Calculator para nodos iniciales

Fuente: Elaboración propia, tomado de QGIS.

Figura 2.4Field Calculator para nodos finales

Figura 2.5Tabla de atributos de los nodos de la tubería de conducción


Q (Q Conduccion sistema Chulco Soroche— Objetos Totales: 1034, Filtrados: 1034, Seleccionados: 0			
// 3	1 🕞 😂 l 🕦 🤭 🗠 🚳 📵 l 🐿 🛢 🔊 🔩 🔻 🛎 🌺 🞾	16		
1.2 fi	d ▼]= [ε] 1.2			
	ID_X1Y1	ID_X2Y2		
1	N-1	N-1036		
2	N-2	N-1037		
3	N-3	N-1038		
4	N-4	N-1039		
5	N-5	N-1040		
6	N-6	N-1041		
7	N-7	N-1042		
8	N-8	N-1043		
9	N-9	N-1044		
10	N-10	N-1045		
11	N-11	N-1046		
12	N-12	N-1047		
13	N-13	N-1048		
14	N-14	N-1049		
15	N-15	N-1050		
16	N-16	N-1051		
17	N-17	N-1052		

2.3. Desarrollo del modelo hidráulico en WATERGEMS

Con toda la información organizada en QGIS se puede desarrollar el modelo en WATERGEMS para después poder evaluar el estado actual del sistema.

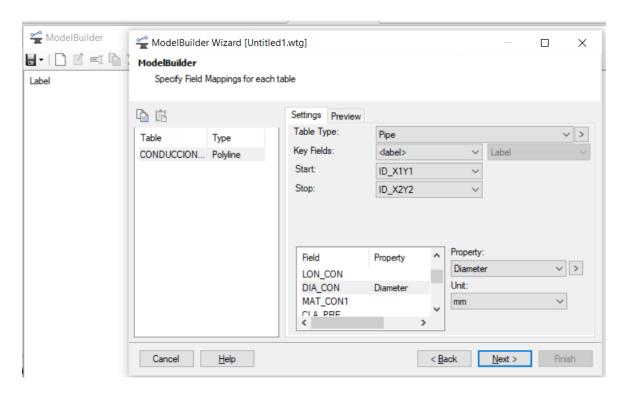
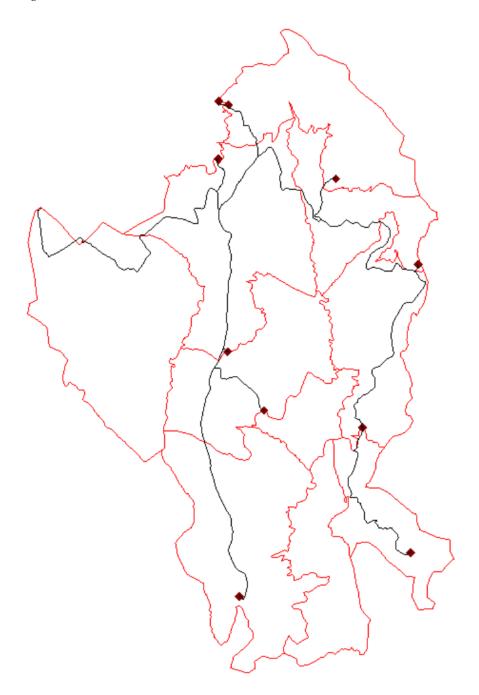

Primero, se ingresa la topología de la conducción que se encuentra en formato shapefile usando la herramienta "ModelBuilder".

Figura 2.6 *Herramienta ModelBuilder*

Como se ve en la figura 2.6, se selecciona el tipo de archivo y la ubicación del mismo, para luego asignar el inicio y final de cada tubería con los campos antes creados en QGIS.


Figura 2.7 *Herramienta ModelBuilder asignación de nodos y propiedades*

En el apartado de Key Fields se selecciona <label> y en Start, Stop se seleccionan los atributos de nodo inicial y final. En la parte baja se asignan las propiedades que va a tener el modelo en el programa según los campos que existan en el archivo shape, en este caso el programa tomará los valores para los diámetros del campo "DIA_CON", esto se hizo tanto para diámetros, coeficientes de rugosidad y material de la tubería.

Así, la topología ya estaría ingresada en el programa (figura 2.8) con sus respectivas propiedades, la longitud de las tuberías se calcula automáticamente al estar el archivo shape georreferenciado. Adicional a todo esto se cargaron dos capas de fondo: la ubicación de los tanques y los sectores que comprenden el área de estudio.

Figura 2.8 *Conducción ingresada en WATERGEMS*

Fuente: Elaboración propia, adaptado de ETAPA EP.

El segundo paso es ingresar la topografía con la herramienta TRex, para esto vamos recurrir a los archivos expuestos en el punto 1.1.3.

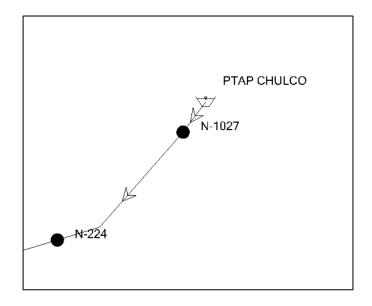
Figura 2.9 *Herramienta TRex para el ingreso de la topografía*

🦓 TRex Wizard	×
File Selection Select an elevation dataset and on.	the applicable nodes to operate
Select Data Source Type	
Data Source Type:	DXF Contours ~
Elevation Dataset	
File:	C:\CARLOS\UDA\TESIS\MODELACI
Spatial Reference:	Unknown
Select Elevation Field:	Elevation
X-Y Units:	Elevation V
Z Units:	m
Clip Dataset to Model:	
Buffering Percentage:	50.0 %
Model	
Spatial Reference:	Unknown
Model Features	
Aso update inactive elemen	nts
Nodes to update	
All	
Selection	
Selection Set	V
Cancel <u>H</u> elp	< <u>B</u> ack <u>N</u> ext > Finish

Fuente: Elaboración propia, tomado de WATERGEMS.

En la ventana emergente mostrada en la figura 2.9 se selecciona el tipo de archivo, que en este caso son curvas de nivel en formato DXF, la ubicación del mismo, el campo en donde se encuentra los datos de elevación, las unidades en las que se encuentra y se escoge que se actualicen todos los nodos.

Figura 2.10 *Estadísticas de los nodos ingresados*


Statistics		
Count:	1027	
Maximum:	3,062.76	m
Mean:	2,809.86	m
Minimum:	2,568.90	m
Sum:	2,885,721.89	m
	Clos	se <u>H</u> elp

Para comprobar que la herramienta ha funcionado correctamente en la figura 2.10 se pueden observar las estadísticas de todos los nodos ingresados, al ser el valor mínimo de 2568.90 m queda claro que todos los nodos tienen su respectiva elevación.

Finalmente, se reemplazan ciertos nodos para situar el reservorio que actuará como la salida de la planta de tratamiento, los tanques y las válvulas reguladoras de caudal (FCV).

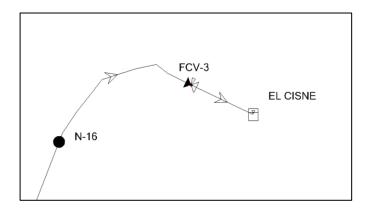

La planta de tratamiento de agua potable de Chulco Soroche que abastece de agua a toda la red se ha modelado como si fuera un reservorio, ya que la planta desde la que sale el agua es muy grande y su nivel de agua casi no varía, entonces el reservorio al ser un elemento que en teoría modela un volumen infinito y un nivel de agua constante cumple con las características que se necesitan.

Figura 2.11 *Ubicación de la Planta de Tratamiento de Chulco Soroche*

Para completar los elementos en la red, se coloca una válvula reguladora de caudal en la ubicación del tanque (ej. tanque El Cisne), se define el caudal que debe entrar (figura 2.13) y se conecta el tanque a la válvula de manera representativa con una tubería de 1 metro de longitud para que no existan pérdidas de carga (figura 2.12). Se lo hace de este modo por las siguientes razones: para que el programa entienda la dirección del flujo que debe seguir la línea de conducción, en los tanques no se puede configurar un caudal de entrada y analizar si la red puede abastecer la demanda que requiere cada tanque que este caso va a ser las válvulas las que soliciten el caudal. Este procedimiento se realiza para todos los tanques que restan en el sistema.

Figura 2.12 *Ubicación de válvula y tanque*

Figura 2.13Definición del caudal para la válvula

~	<general></general>	
	ID	2107
	Label	FCV-3
	Notes	
	GIS-IDs	<collection: 0="" items=""></collection:>
	Hyperlinks	<collection: 0="" items=""></collection:>
	Downstream Pipe	TUB-1032
~	<geometry></geometry>	
	X (m)	724,793.50
	Y (m)	9,693,151.21
~	Active Topology	
	Is Active?	True
~	Initial Settings	
	Status (Initial)	Active
	Flow Setting (Initial) (L/s	5.600

Fuente: Elaboración propia, tomado de WATERGEMS.

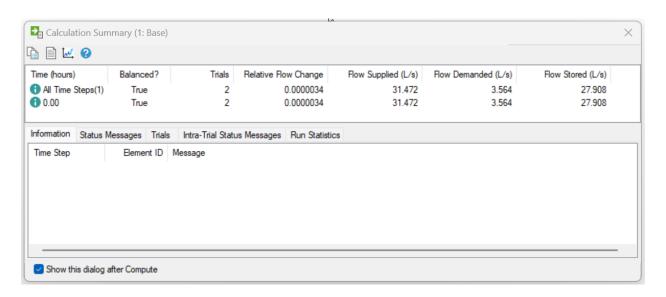
Los caudales expuestos en el apartado 2.1.3 fueron calculados en base a la población existente del sector, estos en teoría deberían ser los que los tanques deben suministrar, pero al comparar éstos con los datos de los caudalímetros a las entradas se observó que en algunos casos

la diferencia era considerable, por lo que se optó ingresar los datos de los caudalímetros en las válvulas, siendo los siguientes.

Tabla 2.5 *Caudales obtenidos de los caudalímetros*

TANQUE	Q (l/s)
EL CISNE	5.602
ZHOACAN ALTO	0.424
ZHOACAN BAJO	3.515
CORAZON DE JESUS	2.417
LA RAYA	2.615
SAN VICENTE BAJO	1.534
SANTA MARIA	3.527
LA DOLOROSA	4.395
LA NUBE	2.288
BIBIN	5.153

Fuente: Elaboración propia, adaptado de ETAPA EP.


CAPITULO III

3. MODELACIÓN HIDRÁULICA

3.1. Simulación del modelo hidráulico

Una vez desarrollado el modelo se simuló la conducción de agua potable para conocer la respuesta de está a las condiciones expuestas en el capítulo anterior. Para realizar la simulación en WATERGEMS se utilizó la herramienta "compute", obteniendo los resultados que se pueden ver en la figura 3.1, que nos dice que la simulación no tiene ningún error de cálculo ni mensajes de advertencia, por lo que esta correcta.

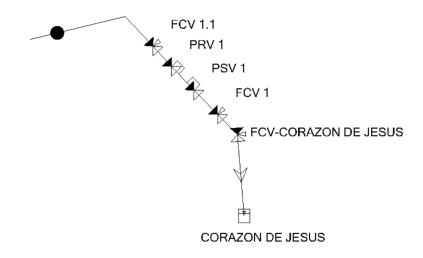
Figura 3.1 *Resultados de la simulación*

Fuente: Elaboración propia, tomado de WATERGEMS.

Para analizar fácilmente las presiones a lo largo de toda la conducción, se creó una leyenda con diferentes colores para poder identificar las presiones y conocer que nodos tienen presiones negativas y cuáles de ellos superan las presiones máximas admisibles.

Ubicación y disposición de los accesorios existentes en la red

Una vez con la simulación de la conducción y sin presentar ningún error, se procede a colocar en el modelo las válvulas que existen actualmente en el sistema, para ello se realizó una visita de campo en donde se tomaron datos de ubicación y disposición de los accesorios a las entradas de los tanques y de dos cámaras ubicadas a lo largo de la conducción en los sectores de Santa María y Bibín. A las entradas de los tanques de todo el sistema se cuenta con válvulas de control, reguladoras de presión, sostenedoras de presión, flotadoras, y válvulas de aire, cuya simbología se detalla en la tabla 3.1


Tabla 3.1 *Válvulas*

Tipo de válvulas	Denominación	Simbología
Válvula de control	FCV	M
Válvula reguladora de presión	PRV	四
Válvula sostenedora de presión	PSV	P

Fuente: Elaboración propia

Para la entrada a los tanques de Corazón de Jesús, La Raya, San Vicente Bajo, Santa María, La Dolorosa, La Nube y Bibín la disposición de accesorios es la siguiente: válvula de control, filtro, válvula reguladora de presión, válvula sostenedora de presión, válvula de control y una válvula flotadora. El detalle de la disposición de válvulas en estos tanques se puede ver en la figura

Figura 3.2Disposición de válvulas a la entrada de los tanques

Mientras que los tanques de El Cisne, Zhoacan Alto y Zhoacan Bajo solo cuentan con válvulas flotadoras por las bajas presiones que hay a sus entradas.

La cámara de Bibín se encuentra aproximadamente a 2880 msnm y cuenta con: válvula de control, válvula sostenedora de presión, válvula de control y una válvula de aire; todo para una tubería de 100 mm de diámetro de hierro dúctil, además de contar con un bypass en caso de requerir mantenimiento. Por otro lado, la cámara de Santa María está a 2697 msnm y cuenta solamente con una válvula sostenedora de presión para una tubería de 100 mm de hierro dúctil. Ambas cámaras son ingresadas en WATERGEMS como una válvula rompe presión cuya denominación en el software es "PBV".

3.2. Resultados

Con las tablas que proporciona el software se comprobó que en ningún nodo existan presiones negativas, que en las tuberías existan flujos inversos o que no se pueda abastecer la demanda necesaria para cada tanque. Además, se corroboró con los funcionarios de ETAPA EP encargados de la zona que las presiones que muestra el modelo no difieren considerablemente a las presiones tomadas en campo, pudiendo así decir que la topografía, topología y demandas han sido ingresadas correctamente.

Los resultados que se presentaran a continuación corresponden a presiones hidrostáticas en los nodos, presiones y demandas a las entradas de los tanques y velocidades en las tuberías.

Las estadísticas de las presiones en los nodos se presentan en la figura 3.1, donde se puede observar el valor máximo y mínimo de presión que existe a lo largo de la conducción, mientras que en el anexo 2 se encuentran las presiones en todos los nodos de la red. Las presiones y las demandas a las entradas de los tanques se muestran en la tabla 3.2 y en tabla 3.3 respectivamente.

Figura 3.3 *Estadísticas de las presiones en los nodos*

Statistics		
Count:	1027	
Maximum:	465.931	m H2O
Mean:	222.398	m H2O
Minimum:	2.037	m H2O
Sum:	228,402.238	m H2O
Standard Deviation:	92.006	m H2O

Fuente: Elaboración propia, tomado de WATERGEMS.

Tabla 3.2Presiones en las entradas de los tanques

TANQUE	PRESION (m.c.a)
EL CISNE	17.94
ZHOACAN ALTO	8.22
ZHOACAN BAJO	52.63
CORAZON DE JESUS	141.71
LA RAYA	192.72
SAN VICENTE BAJO	356.02
SANTA MARIA	305.05
LA DOLOROSA	232.89
LA NUBE	241.53
BIBIN	103.92

Tabla 3.3Demandas en las entradas de los tanques

TANQUE	DEMANDA (l/s)
EL CISNE	5.6
ZHOACAN BAJO	3.51
ZHOACAN ALTO	0.43
CORAZON DE JESUS	2.42
LA RAYA	2.61
SAN VICENTE DE SIDCAY	1.53
SANTA MARIA	3.53
LA DOLOROSA	4.4
LA NUBE	2.29
BIBIN	5.15

Fuente: Elaboración propia, adaptado de WATERGEMS.

Las velocidades en la mayor parte de la conducción están un rango de 0.40 m/s a 1.51 m/s, considerando que es un proyecto con un periodo de diseño de 50 años y lleva funcionando solamente 7 de estos, los caudales todavía son menores a los proyectados por consiguiente las

velocidades también lo son. Las velocidades más bajas se presentan a la entrada de Zhoacan Alto con un valor de 0.05 m/s, esto se da por el bajo caudal que requiere ese tanque y por el diámetro de 100 mm que considerablemente es más grande en relación al caudal que conduce la tubería. En la talaba 3.4 se presenta las velocidades a la entrada de los tanques.

Tabla 3.4 *Velocidades en la entrada de los tanques*

TANQUE	VELOCIDAD (m/s)
EL CISNE	1.11
ZHOACAN ALTO	0.37
ZHOACAN BAJO	0.05
CORAZON DE JESUS	0.48
LA RAYA	0.52
SAN VICENTE BAJO	0.09
SANTA MARIA	0.45
LA DOLOROSA	0.56
LA NUBE	0.46
BIBIN	1.02

Fuente: Elaboración propia, adaptado de WATERGEMS.

3.3. Posibles soluciones para la mejora de las conducciones

Actualmente existen accesorios para reducir las presiones en los puntos más críticos de la red, pero estos no están diseñados para trabajar con las presiones excesivamente altas que existen actualmente, es por eso que se propone que con los resultados que se obtienen en este modelo se busquen accesorios que cumplan y garanticen las presiones de trabajo que se presentan ahora y se presentaran en el futuro. Además, la ubicación de estos debe ser en puntos donde no disminuya la velocidad y por ende el caudal que requerido por cada tanque.

Por último, con el análisis en conjunto con los responsables del sector de ETAPA EP se llegó a proponer el uso del tanque de San Vicente Alto (perteneciente a la red de distribución) como tanque rompe presiones, para que así en la parte más baja de la conducción del sector del Guabo disminuyan las presiones. Además, es necesario la utilización de accesorios y válvulas que sean compatible con las presiones máximas de trabajo de las tuberías en las conducciones.

CONCLUSIONES

- Toda la información topográfica, demográfica y catastral, misma que fue provista por ETAPA EP se analizó y organizo para posteriormente ser procesada en los softwares de QGIS y CivilCad, con el objetivo de obtener a detalle las características de todos los elementos que conforman la conducción de agua potable. Así mismo se levantaron datos recolectados en campo para comprobar la información entregada por la empresa y se hicieron los cambios necesarios para la correcta construcción del modelo.
- Se desarrollo y evaluó el comportamiento de la conducción en el software WATERGEMS tanto con los caudales teóricos como con los reales, todos los resultados del modelo se constataron con los técnicos de ETAPA EP para asegurar que las presiones son cercanas a las reales y que el modelo esté funcionando de manera correcta, de esta manera se puede afirmar que el modelo es una herramienta útil para realizar cualquier simulación y así saber cómo varían las presiones, caudales y las velocidades en el sistema.
- Se planteo el uso del tanque de San Vicente Alto como un tanque rompe presiones para poder tener valores más manejables en la parte baja de la conducción, así como la utilización de accesorios y válvulas que funcionen a las presiones que trabaja el sistema.

RECOMENDACIONES

- Al analizar el funcionamiento actual de conducción y teniendo en cuenta que la infraestructura es relativamente nueva y no debería presentar dichos problemas, se recomienda un buen análisis de todas las variables que intervienen en el diseño y una correcta socialización a la población del sector.
- Se recomienda tener actualizados los catastros tanto de componentes de las redes como de usuarios que se alimentan de ella
- Es necesario que los modelos hidráulicos se vayan actualizando conforme se realizan modificaciones en el sistema, para de esta manera obtener resultados confiables y visualizar constantemente como está funcionando la red.
- Por último, se espera que el modelo sea útil para posteriores modificaciones, actualizaciones y estudios que permitan a la empresa ETAPA EP garantizar un servicio de abastecimiento de agua potable eficiente a la población de los sectores de Chulco.

ANEXOS

Anexo 1. Variación mensual de caudales a las entradas de los tanques

	Tanque Bibin 2023				
Días	Q(l/s)				
Dias	Enero	Febrero	Marzo	Abril	
1	0.174	0.938	7.274	9.525	
2	0.131	0.878	8.947	9.218	
3	0.29	0.894	8.623	7.618	
4	0.146	0.919	8.473	7.839	
5	0.213	0.927	8.257	8.756	
6	0.126	0.926	8.384	10.154	
7	0	0.891	8.321	9.51	
8	0.223	0.901	8.455	12.163	
9	0.201	0.899	6.688	11.493	
10	0.155	0.88	9.247	10.578	
11	0.731	0.923	8.74	9.632	
12	0.23	4.248	7.539	6.846	
13	0.194	8.675	5.354	6.409	
14	0.116	7.696	6.746	5.962	
15	0.141	6.562	7.35		
16	0.2	9.029	7.998		
17	0.781	6.654	8.285		
18	0.952	7.218			
19	0.954				
20	0.965				
21	0.958				
Promedio	0.375	3.337	7.922	8.979	

Tanque El Cisne 2023				
D'	Q(l/s)			
Días	Enero	Febrero	Marzo	Abril
1	2.652	4.942	9.18	9.16
2	2.802	4.789	5.947	10.08
3	2.853	4.796	3.705	7.55
4	2.904	4.863	3.805	7.91
5	2.627	4.472	4.636	12
6	3.263	4.439	1.605	12.75
7	2.688	4.56	9.13	11.89
8	2.628	4.398	1.625	8.08
9	2.413	4.458	2.885	10.02
10	2.622	4.147	2.589	13.01
11	2.453	4.755	2.826	11.17
12	2.857	4.288	2.761	10.62
13	3.517	4.714	2.555	11.95
14	2.917	4.502	2.313	12.84
15	3.124	4.88	6.742	12.49
16	3.083	4.875	8.82	12.81
17	2.52	4.808	10.74	10.4
18		4.901	10.42	10.15
19		4.422	9.56	9.21
20		4.615	1.939	12.75
21		4.464	8.56	8.93
22			8.98	12.62
23			12.11	13.04
24			4.352	12.55
25			4.163	
26			3.898	
27			6.979	
28			13.08	
29			11.5	
30			9.58	
31			9.5	
Promedio	2.819	4.623	6.338	10.999

]	Tanque La Nube 2023			
Días	Q(l/s)			
Días	Enero	Febrero	Marzo	Abril
1	1.948	2.988	1.373	2.075
2	1.936	1.931	1.406	2.257
3	1.942	1.835	1.885	2.418
4	1.842	1.815	3.355	2.566
5	1.85	1.839	3.379	2.407
6	1.926	1.799	2.001	2.731
7	1.942	1.769	3.364	1.629
8	1.948	2.606	2.786	1.942
9	1.646	2.948	3.051	3.084
10	0.704	2.896	3.699	2.396
11	0.709	2.856	3.957	2.305
12	0.718	2.889	3.684	2.441
13	0.73	1.996	3.789	2.14
14	0.938	1.559	3.7	2.394
15	1.686	2.625	3.21	2.37
16	1.663	2.606	2.584	2.571
17	1.593	2.592	3.427	2.593
18	1.438	2.507	3.65	2.248
19	1.432	2.512	3.815	2.582
20	1.44	2.144	2.033	2.718
21	1.392	1.772	2.631	2.608
22		2.245	2.645	2.543
23		1.642	2.399	2.332
24		1.777	3.35	2.188
25		2.397	3.806	2.277
26		1.427	2.792	2.996
27			2.753	2.853
28			2.684	2.594
29			2.517	2.887
30				2.975
Promedio	1.496	2.23	2.956	2.471

Tanque Corazón de Jesús 2022					
Días	Q(l/s)				
Dias	Mayo	Junio	Julio	Agosto	
1	3.116	1.883	2.867	0	
2	2.34	2.39	2.737	0	
3	1.889	3.49	2.674	0	
4	3.147	2.214	0.547	3.865	
5	4.435	1.154	2.902	0	
6	4.449	2.044	2.864	0	
7	5.678	1.887	2.871	3.657	
8	4.31	1.573	2.842	0	
9	2.779	1.832	1.084	3.766	
10	4.026	2.052	1.413	0.575	
11	2.213	4.819	1.6		
12	2.99	1.587	3.105		
13	3.208	3.746	2.551		
14		4.054	2.49		
15		2.267	0.956		
16		1.709	0.771		
17		4.875	0.821		
18		1.739	3.278		
19		4.907			
20		1.903			
21		1.81			
22		1.886			
23		2.599			
24		3.191			
Promedio	3.429	2.567	2.132	1.186	

Tanque La Raya 2023					
Días		Q(l/s)			
Dias	Enero	Febrero	Marzo	Abril	
1	-	2.242	1.707	3.891	
2	-	2.991	2.854	3.735	
3	-	2.477	2.995	2.692	
4	-	1.828	1.681	3.533	
5	-	1.79	2.325	2.793	
6	-	1.749	2.546	2.542	
7	-	1.999	2.524	2.525	
8	-	2.147	1.777	2.558	
9	-	2.404	1.972	2.518	
10	-	2.015	1.62	2.111	
11	-	1.36	1.624	2.115	
12	-		3.965	2.125	
13	-		1.608	2.018	
14	-		3.998	2.065	
15	-		2.106	2.103	
16	-		2.126	2.397	
17	-		2.446	2.243	
18	-		4.797	2.302	
Promedio	-	2.091	2.482	2.57	

Tanque Santa María 2020				
Días		Q(l/	(s)	
Días	Enero	Febrero	Marzo	Abril
1	2.475	1.977	3.831	3.825
2	2.326	1.796	3.552	3.67
3	2.527	1.542	2.821	3.664
4	3.175	1.729	2.675	2.748
5	3.041	1.797	2.776	2.518
6	3.442	2.09	3.228	3.672
7	3.204	2.236	2.916	3.011
8	3.188	2.317	3.317	2.976
9	3.103	2.413	3.688	4.658
10	2.47	2.381	3.263	2.822
11	4.137	2.42	3.633	3.858
12	4.442	2.692	3.623	3.514
13	2.985	2.43	4.096	3.138
14	3.966	2.554	3.222	3.911
15	3.102	2.42	4.072	3.654
16	3.137	2.422	2.744	3.747
17	3.024		2.965	4.288
18	3.591		4.297	4.093
19	3.061		5.162	
20	1.859		4.19	
21	1.987		4.39	
22	1.634		3.782	
23	2.347			
24	3.753			
25	3.618			
26	2.219			
27	4.052			
Promedio	3.032	2.201	3.557	3.543

Tanque San Vicente Bajo 2023				3
Días		Q(l/	s)	
Dias	Enero	Febrero	Marzo	Abril
1	2.275	1.291	1.594	1.696
2	2.289	1.155	1.509	1.681
3	2.277	1.176	1.565	1.684
4	2.272	1.196	1.626	1.687
5	2.323	1.2	1.615	1.652
6	2.309	1.203	1.092	1.678
7	2.3	1.196	1.364	1.654
8	2.333	1.191	1.378	1.508
9	2.314	1.202	1.437	1.546
10	1.528	1.216	1.641	1.686
11	1.029	1.217	1.577	1.683
12	1.024	1.203	1.556	1.655
13	1.012	1.235	1.427	1.552
14	1.053	1.244	1.617	1.706
15	1.099	1.247	1.526	1.676
16	1.1	1.189	1.541	1.676
17	1.131	1.239	1.43	1.672
18	1.145	1.266	1.607	1.642
19	1.184	1.211	1.521	1.682
20	1.213	1.292	1.091	1.699
21	1.219	1.17	1.403	1.707
22	1.224	0.989	1.524	1.678
23	1.248	1.243	1.627	1.643
24	1.285	1.389	1.659	1.575
25	1.284	1.519	1.69	1.586
26	1.313	1.497	1.584	1.707
27	1.33	1.519	1.619	1.665
28	1.353	1.59	1.716	1.71
29	1.363		1.714	1.767
30	1.375		1.701	1.739
31	1.408		1.737	
Promedio	1.536	1.26	1.538	1.663

Tanque La Dolorosa 2020				
Días	Q(l/s)			
Dias	Febrero	Marzo	Abril	Mayo
1	3.932	6.67	3.76	2.289
2	3.498	5.769	4.6	4.003
3	3.36	5.504	3.622	4.763
4	2.357	6.32	4.982	4.141
5	1.578	4.459	4.016	5.003
6	3.452	2.221	4.982	5.08
7	4.833	2.887	4.017	5.315
8	5.546	5.315	4.972	5.967
9	2.127	5.364	5.568	2.736
10	3.976	2.945	6.653	4.502
11	5.821	5.785	5.631	4.034
12	1.178	5.327	6.207	4.102
13	5.074	6.557	6.038	2.156
14	5.999	6.441		4.027
15	3.596	4.128		3.68
16	2.98	2.851		
17	2.371	5.629		
18	1.413			
Promedio	3.505	4.951	5.004	4.12

Tanque Zhoacan Alto 2023				
Días	Q (l / s)			
Dias	Enero	Febrero	Marzo	Abril
1	0.427	0.486	0.459	0.224
2	0.461	0.477	0.466	0.361
3	0.438	0.439	0.41	0.475
4	0.39	0.422	0.409	0.427
5	0.471	0.465	0.439	0.358
6	0.48	0.471	0.421	0.487
7	0.455	0.432	0.389	0.325
8	0.457	0.494	0.419	0.333
9	0.466	0.429	0.425	0.422
10	0.518	0.511	0.439	0.392
11	0.423	0.506	0.405	0.425
12	0.465	0.492	0.396	0.41
13	0.474	0.47	0.401	0.407
14	0.456	0.432	0.389	0.423
15	0.462	0.416	0.398	0.429
16	0.525	0.488	0.416	0.452
17	0.452	0.288	0.427	0.433
18	0.486	0.427	0.408	0.413
19	0.408	0.462	0.441	0.437
20	0.352	0.386	0.392	0.398
21	0.467	0.412	0.415	0.453
22	0.377	0.397	0.387	0.396
23	0.459	0.482	0.414	0.523
24	0.455	0.39	0.429	0.346
25	0.408	0.476	0.434	0.441
26	0.392	0.445	0.422	0.459
27	0.46	0.339	0.447	0.398
28	0.461	0.336	0.471	0.424
29			0.311	0.469
30			0.423	0.274
31			0.405	
Promedio	0.448	0.438	0.416	0.407

Tanque Zhoacan Bajo 2023								
D/	Q(l/s)							
Días	Enero	Febrero	Marzo	Abril				
1	4.402	4.647	4.136	3.223				
2	5.031	3.938	3.722	3.416				
3	4.572	4.635	4.212	3.621				
4	4.486	4.539	4.855	3.916				
5	4.947	4.418	1.788	2.82				
6	4.95	4.455	2.769	1.661				
7	5.242	4.727	1.425	1.748				
8	5.466	4.473	1.439	3.873				
9	5.32	4.465	3.466	3.645				
10	3.207	4.668	2.794	2.668				
11	5.156	4.494	3.399	2.609				
12	5.066	4.066	3.784	3.999				
13	3.982	4.704	2.571	3.488				
14	3.609	4.781	2.347	3.856				
15	4.635	4.757	1.817	2.774				
16	4.449	3.335	2.393	3.205				
17	4.841	3.385	2.755	3.782				
18	4.258	3.69	2.623	4.218				
19	4.533	1.842	1.979	4.236				
20	5.057	3.006	1.918	2.707				
21	5.374	2.378	4.199	1.727				
22	4.851	3.489	4.696	2.046				
23	4.909	3.431	4.402	2.053				
24	4.757	2.727	2.128	4.127				
25	4.429	3.174	3.176	2.28				
26	4.365	3.84	3.927	3.223				
27	4.419		4.418	3.999				
28	4.525		4.572	3.326				
Promedio	4.673	3.926	3.133	3.152				

Anexo 2. Presiones en los nodos de la conducción

Nodo	Elevación (m)	Presión (m.c.a)	Nodo	Elevación (m)	Presión (m.c.a)
N-1027	3068.7	3.05	N-686	2988.21	68.135
N-224	3061.56	10.136	N-393	3001.35	69.082
N-136	3034.43	21.375	N-243	2986.69	69.447
N-100	3044.04	27.571	N-328	2985.78	70.456
N-387	3041.29	30.154	N-242	2985.4	70.627
N-101	3041.21	30.343	N-141	2984.18	72.36
N-137	3024.95	30.834	N-184	2975.96	76.375
N-388	3039.05	32.332	N-684	2992.36	77.998
N-460	3037.8	33.692	N-196	2966.49	86.392
N-16	3014.61	34.552	N-888	2969.86	86.747
N-54	3014.19	35.511	N-682	2982.32	87.966
N-495	3035.21	36.114	N-932	2966.69	90.013
N-390	3015.26	40.51	N-933	2964.23	92.565
N-589	3029.54	41.601	N-197	2959.94	93.488
N-86	3008.38	41.843	N-956	2960.41	96.487
N-496	3029.39	41.861	N-590	2972.84	97.371
N-588	3027.41	43.782	N-177	2953.86	100.121
N-656	3025.53	45.555	N-900	2955.88	101.107
N-534	3006.01	49.739	N-180	2967.38	102.762
N-572	3021.11	49.908	N-181	2965.07	105.021
N-83	3000	50.747	N-901	2951.39	105.69
N-535	3003.17	52.578	N-178	2946.97	107.565
N-82	2997.43	53.848	N-67	2947.69	109.485
N-378	3015.53	55.424	N-323	2959.48	110.537
N-960	2999.42	56.321	N-654	2958.81	111.157
N-736	3012.49	58.189	N-9	2955.04	114.865
N-565	3012.5	58.339	N-68	2942.06	115.198
N-379	3012.49	58.403	N-367	2939.17	115.919
N-566	3012.13	58.655	N-160	2879.9	116.265
N-668	3010.91	59.821	N-10	2950.66	119.183
N-7	2993.78	61.912	N-441	2935.47	121.88
N-440	3007.82	62.732	N-161	2872.37	124.259
N-8	2991.85	63.882	N-726	2944.79	124.988
N-737	3006.57	64.035	N-270	2929.28	126.347
N-392	3006.15	64.346	N-187	2929.56	127.881
N-961	2991.13	64.612	N-909	2872.25	127.954
N-99	2987.1	64.697	N-907	2873.19	128.57

N-455	2989.21	66.629	N-908	2872.3	128.676
N-140	2989.06	67.384	N-920	2869.96	129.46
N-456	2988.36	67.58	N-928	2873.01	129.525
N-926	2873.68	129.628	N-912	2873.64	142.863
N-911	2867.42	130.442	N-216	2850	142.949
N-910	2868.16	130.481	N-874	2876.58	143.034
N-887	2873.34	130.743	N-217	2850	143.07
N-727	2938.52	131.19	N-225	2848.99	143.112
N-894	2877.32	131.432	N-753	2926.3	143.167
N-893	2877.92	131.606	N-230	2850	143.191
N-883	2878.23	132.076	N-231	2850	143.311
N-95	2864.56	132.519	N-886	2875.48	143.357
N-758	2872.31	132.548	N-233	2850	143.432
N-917	2875.06	132.909	N-873	2876.88	143.514
N-91	2862.23	133.094	N-214	2850	143.552
N-882	2877.88	133.197	N-215	2850	143.673
N-188	2924.28	133.253	N-201	2848.78	143.682
N-918	2873.78	133.415	N-210	2850	143.685
N-754	2936.05	133.599	N-96	2850	143.794
N-89	2862.89	133.936	N-94	2850	144.044
N-884	2877.82	134.035	N-191	2848.19	144.512
N-923	2878.38	134.256	N-896	2872.71	144.571
N-757	2871.05	134.587	N-232	2847.91	144.677
N-767	2871.66	134.754	N-895	2873.37	144.687
N-81	2860.21	134.855	N-845	2876.01	145.157
N-88	2861.43	135.143	N-249	2911.47	145.252
N-915	2877.83	135.581	N-723	2846.34	145.629
N-271	2920.18	135.993	N-554	2847.01	146.236
N-85	2859.58	136.487	N-499	2844.97	146.507
N-92	2858.81	136.759	N-844	2875.02	146.917
N-676	2932.76	136.824	N-135	2902.94	147.01
N-80	2857.88	136.931	N-508	2922.34	147.059
N-914	2877.19	136.993	N-349	2919.67	147.341
N-90	2859.3	137.015	N-350	2919.47	147.489
N-84	2858.56	137.254	N-848	2909.91	147.789
N-929	2876.72	138.235	N-819	2843.46	148.262
N-148	2854.85	138.626	N-813	2843.07	148.275
N-87	2855.31	139.246	N-120	2918.47	148.428
N-677	2929.57	139.959	N-314	2918.41	148.658
N-842	2917.46	140.155	N-722	2843.17	148.678
N-913	2875.49	140.24	N-500	2842.66	148.935
N-396	2852.81	140.767	N-550	2843.23	149.891
N-93	2852.65	141.647	N-121	2916.91	149.936
N-149	2851.08	142.283	N-509	2919.3	150.044

N-226	2849.69	142.534	N-903	2872.16	150.55
N-200	2849.68	142.668	N-305	2915.89	150.899
N-192	2850	142.829	N-486	2917.88	151.293
N-799	2839.83	151.388	N-4	2903.74	162.753
N-849	2906	151.802	N-781	2876.23	162.787
N-506	2917.31	151.972	N-308	2887.41	162.867
N-485	2916.31	152.914	N-922	2877.52	163.054
N-313	2913.88	153.226	N-780	2876.38	163.413
N-257	2896.77	153.285	N-699	2867.79	163.452
N-505	2915.6	153.516	N-921	2877.49	163.852
N-416	2913.66	153.553	N-479	2904.91	163.864
N-377	2913.59	153.569	N-735	2861.12	163.899
N-518	2839.15	153.854	N-397	2828.5	164.164
N-306	2912.57	154.162	N-816	2826.3	164.519
N-150	2902.71	154.563	N-484	2893.31	164.872
N-870	2902.99	154.905	N-664	2878.7	164.982
N-930	2868.48	154.999	N-665	2877.71	165.185
N-798	2835.53	155.558	N-840	2876.77	165.35
N-503	2913.3	155.755	N-409	2901.9	165.568
N-228	2911.24	156.026	N-841	2878.57	165.884
N-115	2909.89	156.775	N-700	2864.31	166.145
N-174	2835.62	157.276	N-952	2900.2	166.232
N-504	2911.06	157.936	N-465	2901.51	166.28
N-256	2891.92	158.239	N-162	2892.06	166.318
N-871	2899.69	158.298	N-206	2883.93	166.453
N-924	2874.12	158.681	N-408	2900.64	166.878
N-507	2909.68	159.262	N-478	2900.78	166.95
N-927	2864.8	159.446	N-468	2825.56	166.98
N-706	2874.36	159.991	N-418	2900.66	167.179
N-831	2830.91	160.038	N-122	2901.46	167.252
N-116	2906.48	160.122	N-875	2877.92	167.308
N-705	2874.98	160.156	N-315	2890.93	167.343
N-175	2832.49	160.291	N-139	2900.13	168.039
N-3	2906.23	160.324	N-734	2857.34	168.449
N-501	2908.48	160.407	N-515	2897.15	168.512
N-151	2896.96	160.862	N-919	2860.81	168.859
N-773	2875.81	160.876	N-777	2896.5	169.217
N-892	2875.02	160.891	N-109	2896.32	169.283
N-227	2906.37	160.941	N-669	2896.47	169.302
N-707	2871.04	160.985	N-413	2898.26	169.304
N-772	2876.47	160.993	N-469	2823.07	169.356
N-404	2905.91	161.457	N-106	2888.72	170.212
N-502	2907.11	161.721	N-123	2898.21	170.442
N-403	2905.48	161.935	N-951	2895.91	170.459

N-483	2896.14	161.942	N-158	2898.05	170.547
N-876	2871.63	161.946	N-670	2895.25	170.569
N-877	2876	162.242	N-815	2820	170.682
N-872	2875.28	170.72	N-703	2874.45	176.2
N-417	2897.05	170.839	N-672	2888.86	176.569
N-553	2821.38	170.941	N-480	2870.09	176.677
N-804	2894.9	170.971	N-630	2875.39	176.815
N-316	2887.39	170.98	N-443	2886.92	176.97
N-610	2894.94	171.047	N-925	2850.32	177.001
N-599	2893.26	171.138	N-784	2888.01	177.246
N-129	2879.16	171.331	N-805	2813	177.292
N-426	2896.54	171.404	N-611	2886.59	177.471
N-835	2894.61	171.421	N-645	2887.12	177.484
N-412	2896.1	171.512	N-459	2887.54	177.613
N-890	2857.32	171.567	N-334	2882.17	177.878
N-778	2894.47	171.617	N-622	2886.02	177.982
N-449	2895.96	171.703	N-783	2887.19	178.015
N-609	2894.2	171.728	N-878	2871.8	178.073
N-407	2896.18	171.818	N-648	2885.44	178.177
N-108	2893.55	171.997	N-650	2885.79	178.377
N-779	2894.14	172.009	N-437	2813.43	178.652
N-817	2817.85	172.701	N-710	2878.17	178.701
N-729	2893.42	172.832	N-709	2878.71	178.936
N-598	2891.48	172.86	N-104	2889.53	178.94
N-762	2893.15	173.043	N-541	2879.56	178.99
N-904	2853.49	173.06	N-869	2879.39	179.038
N-653	2891.29	173.156	N-372	2881.54	179.075
N-402	2894.84	173.202	N-569	2884.84	179.101
N-138	2894.78	173.426	N-740	2876.96	179.128
N-401	2894.33	173.765	N-458	2885.87	179.221
N-730	2892.4	173.906	N-916	2875.9	179.414
N-806	2816.47	173.958	N-766	2873.26	179.722
N-128	2876.49	174.121	N-384	2867.78	179.754
N-331	2894.31	174.226	N-889	2879.38	179.818
N-638	2890.22	174.28	N-307	2870.94	179.897
N-891	2853.82	174.281	N-634	2884.31	179.903
N-540	2883.93	174.529	N-442	2883.77	180.062
N-626	2890.81	174.673	N-902	2874.42	180.11
N-631	2876.67	174.767	N-208	2888.24	180.12
N-671	2890.54	174.837	N-584	2883.44	180.336
N-639	2889.59	174.961	N-105	2888.05	180.365
N-299	2875.73	174.995	N-681	2879.51	180.47
N-436	2816.87	175.327	N-879	2873.22	180.533
N-107	2883.98	175.515	N-821	2809.52	180.641

N-697	2889.54	175.773	N-134	2880	180.719
N-612	2888.28	175.836	N-79	2880	180.966
N-635	2888.27	176.005	N-78	2880	181.001
N-75	2880	181.036	N-636	2877.76	185.352
N-71	2880	181.071	N-168	2875.95	185.381
N-411	2887.14	181.107	N-272	2875.7	185.839
N-649	2882.55	181.117	N-345	2875.51	185.982
N-642	2883.53	181.124	N-170	2864.98	186.076
N-52	2880	181.142	N-273	2875.06	186.532
N-602	2882.43	181.294	N-281	2805.18	186.557
N-309	2869.49	181.456	N-658	2802.45	187.33
N-72	2879.41	181.482	N-360	2872.68	187.955
N-76	2879.34	181.594	N-326	2873.31	188.34
N-209	2886.68	181.619	N-652	2874.12	188.936
N-77	2879.08	181.672	N-236	2862.34	189.069
N-53	2879.43	181.679	N-282	2802.53	189.097
N-651	2881.86	181.694	N-164	2871.46	189.133
N-494	2810.15	181.816	N-944	2869.32	189.418
N-415	2867.17	181.922	N-169	2861.54	189.633
N-247	2879.17	182.06	N-289	2861.77	189.76
N-346	2882.95	182.076	N-237	2861.14	190.147
N-73	2878.77	182.083	N-657	2798.97	190.679
N-69	2878.55	182.267	N-365	2870.69	191.001
N-252	2882.59	182.271	N-629	2871.01	191.984
N-70	2878.51	182.278	N-548	2799.02	192.491
N-253	2882.62	182.3	N-221	2858.2	193.439
N-832	2807.67	182.373	N-366	2868.03	193.711
N-300	2882.5	182.47	N-751	2795.49	194.026
N-353	2878.68	182.603	N-936	2864.35	194.48
N-389	2882.18	182.627	N-329	2867.12	194.725
N-475	2882.06	182.692	N-370	2866.71	195.084
N-474	2881.88	182.826	N-330	2866.69	195.211
N-74	2878.06	183.114	N-549	2796.02	195.373
N-637	2880	183.172	N-318	2866.79	196.133
N-580	2880	183.336	N-750	2792.08	197.304
N-581	2880	183.39	N-220	2853.95	197.805
N-640	2880	183.445	N-447	2793.42	197.861
N-641	2880	183.499	N-163	2862.66	197.886
N-820	2805.94	183.975	N-830	2790	198.639
N-646	2879.19	184.031	N-774	2790	198.763
N-647	2879.13	184.149	N-770	2790	198.887
N-361	2876.5	184.178	N-771	2790	199.011
N-406	2807.67	184.181	N-791	2790	199.135
N-63	2877.2	184.19	N-369	2862.8	199.143

N-939	2874.39	184.257	N-792	2790	199.259
N-64	2876.88	184.564	N-359	2861	199.503
N-383	2863.31	184.989	N-310	2852.31	199.559
N-829	2788.4	200.107	N-659	2848.7	210.204
N-937	2858.71	200.209	N-358	2850	210.302
N-154	2862.53	200.331	N-204	2849.32	210.91
N-814	2787.6	200.79	N-304	2851.15	211.096
N-448	2790.2	200.966	N-362	2849.02	211.178
N-803	2786.59	201.672	N-146	2847.31	211.268
N-186	2850.28	201.698	N-940	2847.79	211.305
N-235	2860.28	201.714	N-712	2847.34	211.8
N-297	2858.29	202.168	N-57	2836.38	211.87
N-296	2857.79	202.638	N-809	2775.84	211.907
N-153	2860.02	202.788	N-628	2847.05	211.933
N-195	2859.49	203.264	N-332	2847.93	212.223
N-18	2844.56	203.451	N-35	2850	212.296
N-363	2855.82	204.565	N-355	2847.43	212.336
N-802	2783.24	204.894	N-36	2850	212.35
N-536	2786.08	204.969	N-551	2778.14	212.67
N-625	2857.72	204.977	N-303	2847.05	212.998
N-586	2857.27	205.257	N-542	2845.98	213.234
N-126	2856.55	205.49	N-627	2845.53	213.524
N-364	2854.33	206.013	N-357	2846.01	213.713
N-185	2845.89	206.201	N-513	2844.78	213.716
N-644	2855.56	207.071	N-55	2845.38	213.815
N-823	2780.69	207.312	N-255	2845.83	214.287
N-965	2851.55	207.459	N-544	2775.85	214.527
N-643	2855.07	207.512	N-543	2775.7	214.778
N-470	2854.76	207.708	N-822	2772.66	214.95
N-127	2853.96	208.131	N-254	2844.75	215.331
N-58	2839.83	208.296	N-545	2775.16	215.535
N-351	2853.5	208.637	N-327	2843.93	215.757
N-537	2781.69	209.236	N-223	2836.43	215.761
N-368	2852.89	209.309	N-546	2774.57	216.02
N-810	2778.16	209.708	N-514	2842.06	216.351
N-145	2848.92	209.749	N-56	2842.75	216.542
N-205	2850.5	209.766	N-320	2842.23	217.421
N-354	2850	209.804	N-103	2830.32	218.052
N-340	2850	209.84	N-776	2769.32	218.163
N-317	2850	209.875	N-333	2841.11	218.208
N-660	2848.93	209.892	N-222	2833.87	218.438
N-234	2850	209.911	N-319	2840.73	218.873
N-218	2850	209.946	N-525	2771.37	218.886
N-219	2850	209.982	N-695	2839.35	218.98

N-268	2850	210.018	N-344	2839.16	220.333
N-452	2852.33	210.082	N-356	2838.72	220.852
N-662	2848.65	210.099	N-339	2838.41	220.946
N-343	2838.49	220.97	N-585	2748.84	231.541
N-352	2838.49	221.038	N-453	2748.52	231.609
N-775	2766	221.354	N-860	2747.45	232.302
N-696	2836.64	221.597	N-519	2815.89	232.928
N-342	2836.6	222.819	N-861	2747.73	233.021
N-520	2767.25	222.89	N-428	2815.62	233.241
N-157	2829.13	223.284	N-716	2824.56	233.261
N-801	2824.93	223.661	N-962	2814.21	233.946
N-341	2835.49	223.895	N-607	2747.03	233.966
N-25	2824.32	223.996	N-606	2746.85	234.019
N-701	2833.96	224.193	N-717	2823.31	234.426
N-800	2824.09	224.448	N-211	2755.35	234.441
N-818	2762.75	224.476	N-429	2814.44	234.468
N-102	2823.91	224.579	N-616	2751.67	234.781
N-462	2823.56	224.819	N-839	2746.3	234.813
N-905	2823.52	225.115	N-859	2744.7	234.922
N-461	2823	225.358	N-718	2822.45	235.201
N-959	2822.95	225.512	N-862	2745.57	235.669
N-694	2822.77	225.566	N-715	2821.15	236.421
N-837	2822.15	226.248	N-1017	2812.26	236.695
N-953	2822.21	226.516	N-1003	2810.95	237.179
N-906	2822.05	226.626	N-856	2743.42	237.196
N-702	2831.31	226.757	N-855	2743.21	237.284
N-568	2760	226.844	N-868	2741.96	237.539
N-789	2760	226.968	N-994	2810.03	237.984
N-790	2760	227.092	N-621	2748.16	238.169
N-24	2820.73	227.55	N-714	2818.83	238.573
N-947	2820	228.214	N-713	2818.88	238.609
N-795	2820	228.237	N-321	2740	238.624
N-782	2820	228.259	N-999	2809.41	238.632
N-567	2758.12	228.596	N-322	2740	238.748
N-732	2819.63	228.807	N-864	2740	238.872
N-704	2828.89	229.095	N-248	2813.7	238.922
N-731	2819.28	229.139	N-50	2810.03	238.965
N-156	2823.29	229.234	N-857	2740	238.996
N-521	2759.85	230.166	N-858	2740	239.12
N-454	2750	230.256	N-212	2750.5	239.172
N-885	2818.45	230.32	N-690	2740	239.244
N-946	2817.41	230.777	N-691	2740	239.368
N-547	2758.74	231.165	N-1005	2808.68	239.424
N-761	2748.8	231.205	N-678	2817.89	239.434

N-867	2748.65	231.231	N-238	2816.57	240.674
N-720	2826.48	231.417	N-991	2807.32	240.736
N-617	2755.06	231.529	N-601	2807.98	241.111
N-467	2744.49	241.702	N-935	2797.75	251.899
N-992	2806.34	241.739	N-618	2730	251.951
N-955	2805.73	242.254	N-934	2797.62	251.978
N-51	2806.58	242.458	N-619	2730	252.075
N-593	2806.48	242.65	N-1008	2795.41	252.377
N-866	2735.43	243.06	N-600	2725.7	252.522
N-843	2737.71	243.638	N-425	2736.61	252.592
N-552	2745.78	243.772	N-573	2794.79	253.11
N-594	2805.07	244.106	N-812	2730	253.315
N-826	2738.66	245.164	N-17	2722.57	253.321
N-491	2802.44	245.421	N-828	2730	253.439
N-836	2736.11	245.61	N-1024	2796.23	253.468
N-466	2740.44	245.617	N-807	2731.96	253.836
N-481	2811.21	245.777	N-989	2793.77	253.987
N-490	2801.98	245.86	N-685	2728.06	254.132
N-571	2735.68	245.91	N-786	2728.96	254.228
N-457	2803.3	245.919	N-698	2722.82	254.279
N-570	2735.43	246.038	N-614	2801.85	254.803
N-824	2737.85	246.098	N-62	2734.14	254.951
N-852	2731.51	246.847	N-623	2722.24	254.982
N-347	2802.06	247.206	N-420	2723.08	255.01
N-979	2800.58	247.309	N-988	2792.53	255.206
N-482	2809.4	247.509	N-738	2727.02	255.542
N-603	2800.38	247.568	N-854	2793.91	255.832
N-229	2804.63	248.088	N-261	2726.5	255.936
N-797	2735.53	248.164	N-539	2793.7	256.135
N-1026	2801.15	248.36	N-624	2721.16	256.191
N-438	2741.07	248.363	N-793	2727.8	256.38
N-239	2808.75	248.397	N-846	2720.74	256.728
N-673	2808.37	248.458	N-419	2721.06	256.906
N-348	2800.36	248.95	N-865	2720.7	257.022
N-1025	2800.55	249.004	N-538	2792.74	257.045
N-796	2734.43	249.143	N-1001	2790.58	257.125
N-711	2732.48	249.357	N-748	2725.79	257.15
N-941	2799.79	249.574	N-847	2720.35	257.241
N-808	2736.2	249.726	N-260	2724.96	257.349
N-574	2798.12	249.807	N-863	2725.41	257.403
N-489	2807.08	249.979	N-984	2790	257.64
N-439	2739.31	250.009	N-985	2790	257.662
N-825	2733.69	250.376	N-739	2725.02	257.669
N-613	2806.17	250.574	N-1000	2790	257.684

N-564	2797.11	250.703	N-749	2725.18	257.878
N-512	2798.74	250.718	N-688	2719.95	257.89
N-511	2798.17	251.235	N-760	2727.71	257.951
N-155	2793.79	259.033	N-424	2788.03	268.356
N-59	2729.93	259.041	N-853	2707.98	268.6
N-287	2790.83	259.047	N-1019	2781.76	268.677
N-788	2725.93	259.36	N-558	2782.61	268.754
N-39	2716.44	259.56	N-850	2707.89	268.808
N-759	2725.88	259.655	N-851	2708.01	268.818
N-708	2796.57	259.989	N-22	2787.39	268.911
N-794	2724.16	260.138	N-596	2781.53	269.728
N-827	2725.17	260.238	N-294	2783.53	269.987
N-288	2789.49	260.428	N-527	2780.05	270.342
N-787	2724.54	260.619	N-967	2776.6	270.704
N-981	2786.8	260.811	N-943	2776.42	271.085
N-60	2727.59	261.267	N-1006	2776.21	271.111
N-768	2723.08	261.333	N-966	2776	271.28
N-811	2723.64	261.393	N-1021	2779.13	271.397
N-769	2722.82	261.716	N-957	2776.03	271.492
N-301	2788.1	261.866	N-897	2779.28	271.545
N-838	2714.93	262.037	N-244	2781.82	271.572
N-980	2785.36	262.221	N-945	2778.34	271.944
N-302	2787.77	262.248	N-1023	2778.63	271.998
N-746	2722.38	262.281	N-977	2775.32	272.109
N-747	2722.24	262.549	N-1016	2778.82	272.142
N-1009	2787.22	262.842	N-1011	2777.56	272.629
N-30	2790	262.931	N-997	2774.73	272.678
N-29	2790	263.049	N-724	2774.42	272.924
N-1010	2787.04	263.073	N-899	2778.42	272.98
N-785	2721.81	263.097	N-898	2777.5	273.365
N-194	2789.51	263.662	N-293	2780.05	273.409
N-1018	2784.79	265.365	N-285	2777.41	273.652
N-193	2787.17	266.107	N-1015	2777.1	273.814
N-942	2781.37	266.12	N-1022	2776.57	274.002
N-27	2709.83	266.27	N-954	2776.67	274.533
N-958	2780.98	266.577	N-996	2772.56	274.818
N-28	2709.21	267.011	N-1012	2775.38	274.854
N-557	2783.94	267.378	N-23	2781.26	274.954
N-130	2708.83	267.509	N-725	2772.36	275.001
N-978	2779.95	267.513	N-1013	2775.52	275.49
N-632	2782.88	267.853	N-971	2775.69	275.751
N-423	2788.46	268.004	N-15	2776.6	276.977
N-1014	2782.51	268.171	N-445	2774.29	277.486
N-1020	2782.28	268.213	N-1007	2769.6	277.641

N-133	2708.21	268.245	N-931	2773.84	277.652
N-633	2782.51	268.267	N-446	2773.83	277.998
N-526	2782	268.339	N-284	2775.14	278.263
N-950	2773.15	278.582	N-464	2749.16	297.879
N-286	2772.04	279.058	N-398	2756.32	298.253
N-450	2773.72	280.091	N-477	2748.52	298.429
N-938	2770.84	280.307	N-266	2753.2	298.922
N-65	2775.24	280.88	N-620	2748	298.994
N-386	2770.19	281.392	N-241	2753.67	299.075
N-380	2772.02	281.863	N-463	2747.73	299.286
N-949	2769.8	281.878	N-604	2756.48	299.359
N-522	2769.95	281.918	N-240	2753.13	299.567
N-385	2769.59	281.939	N-963	2747.46	299.624
N-251	2771.59	282.371	N-34	2752.44	300.209
N-675	2769.07	282.556	N-190	2752.29	300.551
N-250	2771.32	282.725	N-430	2753.67	300.978
N-279	2770.32	283.021	N-189	2751.24	301.552
N-410	2769.22	284.898	N-267	2750.41	301.76
N-14	2768.41	285.234	N-444	2752.76	301.962
N-969	2766.11	285.801	N-530	2749.78	302.436
N-374	2767.12	287.076	N-488	2752.13	302.671
N-973	2760	287.177	N-476	2744.1	302.819
N-974	2760	287.199	N-33	2749.26	303.336
N-66	2768.75	287.275	N-605	2752.21	303.548
N-421	2764.41	287.539	N-487	2751.12	303.754
N-278	2765.55	287.742	N-292	2745.38	307.158
N-493	2765.59	288.127	N-531	2744.92	307.335
N-422	2761.08	290.913	N-689	2748.02	307.642
N-373	2763.16	291.108	N-472	2746.56	308.387
N-998	2754.61	292.534	N-497	2746.17	308.936
N-295	2760.55	292.681	N-970	2737.59	309.294
N-964	2753.47	293.653	N-559	2742.86	309.438
N-576	2757.17	294.866	N-381	2745.14	310.042
N-667	2761.06	294.874	N-719	2744.79	310.788
N-183	2757.65	295.527	N-471	2744.18	310.843
N-510	2751.54	295.532	N-298	2741.22	311.263
N-498	2758.3	296.039	N-375	2742.59	312.902
N-399	2758.12	296.377	N-290	2740.51	314.82
N-473	2757.88	296.531	N-376	2740.56	314.853
N-182	2756.34	296.788	N-325	2736.78	315.551
N-275	2756.17	296.861	N-291	2739.56	315.687
N-274	2756.07	296.919	N-37	2736.12	316.259
N-269	2756.11	296.974	N-38	2735.92	316.509
N-280	2755.84	297.098	N-983	2725.88	320.964

N-975	2754.96	297.116	N-990	2722.73	324.082
N-283	2755.09	297.804	N-968	2721.4	325.39
N-995	2749.14	297.84	N-561	2721.06	325.707
N-560	2718.29	328.443	N-880	2692.91	353.344
N-587	2717.01	329.629	N-167	2692.38	353.506
N-993	2715.43	331.276	N-179	2690.46	355.228
N-679	2714.51	332.15	N-142	2690.3	355.601
N-524	2714.31	332.305	N-143	2690.11	355.811
N-26	2702.9	333.989	N-833	2689.93	356.281
N-523	2712.26	334.331	N-591	2689.26	356.899
N-577	2712.05	334.516	N-395	2681.23	356.936
N-680	2712.15	334.525	N-592	2689.2	356.981
N-391	2701.15	335.818	N-147	2687.7	358.239
N-948	2708.43	338.109	N-987	2687.46	358.677
N-982	2707.73	338.741	N-47	2687.1	358.972
N-171	2696.03	341.013	N-213	2678.91	359.664
N-264	2695.81	341.805	N-202	2678.38	359.862
N-265	2695.82	341.883	N-203	2677.77	360.549
N-976	2704.29	342.152	N-166	2684.94	360.72
N-532	2704.23	342.248	N-159	2684.54	361.476
N-533	2703.58	342.924	N-113	2684.08	361.916
N-972	2703.05	343.365	N-117	2683.95	362.005
N-578	2694.01	343.436	N-674	2676.34	362.062
N-172	2693.08	344.039	N-61	2683.85	362.237
N-451	2693.32	344.542	N-40	2675.98	362.664
N-529	2692.71	344.573	N-46	2683.12	362.918
N-595	2692.28	345.494	N-683	2675.09	363.392
N-579	2691.89	345.639	N-986	2682.71	363.393
N-666	2691.63	345.734	N-165	2680.08	365.549
N-173	2700	345.751	N-41	2672.59	366.132
N-44	2700	345.773	N-112	2678.59	367.375
N-45	2700	345.794	N-405	2671.16	367.643
N-144	2700	345.816	N-575	2675.16	370.376
N-528	2691.27	345.928	N-1	2665.15	373.724
N-433	2690.49	347.449	N-597	2671.46	373.985
N-31	2698.12	347.71	N-556	2664.95	380.397
N-32	2696.83	349.018	N-2	2655.12	383.817
N-176	2696.61	349.113	N-555	2657.85	387.402
N-114	2695.92	349.95	N-728	2656.36	388.807
N-434	2687.49	350.522	N-21	2647.27	391.727
N-125	2695.78	350.594	N-721	2651.54	393.536
N-124	2695.69	350.664	N-615	2647.4	397.58
N-1004	2694.52	351.809	N-435	2638.82	400.251
N-1002	2694.32	351.99	N-517	2643.71	401.183

N-881	2693.73	352.553	N-516	2638.85	405.953
N-394	2685.34	352.752	N-661	2629.75	409.384
N-834	2693.09	353.149	N-687	2633.69	411.016
N-111	2628.5	416.115	N-336	2587.9	452.286
N-48	2620.68	418.518	N-245	2587.38	453.453
N-110	2624.84	419.689	N-335	2587.41	453.593
N-427	2622.48	421.961	N-259	2588.71	454.096
N-49	2612.34	426.919	N-246	2586.37	454.547
N-12	2617.24	427.107	N-118	2584.78	455.238
N-11	2615.2	429.06	N-6	2583.7	455.829
N-199	2612.9	431.272	N-119	2583.8	456.303
N-152	2605.51	433.819	N-97	2584.68	456.399
N-198	2610	434.084	N-277	2583.38	456.475
N-743	2607.71	436.119	N-371	2583.27	456.663
N-744	2607.77	436.146	N-258	2585.33	457.387
N-741	2607.38	436.207	N-582	2583.92	458.465
N-745	2607.5	436.249	N-756	2583.57	459.06
N-742	2607.1	436.563	N-583	2583.29	459.178
N-382	2605.32	438.677	N-13	2580	459.607
N-764	2604.75	438.744	N-207	2580	459.688
N-763	2604.11	439.303	N-755	2582.65	459.894
N-752	2603.77	439.563	N-733	2581.73	460.566
N-693	2601.96	441.28	N-98	2580.36	460.79
N-338	2599.01	441.362	N-276	2578.82	460.948
N-311	2598.73	441.721	N-765	2580	462.212
N-692	2600.86	442.3	N-131	2577.6	463.619
N-663	2596.44	442.95	N-608	2578.42	463.707
N-563	2598.78	444.291	N-432	2578.01	464.038
N-562	2596.68	446.302	N-431	2576.89	465.064
N-312	2594.11	446.418	N-132	2576.12	465.183
N-337	2593.44	446.837	N-19	2574.84	466.541
N-324	2592.75	447.857	N-20	2572.92	468.54
N-262	2592.12	448.563	N-43	2573.12	468.749
N-655	2592.8	450.101	N-492	2569.97	471.567
N-263	2588.59	452.168	N-42	2570.03	471.751
N-5	2587.23	452.223	N-414	2569.76	471.858
			N-400	2568.95	472.748

BIBLIOGRAFÍA

- Agüero Pittman, R. (1997). Agua potable para poblaciones rurales; sistemas de abastecimiento por gravedad sin tratamiento. Lima: Asociación Servicios Educativos Rurales (SER).
- Aldaz Armendariz, I. (2020). MODELADO HIDRÁULICO Y CALIBRADO DE LA RED DE ABASTECIMIENTO DE AGUA POTABLE DE LA COMARCA DE PAMPLONA. [Trabajo Fin de Máster, Universitat Politècnica de València]. http://hdl.handle.net/10251/146894
- Alegret Breña, E. y Martínez Valdés, Y. (2019). Coeficiente de Hazen-Williams en función del número de Reynolds y la rugosidad relativa. *Ingeniería Hidráulica y Ambiental*, 40(3), págs. 41-55.
- Comisón Nacional del Agua. (2019). Manual de Agua Potable, Alcantarillado y Saneamiento; Conducciones. Ciudad de México: Subdirección General de Agua Potable, Drenaje y Saneamiento.
- CPE INEN 5 parte 9-1:1992. (1992). NORMAS PARA ESTUDIO Y DISEÑO DE SISTEMAS DE AGUA POTABLE Y DISPOSICIÓN DE AGUAS RESIDUALES PARA POBLACIONES MAYORES A 1000 HABITANTES.
- ETAPA EP. (2020). ESTUDIOS DEMOGRAFICOS PARA EL CANTON CUENCA, PLANES MAESTROS DE AGUA POTABLE Y SANEAMIENTO, III FASE .
- ETAPA EP. (2022). Agua potable. Obtenido de https://www.etapa.net.ec/principal/agua-potable
- ISO 2531. (2009). Tubos, conexiones y piezas accesorias de fundición dúctil y sus juntas para conducción de agua.
- Ley 0 de 2014. Ley Orgánica de Recursos Hídricos Usos y Aprovechamiento del Agua. 6 de agosto de 2014. R.O. No. 305
- Ley 0 de 2017. Código Orgánico del Ambiente [COA]. 12 de abril de 2017. R.O. 983
- Norma CO 10.07 601. (1992). NORMAS PARA ESTUDIO Y DISEÑO DE SISTEMAS DE AGUA POTABLE Y DISPOSICIÓN DE AGUAS RESIDUALES PARA POBLACIONES MAYORES A 1000 HABITANTES.
- NTE INEN 1 108. (2011). AGUA POTABLE. REQUISITOS.
- Urgiles Mendieta, E. P. (2019). Guía de diseño con criterios de operación y mantenimiento para captaciones, conducciones y redes de distribución de agua potable, de la empresa ETAPA EP. [Tesis de grado, Universidad del Azuay]. http://dspace.uazuay.edu.ec/handle/datos/8921