

DISEÑO Y FABRICACIÓN DE BLOQUES DE MAMPOSTERÍA DE HORMIGÓN ELABORADOS CON NEUMÁTICOS RECICLADOS Y OTRAS ADICIONES

Escuela de Arquitectura

Proyecto Final de Carrera previo a la obtención del título de Arquitecto

Autor: Carlos Emmanuel Alvear Peralta **Director:** Juan Carlos Calderón Peñafiel

Cuenca - Ecuador I 2023

DISEÑO Y FABRICACIÓN DE BLOQUES DE MAMPOSTERÍA DE HORMIGÓN ELABORADOS CON NEUMÁTICOS RECICLADOS Y OTRAS ADICIONES

Escuela de Arquitectura

Proyecto Final de Carrea previo a la obtención de título de Arquitecto
Autor: Carlos Emmanuel Alvear Peralta
Director: Juan Carlos Calderón Peñafiel
Cuenca-Ecuador
2023

DedicatoriaAgradecimientos

A mis padres, Luis y María, por el apoyo constante y su inquebrantable aliento a lo largo de mi trayectoria académica. Han sido mi mayor fuente de inspiración y mi apoyo incondicional en los momentos de desafío. Este logro no sería posible sin ustedes.

A mi hermano Jorge, por creer en mí y ser un amigo incondicional. Su apoyo y motivación han sido fundamentales para superar desafíos.

A Mary, por todo el cariño y apoyo que me has brindado. Tu constante aliento ha sido un impulso invaluable para alcanzar mis objetivos. A mi director, Juan Carlos Calderón, y las profofesoras María I. Carrasco y Fernanda Aguirre, por su orientación y guía durante todo el desarrollo de este proyecto. Su experiencia y conocimiento fueron fundamentales para llevar a cabo esta investigación.

A mi papá, Luis Alvear por su sabiduría, dedicación y sacrificio, ha sido mi inspiración en cada paso de mi camino. Gracias por creer en mí, por brindarme oportunidades y por ser mi roca en los momentos de adversidad.

A mi mamá María Peralta, por su infinito amor y las palabras de aliento que me han dado la determinación para superar obstáculos y alcanzar mis metas.

Índice

Índice

Abstract	2.7 Clasificación de bloques de hormigón35
01	03
INTRODUCCIÓN 19	ESTADO DEL ARTE 39
1.1 Problemática	3.1 Uso de fibras de caucho reciclado en el bloque de hormigón40
1.2 Objetivos	3.2 Uso de metacaolín en el hormigón47
	3.3 Uso de fibras de aserrín en el bloque de hormigón50
02	3.4 Bloques de concreto celular
MARCO TEÓRICO 25	04
2.1 Bloque de hormigón	<u> </u>
2.2 Contexto histórico	METODOLOGÍA 57
2.3 Tipologías de bloques	4.1 Tipo y diseño de Investigación
2.4 Materiales	4.2 Población y muestra
2.5 Proceso de fabricación de los bloques	4.2.1 Población

..... 16 2.6 Mampostería de bloque de hormigón

4.2.2 La muestra.	60
4.3 Recolección de información.	60
4.4 Variables	60

05

FABRICACIÓN DE LAS MUESTRAS 63	6.1 E
5.1 Materiales64	6.1.1
5.2 Equipos	6.1.2
5.3 Proceso para la elaboración de los prototipos	6.2 E
5.3.1 Dosificación de bloque sin adición de materiales	6.2.1
reciclados	6.2.2
5.3.2 Dosificación de bloques con adición de caucho	6.3 (
5.3.3 Dosificación de bloques con adición de caucho y	6.4 (
metacaolín	6.5 0
5.3.4 Dosificación de bloques con adición de caucho,	
metacaolín y aserrín	

5.4 Proceso de elaboración de bloques con adición de	
caucho y concreto celular84	

06

_	ENSAYOS DE LABORATORIO	89
63	6.1 Ensayo de resistencia a la compresión simple	.90
64	6.1.1 Equipos	.90
68	6.1.2 Procedimiento	.92
71	6.2 Ensayo de absorción y densidad.	.94
	6.2.1 Equipos	.95
74	6.2.2 Procedimiento	.96
75	6.3 Cálculo para determinar la resistencia a la comprensión simple	.99
	6.4 Cálculo para determinar la absorción	.99
78	6.5 Cálculo para determinar la densidad	.99

Índice

Índice

07	
RESULTADOS 101	
7.1 Resistencia a la compresión simple de bloques	
con adición de caucho102	
7.2 Densidad de bloques con adición de caucho103	
7.3 Absorción de bloques con adición de caucho104	
7.4 Resistencia a la compresión simple de bloques	
con caucho + metacaolín	
7.5 Densidad de bloques con caucho + metacaolín106	
7.6 Absorción de bloques con caucho + metacaolín107	
7.7 Resistencia a la compresión simple de bloques	
con caucho + metacaolín + aserrín. (C%+M%+A%)108	
7.8 Densidad de bloques con caucho	
+ metacaolín + aserrín. (C%+M%+A%)	
7.9 Absorción de bloques con caucho	
+ metacaolín + aserrín. (C%+M%+A%)110	

7.10 Resumen de resultados	111
08	
APLICACIÓN EN PROTOTIPOS	115
8.1 Formato aplicado a mampostería	116
8.2 Formato aplicado a losas.	117
8.3 Aplicaciones	118
09	
CONCLUSIONES	121
10	
BIBLIOGRAFÍA	125

11	
ANEXOS 1	29
Anexo - Informe de laboratorio: Ensayo de resistencia	
a la compresión simple	30
Anexo - Nomenclatura usada en los ensayos de resistencia	
a la compresión simple1	39
Anexo - Gráficas: Ensayo de resistencia a la compresión simple 1	40
Anexo - Nomenclatura usada en los ensayos de absorción	
y densidad1	77
Anexo - Datos del ensayo de absorción y densidad1	78
Anexo - Cálculos de las propiedades mecánicas y	
físicas de bloques sin adiciones	79
Anexo - Cálculos de las propiedades mecánicas y	
físicas de bloques con adición de caucho1	80
Anexo - Cálculos de las propiedades mecánicas y	

físicas de bloques con adición de caucho + metacaolín

... 182

Índice de imágenes

Índice de imágenes

Fig.1. Desechos producidos por la construcción.	Fig.13. Mar
Fuente: Elaboración propia	Fig.14. Tam
Fig.2. Depósito de neumáticos usados. Fuente: Elaboración propia 19	Fig.15. Árid
Fig.3. Almacenamiento de neumáticos en desuso.	Fig.16. Cen
Fuente: Interempresas.net	Fig.17. Proc
Fig.4. Bloques de hormigón. Fuente: Elaboración propia24	Fuente: Ela
Fig.5. Partes del bloque de hormigón. Fuente: NTE INEN 306624	Fig.18. Con
Fig.6. Partes del bloque de hormigón. Fuente: NTE INEN 306625	Fuente: sto
Fig.7. Varios albañiles trabajan en la construcción del muro	Fig.19. Blog
de Berlín. Fuente: Diario El País	Fig.20. Diag
Fig.8. Proyecto casa Catalinas por el Arq. Agustín Lozada.	de Fioriti et
Fuente: ambientesdigital.com	Fig.21. Diag
Fig.9. Bloques huecos de hormigón. Fuente: Elaboración propia28	Fuente: Red
Fig.10. Construcción de muro de carga con bloques de	Fig.22. Diag
encofrado. Fuente: bloquesperello.es	Fuente: Red
Fig.11. Bloque de hormigón sólido. Fuente: archiexpo.es	Fig.23. Diag
Fig.12. Mampostería de bloque pulido. Fuente: Andece	de Goñas y

Fig.13. Mampostería de bloque esmaltado. Fuente: Andece	29
Fig.14. Tamizado de arena. Fuente: gettyimages.es.	30
Fig.15. Árido grueso. Fuente: gettyimages.es	30
Fig.16. Cemento. Fuente: permutrade.com	31
Fig.17. Proceso de fabricación de los bloques.	
Fuente: Elaboración propia	32
Fig.18. Construcción de mampostería de bloque de hormigón.	
Fuente: stock.adobe.com	33
Fig.19. Bloques de hormigón y pómez. Fuente: Elaboración propia	35
Fig.20. Diagrama de densidades. Fuente: Readaptado	
de Fioriti et al.	39
Fig.21. Diagrama de resistencia a la compresión.	
Fuente: Readaptado de Fioriti et al.	39
Fig.22. Diagrama de resistencia a la compresión.	
Fuente: Readaptado de Goñas y Saavedra	40
Fig.23. Diagrama de densidades. Fuente: Readaptado	

rig.24. Diagrama de resistencia a la compresion.
Fuente: Readaptado de Calderón y Vásquez41
Fig.25. Diagrama de densidades.
Fuente: Readaptado de Calderón y Vásquez41
Fig.26. Diagrama de resistencia a la compresión fibra tipo 1.
Fuente: Readaptado de Almeida
Fig.27. Diagrama de resistencia a la compresión fibra tipo 2.
Fuente: Readaptado de Almeida
Fig.28. Diagrama de resistencia a la compresión.
Fuente: Readaptado de Guerrero
Fig.29. Diagrama de disminución de resistencia a la compresión.
Fuente: Readaptado de Guerrero
Fig.30. Proceso de la investigación. Fuente: Elaboración propia
Fig.31. Bloques con diferentes adiciones recicladas.
Fuente: Elaboración propia
Fig.32. Variables. Fuente: Elaboración propia
Fig.33. Materiales para la fabricación de un bloque.

Fuente: Elaboración propia	62
Fig.34. Piedra pómez: Fuente. Elaboración propia.	63
Fig.35. Ceniza volcánica. Fuente: Elaboración propia	63
Fig.36. Cemento Atenas. Fuente: ATENAS.COM	63
Fig.37. Fibras de caucho. Fuente: Elaboración propia	64
Fig.38. Piedra de caolín. Fuente: Elaboración propia	64
Fig.39. Caolín en calcinación. Fuente: Elaboración propia	64
Fig.40. Metaaolín. Fuente: Elaboración propia	65
Fig.41. Fibras de aserrín. Fuente: Elaboración propia	65
Fig.42. Espuma a base de glicerina. Fuente: Elaboración propia	65
Fig.43. Equipo para fabricar los bloques.	
Fuente: Elaboración propia	66
Fig.44. Mezcladora de concreto de bandeja plana.	
Fuente: camelway.com	66
Fig.45. Máquina bloquera o vibracompactador.	
Fuente: Elaboración propia	66
Fig.46. generador de espuma Fuente: tecnoedilsistem.com	67

Índice de imágenes

Índice de imágenes

Fig.47. generador de espuma Fuente: Elaboración propia67	Fuente: Elaboración propia72
Fig.48. Generador de espuma. Fuente: Elaboración propia	Fig.59. Dosificación de bloque con 10% de caucho.
Fig.49. Molde de madera. Fuente: Elaboración propia	Fuente: Elaboración propia
Fig.50. Molde de madera. Fuente: Elaboración propia	Fig.60. Dosificación de bloque con 15% de caucho.
Fig.51. Materias primas para la fabriacación de bloques.	Fuente: Elaboración propia
Fuente: Elaboración propia	Fig.61. Dosificación de bloque con 20% de caucho.
Fig.52. Mezclado de Materias primas. Fuente: Elaboración propia69	Fuente: Elaboración propia
Fig.53. Vibrado y compactación de la mezcla.	Fig.62. Dosificación de bloque con 10% de caucho
Fuente: Elaboración propia	+ 10% metacaolín. Fuente: Elaboración propia
Fig.54. Bloques recién sacados del molde.	Fig.63. Dosificación de bloque con 15% de caucho
Fuente: Elaboración propia	+ 10% metacaolín. Fuente: Elaboración propia77
Fig.55. Almacenamiento de los prototipos.	Fig.64. Dosificación de bloque con 20% de caucho
Fuente: Elaboración propia	+ 10% metacaolín. Fuente: Elaboración propia
Fig.56. Curado de prototipos. Fuente: Elaboración propia70	Fig.65. Dosificación de bloque con 10% de caucho
Fig.57. Proceso para la elaboración de los prototipos.	+ 10% metacaolín + 10% aserrín. Fuente: Elaboración propia79
Fuente: Elaboración propia71	Fig.66. Dosificación de bloque con 15% de caucho
Fig.58. Dosificación de bloque sin adición de materiales reciclados.	+ 10% metacaolín + 15% aserrín. Fuente: Elaboración propia80

Fig.59. Dosificación de bloque con 10% de caucho.	
Fuente: Elaboración propia	
Fig.60. Dosificación de bloque con 15% de caucho.	
Fuente: Elaboración propia	
Fig.61. Dosificación de bloque con 20% de caucho.	
Fuente: Elaboración propia	
Fig.62. Dosificación de bloque con 10% de caucho	
+ 10% metacaolín. Fuente: Elaboración propia	
Fig.63. Dosificación de bloque con 15% de caucho	
+ 10% metacaolín. Fuente: Elaboración propia77	
Fig.64. Dosificación de bloque con 20% de caucho	
+ 10% metacaolín. Fuente: Elaboración propia	
Fig.65. Dosificación de bloque con 10% de caucho	
+ 10% metacaolín + 10% aserrín. Fuente: Elaboración propia79	
Fig.66. Dosificación de bloque con 15% de caucho	
+ 10% metacaolín + 15% aserrín. Fuente: Elaboración propia80	

Fig.67. Dosificación de bloque con 20% de caucho
+ 10% metacaolín + 20% aserrín. Fuente: Elaboración propia81
Fig.68. Mezclado de materias primas. Fuente: Elaboración propia82
Fig.69. Agregado de la espuma. Fuente: Elaboración propia82
Fig.70. Batido de la mezcla. Fuente: Elaboración propia82
Fig.71. Moldes empapados de aceite desencofrante.
Fuente: Elaboración propia83
Fig.72. Mezcla vertida en los moldes.
Fuente: Elaboración propia83
Fig.73. Desencofrado de los prototipos.
Fuente: Elaboración propia83
Fig.74. Fabricación de bloque macizo.
Fuente: Elaboración propia84
Fig.75. Desencofrado del bloque macizo.
Fuente: Elaboración propia84
Fig.76. Proceso de elaboración de bloques con adición
de caucho y concreto celular. Fuente: Elaboración propia85

Fig.77. Máquina de ensayo a la compresión.
Fuente: Elaboración propia
Fig.78. Balanza UWE SEK-30K. Fuente: Elaboración propia89
Fig.79. Medición de prototipos. Fuente: Elaboración propia89
Fig.80. Pesado de placa a usarse. Fuente: Elaboración propia89
Fig.81. Almacenamiento de los bloques en el laboratorio.
Fuente: Elaboración propia90
Fig.82. Obtención de la masa del prototipo.
Fuente: Elaboración propia90
Fig.83. Colocación del prototipo para realizar el ensayo.
Fuente: Elaboración propia
Fig.84. Rotura dl prototipo. Fuente: Elaboración propia91
Fig.85. Prototipos en el exterior del laboratorio de la
Universidad del Azuay. Fuente: Elaboración propia92
Fig.86. Balanza usada para el esnsayo de densidad y absorción.
Fuente: Elaboración propia93
Fig.87. horno eléctrico HUMBOLDT H-30128.4F.

Índice de imágenes

Fuente: Elaboración propia93	
ig.88. Canastilla. Fuente: Elaboración propia	
ig.89. Bloques cortados a medida. Fuente: Elaboración propia94	
ig.90. Prototipos sumergidos en agua. Fuente: Elaboración propia 94	
ig.91. Secado del protipo con un paño.	
Fuente: Elaboración propia95	
ig.92. Obtención del peso saturado del prototipo.	
uente: Elaboración propia95	
ig.93. Obtención del peso sumergido del prototipo.	
- uente: Elaboración propia95	
Fig.94. Secado de los protipos en el horno	
HUMBOLDT H-30128.4F; Elaboración propia96	
Fig.95. Secado de los protipos en el horno	
HUMBOLDT H-30128.4F; Elaboración propia96	
ig.96. Diagrama de la resistencia a la compresión simple.	
- -uente: Elaboración propia100	
ig.97. Diagrama de la densidad. Fuente: Elaboración propia	

Fig.98. Diagrama de la absorción. Fuente: Elaboración propia10
Fig.99. Diagrama de la resistencia a la compresión simple.
Fuente: Elaboración propia
Fig.100. Diagrama de la densidad. Fuente: Elaboración propia
Fig.101. Diagrama de la absorción. Fuente: Elaboración propia
Fig.102. Diagrama de la resistencia a la compresión simple.
Fuente: Elaboración propia
Fig.103. Diagrama de la densidad. Fuente: Elaboración propia
Fig.104. Diagrama de la absorción. Fuente: Elaboración propia
Fig.105. Prototipos fabricados. Fuente: Elaboración propia
Fig.106. Bloque sin desprenderse luego de la carga aplicada.
Fuente: Elaboración propia1
Fig.107. Resumen de resultados. Fuente: Elaboración propia 1

Resumen

En respuesta a la problemática medioambiental actual y al impacto negativo que generan los neumáticos usados, esta investigación tiene como objetivo diseñar y fabricar bloques de mampostería de hormigón mediante la incorporación de caucho de neumáticos reciclados y adiciones como metacaolín y aserrín. La metodología empleada combina enfoques teóricos y experimentales, abarcando una revisión de literatura y una campaña experimental que incluye la construcción de prototipos que son sometidos a ensayos de resistencia a compresión simple, densidad y absorción. Los resultados obtenidos permiten verificar las propiedades físicas y mecánicas de los bloques, brindando información que respalda su viabilidad.

Palabras clave:

Bloque de hormigón, caucho, aserrín, hormigón celular, metacaolín.

Abstract

In response to the current environmental problems and the negative impact generated by used tires, this research aims to design and manufacture concrete masonry blocks by incorporating rubber from recycled tires and additions such as metakaolin and sawdust. The methodology employed combines theoretical and experimental approaches, comprising a literature review and an experimental campaign that includes the construction of prototypes that are subjected to simple compression strength, density, and absorption tests. The obtained results allow verification of the physical and mechanical properties of the blocks, providing information that supports their viability.

Keywords:

Concrete block, rubber, sawdust, cellular concrete, metakaolin.

16