

Universidad del Azuay

Facultad de Ciencia y Tecnología

Escuela de Biología, Ecología y Gestión

Estado de la calidad físico - químico, bacteriológico y biológico del agua, de la subcuenca del río Santa Bárbara, en una estación climática, cantones Sigsig, Chordeleg y Gualaceo provincia del Azuay – Ecuador

Tesis previa a la obtención de titulo de Biólogo del Medio Ambiente

AUTORES: Laura Edelmira Lojano Guapacasa

Gustavo Adriano Lucero Mosquera

DIRECTOR: Blgo. Edwin Zárate

CUENCA - ECUADOR

Dedicatoria

A Dios por iluminarme en los momentos oscuros, a la memoria de mis Padres Estelita y Juan, a mi hija Tamia sin su patadita final esto no hubiera sido posible, a mis hermanos María, Hernán, Conchi y Sari por su enorme paciencia y constante apoyo, a mi compañera Maritza por compartir y darme una mano cuando la he necesitado, a mis sobrinos Diana Marcela, Jorge Felipe y Ana Priscila por sus ejemplos de vida que me sirvieron de impulso. A todos un eterno Gracias, les quiero mucho.

Gustavo

A mis padres Humberto + y Laura, por su amor y apoyo incondicional, a mis hermanos Freddy, Mónica y Pablo por su cariño y solidaridad en momentos difíciles. A mis sobrinos Patricio, Pablo, Santiago, Francisco, María José y María Francisca por sus sonrisas sinceras. Sobre todo gracias a Dios y a la Virgen Santísima.

Laura

Agradecimientos

Al Blgo.Edwin Zárate Msc. por su apertura y apoyo en todo el proyecto.

A las siguientes personas: Dr. Piercosimo Tripaldi, Ing. Cristian Rojas, Blgo Fernando Cárdenas, Ing. Fernanda Rosales, Ing. Omar Delgado Msc, Ing. Ximena Orellana y Tec. Sup. Diego Vidal, Blgo. Pablo Jara Msc, Blgo. Gonzalo Sotomayor, Dra. María Elena Cazar, Dra. Diana Chalco, Dr. Gustavo Chacón, Ing. Germán Zuñiga, Tec. Sup. Marisol Mosquera, Dra. Cecilia Maldonado, Jorge Felipe Humbser, Andrea Mancheno, Maritza Bermeo y Juan Diego Peña por su apoyo y colaboración en las diferentes etapas de esta tesis.

A todos nuestros amigos y amigas que no han sido nombradas para evitar olvidos innecesarios, pero que han contribuido a la satisfactoria culminación de este proceso, ellas y ellos saben quiénes son.

Resumen

El objetivo del presente trabajo fue determinar la calidad del agua de la cuenca del río Santa Bárbara, de octubre a diciembre de 2008.

Se utilizó el programa ArcHydro para establecer 21 estaciones de monitoreo. Las coordenadas de estos puntos se establecieron con la ayuda del GPS.

Los parámetros de calidad del agua se dividieron en cinco grupos:

Biológicos

Morfológicos

Fisicoquímicos

Microbiológicos

Cobertura vegetal

Para el análisis estadístico de los resultados se utilizó un test Anova, la comparación se realizó entre los índices de calidad de agua ABI e ICA y el tipo de cobertura vegetal y densidad poblacional, respectivamente. Concluyendo que existía una diferencia significativa entre el índice ICA / cobertura vegetal e ICA / densidad poblacional. No así entre ABI / cobertura vegetal y ABI / densidad poblacional.

Abstract

The aim of present work was to determinate water quality of Santa Bárbara River's basin, from October to December 2008.

ArcHydro software was used to set 21 monitoring stations. The coordinates of these points were established with the aid of GPS.

Water quality parameters were divided in five groups:

Biological

Morphological

Physicochemical

Microbiological

Vegetation cover

For statistical analysis of results, an anova test was utilized, comparison was made between water quality index ICA and ABI, and the type of vegetation and population density, respectively. Concluding there was a significant difference between the index ICA / vegetation cover and ICA / population density. Not among ABI / cover vegetation and ABI / population density.

ÍNDICE DE CONTENIDOS

Dedicatoria	.ii
Agradecimiento	iii
Resumen	iv
Abstract	٧.
Índice de contenidos	vi
Índice de gráficos e ilustraciones	.viii
Índice de Anexos	x
INTRODUCCIÓN	1
CAPÍTULO I: METODOLOGÍA	
1.1. Sitio de estudio	4
1.2. Trabajo de campo	9
1.3. Trabajo de laboratorio	.11
1.4. Análisis de datos	.12
CAPÍTULO II: RESULTADOS	
2.1. Influencia del uso de suelo y cobertura vegetal sobre la calidad biológica	del

2.2.	Influencia o	del uso	de suelo y	cobertura ve	egetal s	obre e	índice	de la	a calidad	de
agua	а									.24
			•	acional sobre				`		•
				poblacional						
CON	NCLUSIONE	S Y RE	COMENDA	CIONES						28
BIBI	LIOGRAFÍA									32

ÍNDICE DE ILUSTRACIONES Y CUADROS

Mapa 1: Ubicación de la subcuenca del río Santa Bárbara en la cuenca del Paute
Provincia del Azuay, Ecuador5
Mapa 2: Subcuenca del río Santa Bárbara y ubicación puntos de muestreo7
Mapa 3: Cobertura vegetal de la Subcuenca del río Santa Bárbara17
Mapa 4: Densidad poblacional de la Subcuenca del río Santa Bárbara20
Tabla 1: Estaciones de muestreo con sus coordenadas GPS, georeferenciadas y su altitud
Tabla 2: Coeficientes de corrección de la velocidad superficial del flotador a velocidad media del canal
Tabla 3: Clases de calidad de agua según el índice ABI12
Tabla 4: Puntaje de las familias según el índice ABI13
Tabla 5: Pesos relativos para cada parámetro del ICA15
Tabla 6: Clasificación del ICA16
Tabla 7: Caracterización de los usos de suelo y cobertura vegetal18
Tabla 8: Densidad poblacional encontrada en cada una de las estaciones21
Tabla 9: Influencia del uso de suelo/cobertura vegetal en el ABI23
Tabla 10: influencia del uso de suelo/cobertutra vegetal en el ICA24
Gráfico 1: Periodos de fuertes lluvias que ocurren durante marzo - abril y de nuevo er octubre
Gráfico 2: Índice ABI en cada estación de muestreo 24

Lojano Guapacasa – Lucero Mosquera ix

Gráfico 3: Índice ICA en cada estación de muestreo	25
Gráfico 4: Relación entre densidad poblacional y ABI	26
Gráfico 5: Relación entre densidad poblacional y el índice ICA	27

ÍNDICE DE ANEXOS

Anexo1:	Ficha	de	campo	para	la	caracterización	de	la	calidad	física	de
agua											.35
Anexo 2:	Fotogra	fías c	le las est	aciones	s de	muestreo					39
Anexo 3:	Límites	perm	isibles de	e la cali	dad	de agua para los	difere	ente	s usos		48
Anexo 4:	Valoraci	ión de	e la calida	ad del l	nábit	at en arroyos con	pend	dient	es alta		50
Anexo 5:	Estacio	nes	con sus	respec	tivas	s fechas y repetio	ione	s, va	alores de	paráme	etros
físicos-qu	ímicos r	medic	los en ca	mpo y	en la	aboratorio					55
Anexo 6:	Estacio	nes	con sus	respec	ctiva	s fechas y repeti	cione	es, v	alores de	e colifor	mes
fecales IC	A, rang	o ICA	, calidad	ICA y	rang	o ABI					63

Lojano Guapacasa Laura Edelmira Lucero Mosquera Gustavo Adriano Trabajo de Grado Blgo. Edwin Zárate Febrero de 2011

Estado de la calidad físico - químico, bacteriológico y biológico del agua, de la subcuenca del río Santa Bárbara, en una estación climática, cantones Sigsig,

Chordeleg y Gualaceo provincia del Azuay – Ecuador

INTRODUCCIÓN

La demanda por el acceso y consumo de agua es cada vez mayor en el ámbito mundial, por lo que su protección es un tema de interés global; sin embargo su disponibilidad ha disminuido en fuentes subterráneas y superficiales. El acceso al agua de calidad y cantidad permanente es un derecho de toda la humanidad, no obstante, en el mundo hay más de mil millones de personas sin acceso a agua segura para satisfacer sus niveles mínimos de consumo (GWP 2004).

La subcuenca del río Santa Bárbara, es la subcuenca más grande de la cuenca del río Paute (COPOE y UDA 2005), comprende un área aproximada de 94.736 ha. La tasa de deforestación anual entre 1991 y 2001 fue de 5,7%, la más alta de la cuenca del Paute, se deforestaron en 10 años 1.238,28 ha (COPOE y UDA 2005). En esta subcuenca viven alrededor de 76.487 habitantes (INEC 2001), los cuales dependen para sobrevivir directamente del recurso agua que brinda la cuenca para consumo humano y desarrollo de actividades agrícolas.

La subcuenca del río Santa Bárbara, a pesar de presentar una cobertura vegetal de páramo y de vegetación leñosa del 46,1%, presenta zonas de cultivo y de pasto equivalentes al 36,9%, zonas de suelo descubierto de 1,2% es decir 1.111,4 ha, y zonas urbanas y rurales equivalentes al 0,1% es decir de 98,3 ha (COPOE y UDA 2005), las cuales influyen negativamente en la calidad de los recursos naturales de la subcuenca, especialmente en el agua.

En río Santa Bárbara existen algunos problemas de contaminación, los cuales se los puede observar a simple vista, como: minería, ganadería, agricultura, descargas residuales de aguas servidas y desechos sólidos, etc.

Para analizar la perturbación sufrida en las fuentes de agua, tradicionalmente se han utilizado métodos físico-químicos que ofrecen información puntual del estado del agua. En la actualidad, se ha empezado usar el análisis biológico a partir de organismos vivos, el cual brinda información de lo que sucedió días y horas antes de la toma de la muestra. El análisis biológico no remplaza al físico-químico, sino que lo complementa (Cairns y Dickson 1971, Benfield y Niederlehner 1987).

El propósito de este estudio es determinar la calidad del agua de la subcuenca del río Santa Bárbara en los meses de octubre, noviembre y diciembre, siendo una continuación del estudio realizado en "Evaluación de la Calidad de Agua e Integridad Ecológica en la Subcuenca del Río Santa Bárbara" realizado por CGPaute, Proaqua y Universidad del Azuay.

El estudio se basa en el uso de macroinvertebrados como bioindicadores de la calidad del agua, se ha escogido estos bioindicadores, debido a que ocupan un hábitat en las que sus exigencias ambientales están adaptadas a parámetros específicos, estos parámetros se basan en cantidades de oxigeno, niveles de pH, rangos de temperatura y conductividad específicos, los cuales varían por efectos de contaminación. Se recolectaron muestras para realizar los análisis físico-químico y biológico.

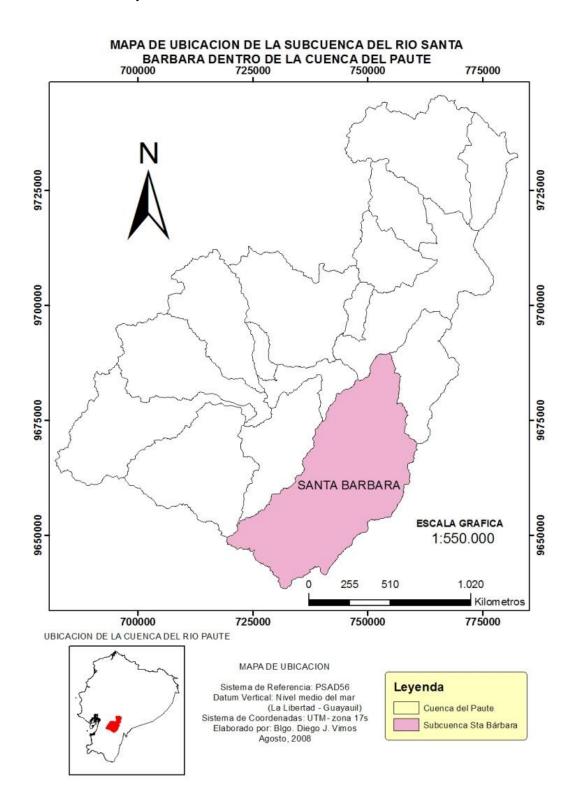
Con los resultados obtenidos de análisis físico-químico y biológico de las muestras colectadas, se realizo un análisis estadístico, las variables de análisis fueron a) el uso de suelo y cobertura vegetal, b) y la densidad poblacional, mientras que las variables de respuesta fueron (I) el índice biológico Andean Biotic Index (ABI; Ríos et al 2006) e (II) Índice de Calidad de Agua (ICA) (Fernández et al 2008).

Antecedentes

En el mes de Enero del 2008 iniciaron las campañas de muestreo en la cuenca hídrica del río Santa Bárbara con el propósito de determinar la calidad del agua a través de parámetros físico – químicos, microbiológicos y bioindicadores (macroinvertebrados bentónicos), en el estudio "Evaluación de la Calidad de Agua e Integridad Ecológica en la Subcuenca del Río Santa Bárbara" realizado por CGPaute, Proaqua y Universidad del Azuay. En este estudio, se incluyeron 28 puntos de muestreo seleccionados con la ayuda de un SIG y luego del análisis espacial de la cuenca los puntos de muestreo se seleccionaron a través de tres criterios: zonas de referencia, zonas ocupadas y utilizadas y salidas de microcuencas y de la subcuenca; en el campo se procuró que las estaciones de

muestreo tengan las mismas características morfo-hidrológicas (mayor heterogeneidad de sustratos, dominancia de medios con corriente moderada y sustrato con piedras pequeñas). Se incorporó, además, 11 puntos sugeridos por CGPaute y Proaqua. Se determinó el estado de la calidad del agua con tres tipos de indicadores: Indicadores Biológicos, Indicadores Morfológicos, Indicadores físico-químicos y microbiológicos.

En el estudio "Diagnóstico preliminar de la influencia del uso del suelo y densidad poblacional sobre la calidad biológica del agua en la subcuenca del río Santa Bárbara" (Vimos, 2008), se realizó un diagnostico de la influencia de los diferentes usos de suelo y cobertura vegetal, así como de la densidad poblacional sobre la calidad de agua en la Subcuenca del Santa Bárbara. Se escogieron 23 puntos de muestreo localizados en cursos agua de zonas con diferentes usos y tipos de cobertura vegetal previamente establecidos en el inventario hídrico realizados por ProAqua y la Universidad del Azuay en el 2008 en esta subcuenca. En cada uno de los puntos de muestreo, se realizo: cálculo del índice de calidad de hábitat, el Índice de Calidad del Agua (ICA), densidad poblacional, tipos de uso de suelo y cobertura vegetal y el cálculo del índice biológico Andean Biotic Index (ABI); al final se analizaron el conjunto de datos a través de un análisis estadístico multivariado (ANOVA).

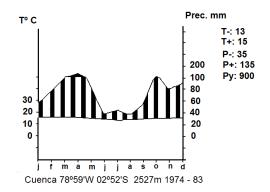

CAPÍTULO I

METODOLOGÍA

1.1. Sitio de estudio

La subcuenca del río Santa Bárbara está ubicada al centro sur de la cuenca del Paute, representado el 14,71% de la superficie total de la cuenca del Paute. Políticamente el 98,4% de la Subcuenca del Santa Bárbara se localiza en la provincia del Azuay y el 1,6% en Morona Santiago; altitudinalmente se encuentra entre los 2220 y los 3750 m s.n.m. (Cg Paute, UDA 2007). La subcuenca está conformada por 8 microcuencas: río San José, río San Francisco, río Gualaceo Alto, río Zhío, río Pamar, río Santa Bárbara, río Boladel y río Gualaceo Bajo (Cg Paute, UDA 2007).

Mapa 1: Ubicación de la subcuenca del río Santa Bárbara en la cuenca del Paute, Provincia del Azuay, Ecuador.



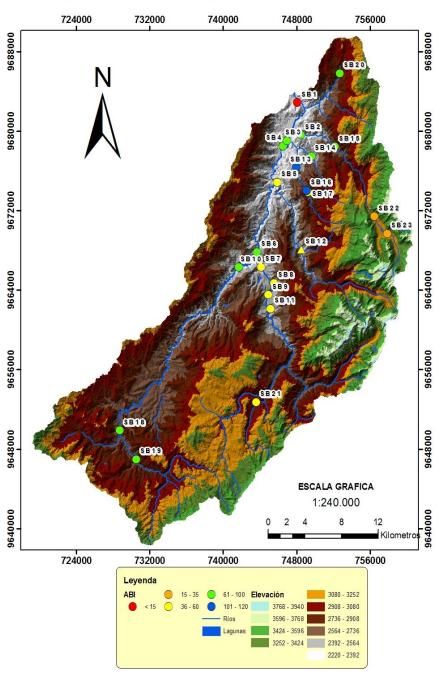
El área de estudio comprende 3 cantones Sigsig, Chordeleg y Gualaceo que pertenecen a la provincia del Azuay. Comprende un área de 94 411.4 ha, con altitudes que van desde los 2300 hasta los 3500 m.snm.

Precipitación media

La precipitación media anual dentro de la subcuenca está establecida por los cambios en la zona de convergencia intertropical (ZCIT), se tiene una distribución bimodal de las lluvias, y dos períodos secos durante el año (Jorgensen et al. 1999). Un periodo seco menos pronunciado es discernible en la mayoría de sitios durante enero (Jorgensen et al.1999). **Gráfico 1**: periodos de fuertes lluvias que ocurren durante marzo - abril y de nuevo en octubre (Jorgensen et al. 1999).

Gráfico 1: Representa el diagrama climático de Walter. La escala de la izquierda es la temperatura promedio mensual en grados Célcius; la escala de la derecha es la precipitación promedio mensual en milímetros, los meses del año de enero a diciembre se indican abajo. Los símbolos de la derecha del diagrama para valores promedio: (T-), temperatura mínima mensual; (T+), temperatura máxima mensual; (P-), precipitación mínima mensual; (P+), precipitación máxima mensual; (Py), precipitación anula.

Fuente: VIMOS Diego. 2004. Bio-evaluación rápida de las principales fuentes de agua de 14 parroquias del cantón Cuenca, en la cuenca alta del río Paute. Trabajo de graduación presentado como exigencia parcial para obtener el título de biólogo. Cuenca Ecuador.


Determinación de las estaciones de muestreo

Los sitios de muestreo fueron establecidos por el programa ArcHydro realizado por la Universidad del Azuay en convenio con la Fundación ProAqua, las cuales son determinadas por factores en los que se toma en cuenta la capa hidrográfica y flujo de agua por la condición del terreno. Las estaciones son goereferenciadas con la ayuda de GPS. A más de ello se establecieron cuatro criterios de selección: Primero se seleccionaron los puntos de salida de la subcuenca donde se puede medir la mayor cantidad de contaminación. Segundo se identificaron cuerpos de agua en zonas altas, para tratar de encontrar ríos o riachuelos no afectados, con la intención de que sirvieran como puntos de referencia de la integridad biológica

natural. Tercero se ubicaron varios puntos de muestreo en brazos de río o zonas intermedias donde se identificó actividades con potencial de contaminación y río-abajo de los centros poblados principales. Y cuarto la accesibilidad a los puntos fue el factor final para la ubicación real, los mismos que fueron registrados con GPS para el ingreso de estos al SIG, manteniendo los mismos códigos (Zárate, E. 2008).

Mapa 2: Subcuenca del río Santa Bárbara y ubicación puntos de muestreo.

Tabla 1: Estaciones de muestreo con sus coordenadas GPS, georeferenciadas y su altitud Zárate, E. et al 2008

Código	Altitud	Longitud	Latitud	Cantón	Parroquia	Localidad
066	2447	747957	9676380			La Unión
068	2464	749645	9677448	leg		Cuchil
067	2600	749025	9674106	Chordeleg	La Unión	El Quinche
SB15	2248	746269	9678137		Gualaceo	La Unión
058	2226	748060	9682960			Gualaceo – Salida
065	2245	746510	9678516		La Unión	Gualaceo
063	2577	752160	9678481		Luis Cordero Vega	Shur
SB3	2740	752566	9685756		Mariano Moreno	Mariano Moreno
061	3184	757878	9669696		Principal	Mailas
064	2252	748439	9679687		Remigio Crespo Toral	Gualaceo
SB2	2271	745890	9674898		San Juan	Vía Chordeleg
060	2229	746923	9679101	0 0	Unión	Gualaceo
062	3160	756397	9671419	Gualaceo	San Martín de Puzhio	Mailas
SB8	2408	745106	9662310		Cuchil	Playas de Zhingate
SB5	2624	728713	9649895		Gima	Tarapzha
SB1	2454	745516	9664770		Güel	Descanso
SB4	2779	743685	9652806		Ludo	Ludo
SB11	2328	742729	9666655		Pamar	Pamar Chacrín
SB12	2431	744942	9661573		Zhingate	Playas de Zhingate
SB9	2307	743631	9667803	Sigsig	San Bartolomé	La Unión

1.2. Trabajo de campo

Caracterización biológica y físico-química de los ríos.

Muestreo de Macrobentos

Las tomas de muestras de los macroinvertebrados fueron recolectadas utilizando la metodología de ROLDÁN (2003) modificada. Se dispuso una red de mano en contra de la corriente y a su vez se removió el fondo para capturar los macroinvertebrados presentes, con una malla de proporciones de 1 m2, ojo de malla de 0.5 mm y 2 m2 de muestreo. Seguidamente se procedió a procesar el material recolectado sobre un cernidero, se recogieron los organismos adheridos a piedras, ramas, hojas y otros objetos que había en el lugar. Las muestras se guardaron en recipientes con alcohol a los 90%, debidamente rotulados y refrigerados.

En el presente estudio se identificaron los especímenes a nivel taxonómico de familia; este taxón es utilizado para la elaboración de los índices que permiten evaluar la calidad biológica del agua, La clave taxonómica utilizada fue: Roldán (1996, 2003).

Los libros utilizados para la identificación de los macroinvertebrados bentónicos son: Roldán (1996) (2003), y Dominguez, et al (1994).

Determinación de parámetros físico-químicos y bacteriológicos.

En cada estación se midió variables físico – químicas in situ como son: conductividad, pH, oxígeno y la temperatura. Se procedió a tomar un frasco de 2 litros de muestras de agua superficial para el análisis físico – químico u microbiológico de laboratorio. También se recolecto agua superficial en frascos de 500 ml para los análisis microbiológicos. Los frascos fueron colocados en hieleras para la conservación de las muestras sobre todo en los de las muestras microbiológicas, para luego ser llevados a laboratorio.

Determinación de caudales.

Se midió los siguientes Indicadores Morfológicos: régimen de caudales, condiciones morfológicas (relaciones de anchura, profundidad, ribera). El caudal se midió por medio del método del flotador que es la velocidad aproxima del flujo en un canal o río y el caudal puede ser determinado con el uso de flotadores. Las mediciones de

velocidad superficial del flotador deben corregirse multiplicando por los siguientes coeficientes:

Tabla 2. Coeficientes de corrección de la velocidad superficial del flotador a velocidad media del canal.

Profundidad media en el tramo (cm)	Coeficiente
30	0.66
61	0.68
91	0.70
122	0.72
152	0.74
183	0.76
274	0.77
366	0.78
457	0.79
> 610	0.80

La fórmula del caudal es:

c = d.a.p.k/t

Donde:

d = distancia (2, 3 o más metros)

a = ancho

p = profundidad

k = constante (0.8 canales rugosos y 0.9 canales lisos)

t = tiempo

El tiempo se obtendrá con el recorrido del flotador en una distancia fijada, con un promedio de 5 a 9 repeticiones.

Caracterización física del ecosistema del río.

Se utilizó una ficha para la caracterización física del ecosistema del río, la misma que se muestra en el Anexo 1. Dicha ficha incluye una sección de caracterización física y una sección de evaluación de la calidad del hábitat. Los datos de caracterización incluyen:

- Datos generales; nos indica la ubicación geográfica de la estación.
- Condiciones del clima; se observa si ha existido lluvias en los últimos días y las condiciones de ese momento.
- Caracterización del arroyo; la mayoría fueron perennes o permanentes y alimentados por un afluente.
- Caracterización de la cuenca del río; se hace un análisis del tipo de uso que existe en los alrededores del río.
- Vegetación ribereña; se observa la vegetación predominante, siendo recomendable hasta los 18 metros.
- Características del arroyo; se mide el caudal, se observa los tipos de corrientes y la cobertura del dosel sobre el río.
- Vegetación acuática.
- Calidad del agua; son mediciones físicas, químicas in situ y observaciones de algún tipo de contaminación.
- Sedimento substrato; se aprecia si existe algún tipo de contaminación del sedimento.
- Componentes de substrato inorgánicas y orgánicas; los cuales se describe el tipo de substrato inorgánico y orgánico dominante.

1.3. Trabajo de laboratorio

Se analizaron las variables físico – químicas en el laboratorio de análisis químico de La Universidad del Azuay.

1.4. Análisis de datos

Índices biológicos

Los índices biológicos son métodos empleados para medir los cambios estructurales que se presentan en la variación de la riqueza de especies y/o el número de individuos/especies, generando estos una idea aproximada del estado en que se encuentra el ecosistema estudiado. Se han desarrollado muchos de estos llamados índices, pero los más utilizados son los Índices de Diversidad, y los Índices Bióticos; estos últimos están basados en el nivel de tolerancia de organismos a diferentes grados de contaminación del agua. Para determinar la calidad biológica del agua se utilizó el **índice Andean Biotic Index (ABI)**, el cual relaciona la presencia o ausencia de grupos de organismos identificados hasta el nivel taxonómico de familia y su nivel de tolerancia a la contaminación hídrica. Permite determinar una escala de valores para la comunidad en estudio y resume los puntajes en categorías de calidad ambiental. El ABI se tiene categorías de significación.

Tabla 3. Clases de calidad de agua según el índice ABI

Clase	Valor	Significado	Color
ı	>120	Aguas muy limpias Aguas no contaminadas o no alteradas de modo sensible	Azul
II	61 – 100	Son evidentes algunos efectos de contaminación	Verde
III	36 – 60	Aguas contaminadas	Amarillo
IV	16 – 35	Aguas muy contaminadas	Naranja
V	< 15	Aguas fuertemente contaminadas	Rojo

Tabla 4: Puntaje de las familias según el índice ABI

Phylum	Clase	Orden	Familia	Puntuaciones
				del índice ABI
Annelida	Hirudinea	Glossiphoniiformes		3
	Oligochaeta	Haplotaxida F y G		1
Mollusca	Gasteropoda		Physidae	3
Platyhelminthes	Turbellaria	Tricladia	Planaridae	5
Artropoda	Aracnida	Acari	Hydrachnidae	4
	Crustacea	Amphipoda	Gammaridae	6
	Insecta	Coleoptera	Elmidae	5
			Psephenidae	5
			Scirtidae	5
		Diptera	Blepharoceridae	10
			Ceratopogonidae	4
			Chironomidae	2
			Empididae	4
			Simuliidae	5
			Tabanidae	4
			Tipulidae	5
		Ephemeroptera	Baetidae	4
			Leptohyphidae	7
			Leptophlebiidae	10
		Plecoptera	Perlidae	10
		Trichoptera	Calamoceratidae	10
			Helicopsychidae	10
			Hydrobiosidae	8
			Hydropsychidae	5
			Hydroptilidae	6
			Polycentropodidae	8
			Xiphocentronidae	8

Métodos utilizados para análisis físico - químicos.

Los métodos utilizados para los análisis Físico-químicos pueden agruparse en cuatro categorías, tomando en cuenta el tipo de equipo utilizado. Éstas son: Métodos espectrofotométricos, Electroquímicos/Potenciométricos, Amperométricos y Cromatográficos. Standard Methods for the Examination of Water and Wastewater (American Public Health Association, 1985)

El método de análisis microbiológico utilizado fue el denominado "Técnicas Estandarizadas de Fermentación en Tubos Múltiples (NMP)".

Determinación del índice de calidad de agua (ICA)

Para la determinación del ICA comúnmente se utiliza nueve parámetros, en el presente estudio debido a la falla de algunos equipos se adapto el ICA para la utilización de siete parámetros que son los siguientes:

- Coliformes Fecales (en NMP/100 mL)
- pH (en unidades de pH)
- Demanda Bioquímica de Oxigeno en 5 días (DBO5 en mg/ L)
- Nitratos (NO3 en mg/L)
- Fosfatos (PO4 en mg/L)
- Cambio de la Temperatura (en °C)
- Turbidez (en UTN)

Para calcular el ICA en el presente estudio se utilizo la siguiente fórmula:

$$ICA_a = \sum_{i=1}^{9} \left(Sub_i * w_i \right)$$

Los pesos asignados a los parámetros fueron de acuerdo a la importancia sobre la influencia en la calidad de agua, estos se describen en la tabla 3.

Tabla 5.- Pesos relativos para cada parámetro del ICA

Ī	Subi	Wi
1	Coliformes Fecales	0.20
2	рН	0.16
3	DBO5	0.133
4	Nitratos	0.133
5	Fosfatos	0.133
6	Temperatura	0.133
7	Turbidez	0.107

Fuente: Adaptado de Fernández et al 2008

Subi: Subíndice del parámetro (i) de acuerdo a la importancia sobre la influencia en la calidad de agua.

wi: Pesos relativos asignados a cada parámetro (Subi), y ponderados entre 0 y 1, de tal forma que se cumpla que la sumatoria sea igual a uno.

Para poder asignar los pesos de cada parámetro, primero se realizo una sistematización y calibración de los datos utilizando las curvas matemáticas para cada uno de los parámetros propuestas por Brown (1970), la calibración utilizando las curvas permite apreciar la calidad de cada parámetro en una escala de 0 a 100, el valor obtenido de la calibración se multiplicó por el peso propuesto en la tabla 3 para cada parámetro,

El ICA adopta para condiciones óptimas un valor máximo determinado de 100, que va disminuyendo con el aumento de la contaminación o alteración del curso de agua en estudio. Posteriormente al cálculo el índice de calidad de agua de tipo General se clasifica la calidad del agua con base a la siguiente tabla:

Tabla 6. Clasificación del ICA propuesto por Brown (1970).

CALIDAD DEL AGUA	COLOR	VALOR
Excelente	Azul	91 a 100
Buena	Verde	71 a 90
Regular	Amarillo	51 a 70
Mala	Anaranjado	26 a 50
Pésima	Gris	0 a 25

Fuente: Fernández et al 2008

Caracterización de los usos de suelo y cobertura vegetal.

Los sitio de muestreo fueron previamente establecidos por la Universidad del Azuay en convenio con la Fundación ProAqua, en base a tres criterios: zonas de referencia de contaminación, zonas ocupadas y/o utilizadas, y salida de microcuencas y de la subcuenca (CG- Paute et al 2008). Aquí se realizó un levantamiento de los principales usos de suelo y cobertura vegetal existentes alrededor del punto de muestreo. Los sitios fueron clasificados en 14 grupos de acuerdo a la proporción de la cobertura del suelo que presentaron, se tiene una descripción en el siguiente mapa y su respectiva tabla.

Mapa 3: Cobertura vegetal de la Subcuenca del río Santa Bárbara

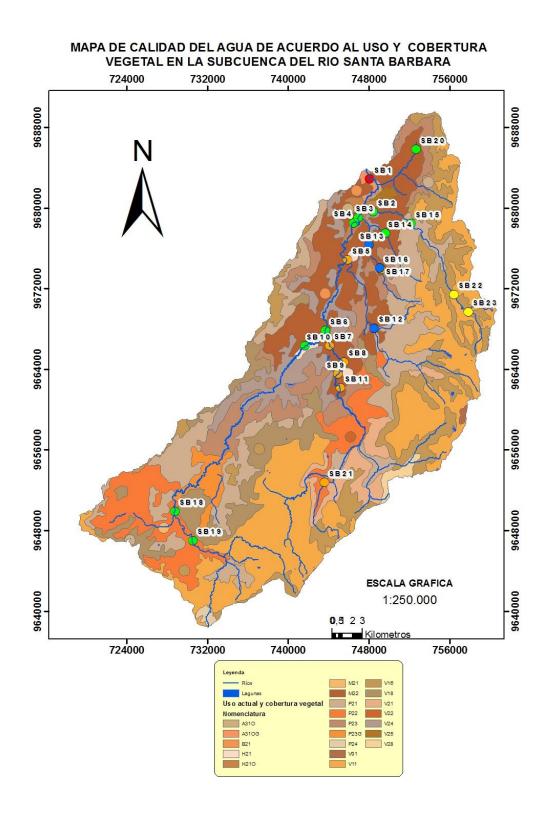


Tabla 7. Caracterización de los usos de suelo y cobertura vegetal.

NOTACION	CRITERIOS
С	Son zonas exclusivamente de cultivos
CPOSD	Son zonas con predominio de cultivos, con áreas de población y suelo desnudo
CSDM	Son zonas en donde dominaba cultivos, seguido por suelo desnudos, mosaico y vegetación leñosa (árboles, arbusto y chaparros, con especies nativas y endémicas)
СМ	Son zonas con predominio de cultivos y con algunos mosaicos (mezcla de vegetación, cultivos, pastos y asentamientos humano no diferenciados)
CSD	Son zonas con predominio de cultivos y con suelo desnudos
CV	Son zonas con predominio de cultivos y vegetación leñosa (áreas con presencia de árboles, arbusto y chaparros, con especies nativas y endémicas)
M	Son zonas exclusivamente de mosaicos (mezcla de vegetación, cultivos, pastos y asentamientos humano no diferenciados)
MCSD	Son zonas con predominio de mosaicos (mezcla de vegetación, cultivos, pastos y asentamientos humano no diferenciados), y presenta también cultivos y suelos desnudo
MC	Son zonas con predominio de mosaico (mezcla de vegetación, cultivos, pastos y asentamientos humano no diferenciados) y con cultivos
MV	Son zonas con predomidio de mosaico (mezcla de vegetación, cultivos, pastos y asentamientos humano no diferenciados) y vegetación leñosa (áreas con presencia de árboles, arbusto y chaparros, con especies nativas y endémicas)
PA	Son zonas exclusivamente de páramo
PT	Son zonas exclusivamente de pastos
SDM	Son zonas con predominio de suelos desnudos y con mosaicos (mezcla

de vegetación, cultivos, pastos y asentamientos humano no diferenciados)

Son zonas exclusivamente de vegetación leñosa (árboles, arbusto y chaparros, con especies nativas y endémicas)

Fuente: CG-Paute, UDA.Mapa de uso de suelo y cobertura vegetal.2007.Cuenca.Ecuador.

Caracterización de la densidad poblacional

Se utilizó el censo del año 2001 del INEC y se estableció rangos de abundancia de: muy bajo, bajo, medio, alto y muy alto para determinar la densidad poblacional por cada parroquia que se encuentran dentro de la subcuenca del río Santa Bárbara.

Mapa 4: Densidad poblacional de la Subcuenca del río Santa Bárbara

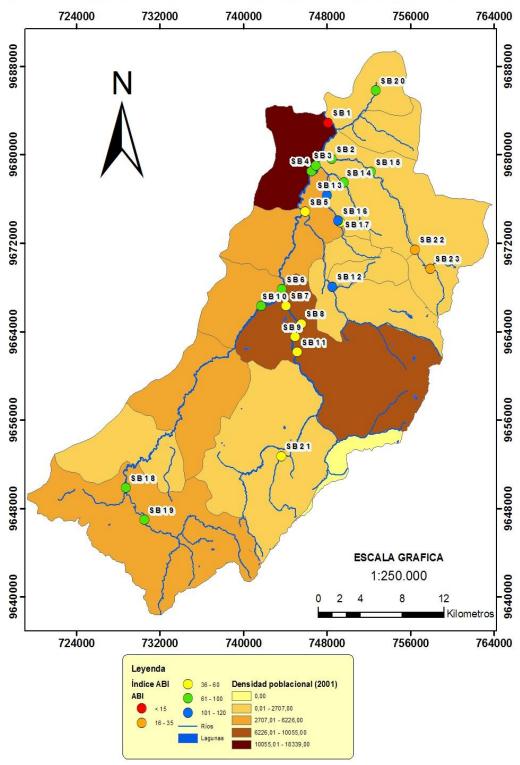


 Tabla 8.
 Densidad poblacional encontrada en cada una de las estaciones.

ESTACIONES	DE	DENSIDAD	NUMERO	DE	HABITATES
MUESTREO		POBLACIONAL	CERCANOS A	LA EST	ACIÓN
SB21		MUY BAJO	1592		
SB22		MUY BAJO	2037		
SB23		MUY BAJO	2037		
SB20		BAJO	2707		
SB12		BAJO	2839		
SB14		BAJO	3019		
SB18		BAJO	3226		
SB19		BAJO	3226		
SB2		BAJO	3434		
SB15		BAJO	3434		
SB13		MEDIO	5478		
SB16		MEDIO	5478		
SB17		MEDIO	5478		
SB7		ALTO	10055		
SB8		ALTO	10055		
SB9		ALTO	10055		
SB11		ALTO	10055		
SB5		ALTO	11704		
SB6		ALTO	13436		
SB10		ALTO	13436		
SB3		MUY ALTO	19736		

SB1	MUY ALTO	21046
SB4	MUY ALTO	23817

Análisis estadístico:

Se utilizó el programa estadístico Statistica (StatSoft, Inc, 2000) para establecer la influencia en la calidad biológica del agua, se realizo un análisis estadístico con la información obtenida del análisis físico-químico y biológico de las muestras colectadas; las variables de análisis fueron el uso de suelo y cobertura vegetal, la densidad poblacional, y la calidad del hábitat, mientras que las variables de respuesta fueron el índice biológico Andean Biotic Index (ABI; Ríos et al 2006) y el Índice de Calidad de Agua (ICA). Se realizó un análisis de Varianza (ANOVA) con un p = 0,05 debido a que los datos no presentaron normalidad, se establecieron los datos entre rangos y se compara entre varios grupos; luego se aplico el test a posteriori de Duncan, que nos permite identificar los grupos con mayor influencia en la calidad biológica del agua. También se hizo un análisis de correlación de Pearson entre la calidad biológica del agua con la calidad físico, química y bacteriológica,

Los organismos recolectados en el campo van a ser llevados al laboratorio de la UDA para su respectiva identificación, en la cual se llegó hasta familia.

CAPÍTULO II

RESULTADOS Y DISCUSIONES

2.1. Influencia del uso de suelo y cobertura vegetal sobre la calidad biológica del agua (ABI)

El promedio del índice biológico de calidad de agua ABI no varió en función del *uso* de suelo y cobertura vegetal de los sitios donde se localizaban las estaciones de muestreo (F = 0.895471; P = 0.558662). No existe una diferencia significativa entre las estaciones, por lo tanto el índice de calidad de agua ABI es bastante similar en todas las estaciones.

Tabla 9. Influencia del uso de suelo/cobertutra vegetal en el ABI

	Df	MS	Df	MS		
	Effect	Effect	Error	Error	F	p-level
1	9	226,608459	11	253,060608	0,8954711	0,558662

Se tiene una calidad biológica de aguas contaminadas en la estación SB1 con un ABI de 33, esto se debe a de géneros Chironomidae y Anélidos, los cuales son grupos tolerantes a la contaminación (Roldán 1996), 10 estaciones se encuentran en la categoría III "Aguas contaminadas", 10 estaciones se encuentran en la categoría II "Son evidentes algunos efectos de contaminación".

Debemos manifestar que los muestreos (octubre a diciembre) fueron realizados e, hubo lluvias fuertes, lo que pudo influir en los resultados, por lo que se debe hacer una nueva recolección de estos para su comprobación y ampliación de in formación.

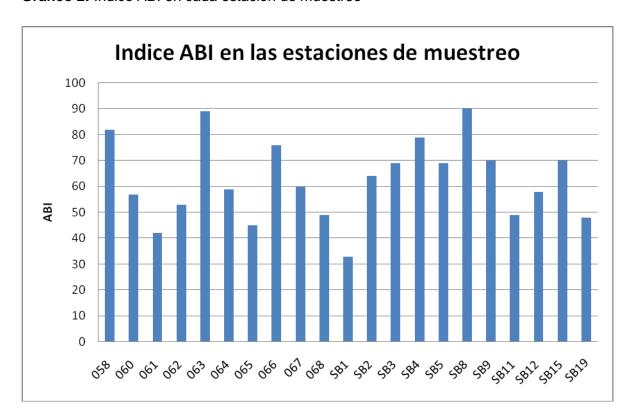


Gráfico 2: Índice ABI en cada estación de muestreo

2.2. Influencia del uso de suelo y cobertura vegetal sobre el índice de calidad de agua (ICA)

El promedio del índice físico-químico y bacteriológico de calidad de agua ICA no fue similar para los usos de suelo y cobertura vegetal en los sitios donde se localizaban las estaciones de muestreo (F=4.519189; P=0.010965). Lo que indica que existe influencia de uso de suelo y cobertura vegetal sobre la calidad de agua, pues al contrastarlos con los resultados del análisis del ABI, vemos que estos si evidenciaron influencia del uso de suelo cobertura vegetal sobre la calidad del agua.

Tabla 10. Influencia del uso de suelo/cobertutra vegetal en el ICA

	Df	MS	Df	MS		
	Effect	Effect	Error	Error	F	p-level
1	9	72,92328	11	16,13636	4,519189	,010965

Las estaciones que se ven menos afectadas por la contaminación son la 061 y 062, con un ICA de 84 y 74, lo que les cataloga con un rango de buena calidad, con las siguientes estaciones el ICA se establece como calidad media.

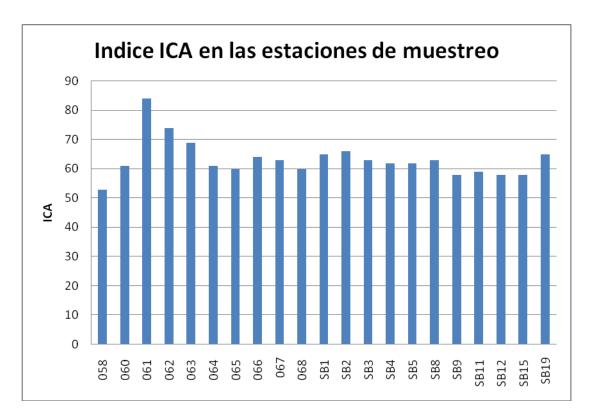


Gráfico 3: Índice ICA en cada estación de muestreo

Cabe mencionar que casi en la totalidad de los parámetros físico-químicos medidos se encuentran dentro de los niveles permisibles de los criterios de calidad de agua del Texto Unificado de la Legislación Ambiental Secundaria (TULAS) del Ministerio del Ambiente del Ecuador del Libro VI.

Uno de los parámetros que se encuentran fuera de los límites permisibles es el Mg, en las estaciones 063, 064, 068 presentan un valor promedio de 2,34 ppm. La estación SB3 presenta un valor promedio de 4,9 ppm.

El límite de Al establecido es de 0,1 mg/l, las estaciones 060, 062, 063, SB1, SB3 presentan valores ligeramente superiores al límite.

El limite permisible de turbiedad para el consumo humano es de 100, en las estaciones 061 (segundo muestreo), 063 (segundo muestreo), 068 (tercer muestreo), SB2 (tercer muestreo), SB4 (primer muestreo) presentas valores superiores al permitido.

En cuanto a la demanda bioquímica de oxigeno 13 estaciones presentas valores permisibles (2 ppm para consumo humano). El aumento de la DBO, al igual que la DQO ocasiona disminución del oxígeno disuelto, afectando la vida acuática. La putrefacción de la materia orgánica en el agua produce una disminución de la cantidad de oxígeno (la cual es evaluada mediante la Demanda Bioquímica de Oxígeno,DBO) que causa graves daños a la flora y fauna acuática, pero que desaparece al término del proceso de putrefacción.

En todas la estaciones hay un promedio de 0,23 mg/l de Cu, es decir sobrepasa el límite permisible para el uso del agua para la Flora y fauna (valor limite 0,02 mg/l).

2.3. Influencia de la densidad poblacional sobre el índice de la calidad biológica del agua (ABI)

El promedio del índice biológico de calidad de agua ABI no varió en función de la densidad poblacional humana de los sitios donde se localizaban las estaciones de muestreo (F = 164164, P = 0.953477). Los resultados sugieren que la densidad poblacional humana no influye en la calidad biológica del agua.

Gráfico 4: Relación entre densidad poblacional y ABI

2.4. Influencia de la densidad poblacional sobre el índice de la calidad del agua (ICA)

El promedio del índice físico-químico y bacteriológico de calidad de agua ICA si fue diferente para una de las densidades poblacionales de los sitios donde se

localizaban las estaciones de muestreo (F =4.376487, P =0.014005). Esto es debido a la alta densidad humana que existe en las zonas bajas de la subcuenca.

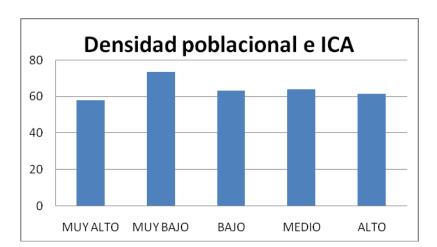


Gráfico 5: Relación entre densidad poblacional y el indide ICA

En cuanto a los parámetros microbiológicos como los coliformes totales (valor permisible para el consumos humano 3000 NMP, para uso pecuario debe tener un promedio mensual de 5000 NMP y para uso recreativo 1000 NMP) y fecales (valor permisible para el consumos humano 600 NMP, 200 NMP para flora y fauna, para uso agrícola 1000 NMP, para uso pecuario menor a 1000 y para uso recreativo 200 NMP), en la mayoría de las estaciones sobrepasan los límites permisibles.

Solo las estaciones 060, 061, 062, 063, 067 se encuentran dentro de los parámetros permitidos en cuando a coliformes totales y únicamente las estaciones 061, 062, 067 presentan valores promedios que se encuentran dentro de los límites permisibles. Únicamente la estación 061 coincide con el estudio realizado en "Evaluación de la calidad de agua e integridad ecolólogica en la subcuenca del río Santa Bárbara"

CONCLUSIONES Y RECOMENDACIONES

Conclusiones

En este estudio se pudo evidenciar como, el uso del suelo y cobertura vegetal y la densidad poblacional, influyen sobre la calidad del agua de los ríos en la subcuenca Santa Bárbara. Esta influencia pudo ser detectada con el índice físico-químico y bacteriológico de calidad de agua (ICA), mientras que con el índice calidad biológica del agua (ABI) no se evidenció la influencia. Estos resultados no coinciden con los encontrados en "Diagnostico preliminar de la influencia del uso del suelo y densidad poblacional sobre la calidad biológica del agua en la subcuenca del río Santa Bárbara" (Vimos, 2008), en el cual dice que la influencia pudo ser detectada con el índice de calidad biológica del agua (ABI), mientras que con el índice físico-químico y bacteriológico de calidad de agua (ICA) no se evidencio la influencia, posiblemente por los altos niveles de precipitación que ocurrieron en la época de muestreo (Enero – Mayo, 2008). En el presente estudio a pesar de las lluvias fuertes se tuvo un ICA que evidencia que el uso del suelo y cobertura vegetal y la densidad poblacional, influyen sobre la calidad del agua de los ríos en la subcuenca Santa Bárbara.

Estos resultados pueden haber variado por:

- En los meses anteriores al periodo de muestreo se presentaron alteraciones meteorológicas que no permitieron un agosto soleado, con vientos de moderados a fuertes característicos de años anteriores, estas condiciones inusuales continuaron durante el resto de verano (Inamhi, agosto 2008), y en octubre se registró niveles de lluvias superiores, que oscilaron entre un 110 y 190 por ciento adicional a lo esperado (Inamhi, octubre 2008). Según el Inamhi en el año 2008, ha habido variaciones record en parámetros de precipitaciones (incluido la zona austral) y de temperatura (especialmente en la zona central de la sierra).
- Por apresiación personal de los autores suponemos que al ser un año de abundante pluviosidad, lo que pudo influir que los macroinvertebrados sean arratrados, teniendo como resultado una muestra pobre en cantidad y variedad de individuos.
- En otros estudios realizados los macrobentos son organismos de carácter ectortérmico, desarrollan ciclos biológicos altamente dependientes de la

temperaturas, por lo que es de esperar, que las alteraciones de esta variable afecten a las poblaciones y a las comunidades que habitan los ríos, en algunos casos de forma desastrosa, ya que estos cambios, generados por el hombre, tiene lugar a un tasa mucho mayor que si ocurrieran de forma natural (Teira Bárbara, 2003).

- Por otra parte según E. Domínguez y H.R. Fernández, 2007, los métodos similares al BMWP y las adaptaciones para diversos países, deben aplicarse con cautela ya que la generalización de valores de tolerancia para las diferentes familias a todo América del Sur puede dar lugar a errores importantes en su utilización, dada la amplitud de ambientes del continente (altitud, temperatura, latitud, ecoregiones, etc.) es imposible una generalización del método y debe estudiarse con cierto detalle la distribución de las diferentes familias implicadas.
- Calles L. 2008, dice que el Ecuador aun no cuenta con un índice desarrollado para las condiciones únicas del país, se necesita construir uno o varios índices que se adapten a las diferentes condiciones geográficas del país 0-6300 m.s.n.m., además se necesitan más investigaciones sobre la biología de los organismos a usarse como bioindicadores.
- En cuanto al indice ICA hay una relacion de las estaciones que se encontraban en la zona de páramo, mostrandonos una calidad buena, frente a la calidad media del resto de estaciones, esto se encuentra ligado al tipo de cobertura vegetal y densidad poblacional que existe cerca de las estaciones, estos resultados sugieren que la calidad del hábitat tiene estrecha relación con la vegetación riparia que es uno de los principales componentes para mantener un ecosistema acuático con calidad biológica saludable, ya que permite remover y retener cualquier tipo de contaminante de la escorrentía superficial (Schultz et al 2004 en Auquilla 2005, Granados-Sánchez et al 2005).
- Según los parámetros fisicos-químicos y microbiológicos poseen menos sintomas de estrés son las estaciones 061 y 062
- A pesar de los resultados encontrados los bioindicadores y los índices biológicos son una herramienta útil y económica para complementar los sistemas de monitoreo de la calidad del agua tradicionales (fisicoquimicos). La información generada es clave en la determinación de

caudales ecológicos, lo que puede indicarnos los niveles de autorecuperación de un río y se puede implementar en el Ecuador como una herramienta en la gestión de los recursos hídricos.

Recomendaciones

- Si bien no podemos concluir que las alteraciones atmosféricas suscitadas en el 2008 sean responsables de los resultados encontrados en cuanto al ABI, se recomienda realizar un monitoreo durante varios años de la Subcuenca del río Santa Bárbara, a partir de la medición de parámetros físicos, químicos y biológicos con muestreos en diferentes períodos, que permitan evaluar la calidad del agua del río de acuerdo a la influencia natural o antropogénica de las zonas.
- Debido a que no existen valores de tolerancia para los macroinvertebrados indicadores de calidad del agua para nuestra región, se recomienda que los futuros trabajos vayan encaminados a la elaboración de un índice biológico que facilite los trabajos de monitoreo.
- Realizar programas de educación ambiental, los cuales busquen promover las alianzas comunitarias y el sentido de apropiación de los habitantes y visitantes de la microcuenca del Santa Bárbara, por medio de procesos participativos, en los cuales pueden intervenir las instituciones estratégicas, además de instituciones educativas; facilitando de esta forma el acceso a bienes y servicios de información referente al recurso, además de la participación en planes, programas y proyectos para el mejoramiento y conservación de esta microcuenca.
- Realizar un monitoreo participativo dirigido a Comunidades, lo cual genera información útil para manejo a nivel comunitario lo que da información general, y a la par realizar un monitoreo especializado a través de organizaciones estatales y universidades lo que genera información detallada y recopila mayor información.
- Implementar programas de mejoramiento para las condiciones biofísicas y restauración de las zonas más alteradas de la microcuenca del Santa Bárbara, con el propósito de propender la conservación, protección y aprovechamiento sostenible del recurso agua, planes de reforestación con especies nativas, entre otros; lo cual lleva consigo la participación

comunitaria en estas actividades, incentivando así la interacción entre el medio ambiente y la sociedad.

BIBLIOGRAFÍA

Referencias bibliográficas

- AMERICAN PUBLIC Health Association, 1985. Standard Methods for the Examination of Water and Wasterwater. 16th Ed. APHA, Washington, D.C.
- BARBOUR, M.T., and J.B. Stribling. 1991. Use of habitat assessment in evaluating the biological integrity of stream communities. In George Gibson, editor. Biological criteria: Research and regulation, proceedings of a symposium, 12-13 December 1990, Arlington, Virginia. Office of Water, U.S. Environmental Protection Agency, Washington, D.C. EPA-440-5-91-005.
- BARROS S. 2007. Estudio del ecosistema acuático en los ríos Tomebamba y Yanuncay aguas arriba de las captaciones para la ciudad de Cuenca. ETAPA. Dirección de Gestión Ambiental. Ecuador.
- BARROS S. 2007b. Evolución de la calidad del agua de los tramos bajos de los ríos de la ciudad de Cuenca. ETAPA. Dirección de Gestión Ambiental. Ecuador.
- O BURAU D. 1997. Concentración de Metales en el Factor Biótico y Abiótico del Río Machángara y utilización del Factor Biótico como indicador de la Calidad del Agua. Universidad del Azuay. Facultad de Ciencia y Tecnología. Escuela de Biología. Tesis de Grado. Ecuador.
- CARRASCO M. 1996. Estudio limnológico y de macroinvertebrados bentónicos en la zona de Surrocucho, Área Nacional de Recreación. Universidad del Azuay. Facultad de Ciencia y Tecnología. Escuela de Biología. Tesis de Grado. 61 p. Ecuador.
- CG- PAUTE 2008. Plan Maestro de la Cuenca de Río Paute. Escala 1:450.000. Mapa de Calidad de Agua. Proyección Universal Transversal de Mercator UTM. Dato Horizontal PSAD56, Dato Vertical Nivel Medio del Mar. Consejo de Gestión de Aguas de la Cuenca del Río Paute, 2008. Cuenca, Ecuador. Elaborado por: Consorcio GHI, IBERINSA, CAMINOSCA, 2007. Cuenca, Ecuador.

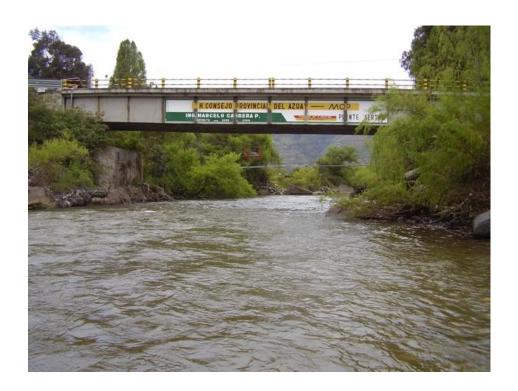
- CG- PAUTE y UDA. 2003b. Subcuencas hidrográficas de la Cuenca del Río Paute, año 2001. Escala 1:50.000. Cuenca, Ecuador.
- CG-PAUTE, UDA. 2007. Cobertura Vegetal de la Cuenca del Río Paute, año 2001. Escala 1:50.000. Cuenca, Ecuador.
- CISNEROS R., Espinosa C. 2001. Evaluación de la calidad del agua en los ríos Zamora Huayco, Malacatos y Zamora Loja – Ecuador: Un modelo de biomonitoreo. Trabajo de graduación previo a la obtención del título de Biólogo. Universidad del Azuay. Facultad de Ciencia y Tecnología. Escuela de Biología del Medio Ambiente. Ecuador.
- COPOE, UDA 2005. Caracterización territorial de las subcuencas de los ríos: Collay, Cuenca, Jadán, Juval, Magdalena, Mazar, Paute, Pindilig, Púlpito y Santa Bárbara pertenecientes a la cuenca hidrográfica del río Paute mediante imágenes satélite. UDA. IERSE. 58 p. Ecuador.
- DOMÍNGUEZ E., H. Fernández. 2001. Guía para la Determinación de los Artrópodos Bentónicos Sudamericanos. Editorial Universitaria de Tucumán. Universidad Nacional de Tucumán. Tucumán. Argentina. 282 p.
- INSTITUTO NACIONAL DE ESTADÍSTICA y Censos. 2001. Censo de Población y Vivienda. Ecuador.
- MAE (Ministerio del Ambiente del Ecuador). 2002. Texto Unificado de Legislación Ambiental Secundaria (TULAS). Libro VI. ANEXO I.
 Norma de Calidad Ambiental y de Descarga de Efluentes: Recurso Agua. Ecuador.
- MALDONADO P. 1998. Biomonitoreo de la calidad del agua del río Tomebamba, mediante el uso de macroinvertebrados bénticos.
 Universidad del Azuay. Facultad de Ciencia y Tecnología. Escuela de Biología. Tesis de Grado. Ecuador.
- ROLDÁN G. 1996. Guía para el estudio de los macroinvertebrados acuáticos del Departamento de Antioquia. Fondo Fen Colombia / Colciencias / Universidad de Antioquia. Antioquia. Colombia. 217p.

- VIMOS D. 2004. Bio-evaluación rápida de las principales fuentes de agua de 14 parroquias del cantón Cuenca, en la cuenca alta del río Paute. Trabajo de graduación presentado como exigencia parcial para obtener el título de biólogo. 55 p. Ecuador.
- ZÁRATE E. 1996. Estudio de macroinvertebrados del Río Mazán,
 Azuay, Ecuador. Tesis de Licenciatura. Universidad del Azuay.
 Cuenca Ecuador. 63 p

ANEXOS

Anexo1. Ficha de campo para la caracterización de la calidad física del agua

FICHA DE CAMPO PARA LA CARA	CTERIZACION DE LA CALIDAD FIS	ICA DEL AGUA
DATOS GENERALES		
Nombre del arroyo	Provincia	
Código de la		
estación	Cantón	
Localidad	Parroquia	
Fecha (dd/mm/aa) Longitud	d (UTM)	Latitud (UTM)
Altitudm s.n.m.	Orden 1	2 3 4
Zona de vida:		
CONDICIONES DEL CLIMA		
tormenta (Iluvia fuerte)	¿Ha existido una lluvia	fuerte en los últimos 7 días?
☐ Iluvia (Iluvia constante)	Si □ No □	
☐ llovizna (intermitente)		
□ nublado %	Temperatura ambienta	al °C.
□ claro / soleado		
	Otro	
CARACTERIZACION DEL ARROYO		
Subsistema del arroyo	Origen del arroyo	
☐ Perenne	☐ Glacial	☐ Montano no glacial
☐ Intermitente	☐ Alimentado por un afluente	☐ Mezcla de orígenes
☐ Tidal	☐ Fangoso y pantano	☐ Otro


CAR	CARACTERISTICAS DE LA CUENCA DEL RIO												
Terr	eno circundan	te predo	minante		Poluc	ión loc	al de la	cuenca del río					
	bosque		☐ Comer	cial		No e	videncia	ı					
	campo pastoreo	de	☐ Industi	rial		☐ Alguna fuente potencial							
	agricultura		□ Otro										
	residencial												
Eros	ión local de la	cuenca	del río										
	Ninguna		Modera	do		Alta							
VEGETACION RIBEREÑA (18 m de buffer)													
Indique el tipo dominante y registre las especies dominantes presentes:													
	☐ Árboles ☐ Arbustos ☐ Pastizal ☐ Herbáceas												
espe	especies dominantes presentes												
CAR	ACTERISTIC	AS DEL	ARROYO										
	1	2	3	4		5	6	Cobertura del d	dosel				
Dista	ancia												
(med	dida)							☐ Abierto					
Prof	undidad							☐ Parcialmen	te abi	erto			
Ancl	no							☐ Sombreado)				
Tien	про												
Marc	ca alta del agu	a			n								
Rápi	dos (%)			Canaliza	do			Si		No			
Corr	iente (%)			Diques p	resente	s		Si		No			
Pisc	inas (%)												

VEGETACION ACUATICA													
Indique el tipo dominante y registre la especie :													
☐ Raíces emergentes ☐ Raíces sumergidas ☐ Flotación libre													
☐ Raíces flotantes ☐ Algas adheridas ☐ Algas flotantes													
Especies dominantes													
% de vegetación acuática en el tramo muestreado %													
CALIDAD DEL AGUA													
Temperatura°C Olor en el agua													
Coductividad específica													
Oxígeno disuelto Químico Detróleo													
pH													
Turbiedad													
Instrumetno utilizado en el WQ													
Hora tomada:													
Aceites en la superficie del													
agua Turbiedad													
☐ Masa ☐ Extenso ☐ Brillo pequeña _ Claro _ Un poco turbio _ Turbio													
Puntos Ninguno Otro Opaco Teñido Otro													
SEDIMENTO / SUBSTRATO													
Olores													
☐ Normal ☐ Alcantarillado ☐ Petróleo ☐ Otro													
☐ Químico ☐ Anaeróbico ☐ Ninguno													
Aceites													
☐ Ausentes ☐ Ligero ☐ Moderado ☐ Abundantes													
Depósitos													
□Lodo □Aserrín □Tibras de papel □ Arena □ Descargas de aceite □ Otros													
□Si □No													

COMPONE	NTES D	E SUBSTRATO	DS									
INORGANIC	cos		COMPON	COMPONENTES DEL SUBSTRATO ORGANICO								
/D - b			/NI									
(Deben sum	iar ei 100%)		(Necesari	(Necesariamente no debe sumar el 100%)								
		% de composición			% de							
Tipo de		del área			composición del							
substrato	Diámetro	muestreada	substrato	Características	área muestreada							
Roca												
firme/gran												
de	>256 mm											
				ramitas, madera, los								
Rocas			Detritos	materiales de la planta								
grandes	<256 mm		(gruesos)	toscos								
	64 - 256		Escombro									
Piedras	mm		de	el barro: negro, con abundante materia								
Graba	2 - 64 mm		Barro	orgánica								
	0,06 - 2											
	mm(Arenis											
Arena	со											
	0,004 -		Detritos	gris, con fragmentos								
Limo	0,06 mm		Fino	pequeños de hojarasca								
	< 0,004			<u> </u>								
Arcilla	mm											

ANEXOS

Anexo 2. Fotografías de las estaciones de muestreo

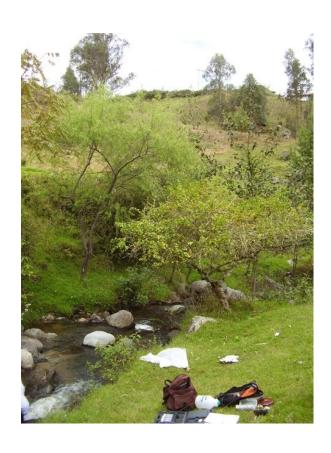
Estación de muestreo 058

Estación de muestreo 061

Estación de muestreo 062

Estación de muestreo 063

Estación de muestreo 064



Estación de muestreo 066

Estación de muestreo 067

Estación de muestreo 068

Estación de muestreo SB1

Estación de muestreo SB10

Estación de muestreo SB 11

Estación de muestreo SB12

Estación de muestreo SB 15

Estación de muestreo SB16

Estación de muestreo SB2

Estación de muestreo SB3

Estación de muestreo SB4

Estación de muestreo SB9

Anexo 3.Límites permisibles de la calidad de agua para los diferentes usos.

			LÍMITE MÁXIMO PERN	IISIBLE PARA LOS	S DIFERENTES USOS:	
PARÁMETROS	UNIDAD	CONSUMO HUMANO	FLORA Y FAUNA	AGRICOLA	PECUARIO	RECREATIVO
Aluminio	mg/l	0,2	0,1	5	5	
Amoniaco	mg/l	1	0,02			
Amonio	mg/l	0,05				
Arsénico	mg/l	0,05	0,05	0,1	0,2	
Bario	mg/l	1	1	1	1	
Berilio	mg/l	0,1		0,1		
Bifenilo policlorados/PCBs	μg/l	0,0005	0,001			
Boro	mg/l	0,75		1	5	
Cadmio	mg/l	0,01	0,001	0,01	0,05	
Cianuro (total)	mg/l	0,1	0,01	0,2	0,2	
Cloruro	mg/l	250				
Cobalto	mg/l	0,2		0,05		
Cobre	mg/l	1	0,02	2	0,5	
Coliformes Fecales		600	200	1 000	Menor a 1 000	200
Coliformes Totales		3000			Promedio mensual menor a 5 000	1 000
Compuestos fenólicos	mg/l	0,002				0,002
Demanda Bioquímica de Oxígeno (5	mg/l	2				·
Dureza	mg/l	500				
Fluoruro (total)	mg/l	1,5		1		
Grasas y aceites	mg/l	0,3				0,3
Hierro	mg/l	0,3		5	1	·
Hierro (total)	mg/l	1	0,1			
Manganeso (total)	mg/l	0,1	Ausencia	0,2	0,5	
Materia flotante		Ausencia		Ausencia	Ausencia	Ausencia
Mercurio (total)	mg/l	0,001	0,0002	0,001	0,01	
Molibdeno	mg/l	0,01		0,2	0,005	
Nitrato	mg/l	10	No menor al 80% y no menor a 6 mg/l	·	10	

Continuación Anexo 3. Límites permisibles de la calidad de agua para los diferentes usos.

			LÍMITE MÁXIMO PER	MISIBLE PARA LOS	DIFERENTES USOS	:
PARÁMETROS	UNIDAD	CONSUMO HUMANO	FLORA Y FAUNA	AGRICOLA	PECUARIO	RECREATIVO
Nitrito	mg/l	1			1	
Organoclorados (totales)	mg/l	0,1		0,2	0,2	0,2 (para cada
Organofosforados (totales)	mg/l	0,1		0,1	0,1	0,1 (para cada
Oxígeno disuelto	mg/l	No menor al 80% del oxígeno de saturación y no menor a 6mg/l	6, 5-9		3	No menor al 80% de Concentración de saturación y no menor a 6 mg/l
Piretroides	mg/l	0,05				
Plata (total)	mg/l	0,05	0,01	0,05	0,05	
Plomo (total)	mg/l	0,05		0,05	0,05	
Potencial de hidrógeno		6 - 9	6 - 9	6 - 9	6 - 9	6,5 – 8,5
Relación hidrógeno, fósforo orgánico						15:01
Residuos de petróleo						Ausencia
Selenio (total)	mg/l	0,01	0,01	0,02	0,01	
Sodio	mg/l	200				
Sólidos disueltos totales	mg/l	1 000		3000	3 000	
Sulfatos	mg/l	400				
Sulfuro de hidrógeno ionizado	mg/l	0,0002				
Temperatura	°C	Condición Natural + o – 3 grados	Condiciones naturales + 3 maxima 20			
Tensoactivos	mg/l	0,5	0,5			0,5
Transparencia de las aguas medidas con el disco secchi.				mínimo 2,0 m	mínimo 2,0 m	Mínimo 2,0 m.
Turbiedad	UTN	100				
Vanadio	mg/l			0,1	10	
Zinc	mg/l	5		2		

Fuente: Ministerio del Ambiente del Ecuador, 2002

Anexo 4. Valoración de la calidad del hábitat en arroyos con pendientes alta

Parámetros del	Categoría			
hábitat				
	Optimo	Suboptimal	Marginal	Pobre
1. Substrato;	Más del 70% de los hábitats son	40 70% do mozela do habitate	20 - 40% de mezcla de habitats	Menos del 20% de habitats
1				
	favorables para la colonización;	·	estables; disponibilidad menor	
1.	mezcla de substratos como son leños	i ,	·	habitats; substrato inestable o
colonizados	sumergidos, piedras, cortes en las	adecuado para el mantenimiento de	frecuentemente perturbados o	faltante.
	orillas u otro hábitat estable que	las poblaciones; presencia de	removidos.	
	permite la colonización potencial	substrato de una caída reciente,		
	completa (es decir, troncos u	pero que todavía no está preparado		
	obstáculos imprevisto que no han	para la colonización (puede estar al		
	sido de caída resiente y no temporal).	extremo alto de la escala).		
PUNTUACION	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
2. Partículas que	0 - 25% de la grava, piedra y rocas	25 - 50% de la grava, piedra y	50 - 75% de la grava, piedra y	Más del 75% de la grava,
rodean al	grandes rodeados por sedimento fino.	rocas grandes rodeadas por	rocas grandes rodeadas por	piedra y rocas grandes
substrato	Estratos de piedra proporcionan una	sedimento fino.	sedimento fino.	rodeadas por sedimento fino.
	diversidad de espacio del nicho.			·
PUNTUACION	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
3. Velocidad y	Todos los cuatro regímenes de	Sólo 3 de las 4 categorías lo	Sólo 2 de las 4 categorías	Dominado por 1 velocidad y
Profundidad	velocidad y profundidad lo presentan	· ·	presentan en el hábitat (rápido -	profundidad (normalmente
	(lento - profundo, lento - poco		poco profundo o lento - poco	`
	profundo, rápido - profundo, rápido -		profundo están ausentes).	,
	poco profundo). (Lento es <0.3 m/s,		profundo ostan adoontos).	
	F = = = = = = = = = = = = = = = = = = =			

	profundo es >0.5 m.)			
PUNTUACION	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
4. Acumulación de	Pequeño o ningún agrandamiento de	Una formación pequeña de	Acumulación moderada de	Depósitos altos de material
sedimento	islas o puntos de obstrucción. Menos	barreras, principalmente de arena	arena gruesa, arena o	fino, aumento en las barreras;
	del 5% del fondo afectado por	gruesa, arena o sedimento fino. 5 -	sedimento fino en barreras	más del 50% del fondo
	depósitos de sedimento.	30% del fondo afectado; deposición	anteriores y recientes; 30-50%	cambian frecuentemente;
		ligera en piscinas.	del fondo afectado; el sedimento	piscinas casi ausentes debido a
			es depositado encogiendo el	la acumulación sustancial de
			lecho y curvaturas; deposición	sedimento.
			moderada de piscinas	
			prevalecientes.	
DUNTUA OLONI	00 40 47 40	45 40 40	10 0 7 0	5 4 0 0 4 0
PUNTUACION	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
5. Estado del Flujo	Las bases de las dos orillas la cuenca	El agua llena >75% del cauce	El agua se llena del 25 - 75%	Una muy pequeña cantidad de
del cauce	del río y el substrato del cauce están	disponible; o < 25% de substrato	del cauce disponible, o los	agua en el cauce y
	expuestas en una cantidad mínima.	del cauce es expuesto.	substratos de los rápidos son	principalmente se presenta
			principalmente expuestos.	como piscinas permanentes.
PUNTUACION	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
6. Alteración del	Canalización o dragando ausentes o	Presenta algunos canalizaciones.	Canalización tal vez extensa:	Las orillas apuntaladas con
cauce		normalmente en áreas de los		gaviones o cemento; más del
	normal.	estribos de los puentes; evidencia	-	
		una canalización pasada, es decir,	•	•
		dragado (hace más 20 años) tal vez		•
		presente, pero reciente no está	·	completamente.
		,, p		

		presente la canalización.		
PUNTUACION	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
7. Frecuencia de	Presencia de rápidos relativamente	Presencia de rápidos poco	Rápidos o recodos ocasionales;	Generalmente toda el agua es
rápidos (o	frecuente; la proporción entre la	frecuentes; distancia entre rápidos	los contornos del fondo	uniforme o rápidos poco
recodos)	distancia de rápidos dividido por	dividido por el ancho del arroyo	proporcionan algún hábitat;	profundos; hábitat pobre;
	ancho del arroyo es < 7:1	está entre 7 a 15.	distancia entre rápidos dividido	distancie entre rápidos dividido
	(generalmente 5 a 7); la variedad de		por el ancho del arroyo está	por el ancho del arroyo es una
	hábitats es importante. En arroyos		entre 15 a 25.	proporción >25.
	donde los rápidos son continuos, la			
	presencia de rocas grandes u otros,			
	obstáculos naturales son importante.			
PUNTUACION	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	Orilla estable; evidencia erosión de	Moderadamente estable; poco	Ligeramente inestable; 30 - 60%	Inestable; muchos áreas
8. Estabilidad de	las orillas ausente o mínimo; pequeño	•		·
la orilla (cuenta	potencial para problemas futuros.	erosión han sanado principalmente		"descubiertas" frecuentan a lo
cada orilla)	<5% de banco afectado.	encima. 5 -30% de la orilla tiene		largo de las secciones rectas y
cada offilia)		áreas de erosión.		curvas; orilla con
				desprendimientos obvios; 60 -
				100% de la orilla tiene marcas
Nota: Determine				de erosión con cicatriz.
el lado izquierda o				
derecho				
enfrentando rio				
abajo.				

PUNT (LB)	Orilla izquierda 10 9	8 7 6	5 4 3	2 1 0
PUNT (RB)	Orilla derecha 10 9	8 7 6	5 4 3	2 1 0
9. Protección de la	Más del 90% de la superficie de las	70 - 90% de la superficie de las	50 - 70% de la superficie de las	Menos del 50% de la superficie
vegetación	orillas del río y las zonas ribereñas	orillas del río cubiertas por	orillas del río cubiertas por	las orillas de río cubiertas por
(cuenta cada	inmediatas, cubiertas por vegetación	vegetación nativa, pero una clase	vegetación; interrupciones	vegetación; la interrupción de la
orilla)	nativa, incluso de árboles, arbustos o	de plantas no es bien representa;	obvias; parches de tierra	vegetación en las orillas es
	micrófitos; interrupciones de la	interrupción evidente pero no afecta	desnuda o la vegetación	muy alta; se ha quitado
	vegetación mínimo o no evidente;	el potencial crecimiento de las	estrechamente segada común;	vegetación a 5 centímetros o
	casi todas plantas tuvieron un	planta para extenderse; más de la	menos de la mitad de plantas de	menos en media altura del
	crecimiento natural.	mitad son pequeñas plantas	pequeñas son plantas	rastrojo.
		potenciales y el resto altas.	potenciales y el resto altas.	
PUNT (LB)	Orilla izquierda 10 9	8 7 6	5 4 3	2 1 0
PUNT (RB)	Orilla derecha 10 9	8 7 6	5 4 3	2 1 0
10. Ancho de la	Ancho do la zona riboroña >19	Ancho de la zona del ribereña 12 -	Ancho do la zona riboroña 6	Ancho de la zona de ribereña <
		18 metros; las actividades humanas		
	•	·	·	
,		sólo han impactado la zona	·	
	carreteras, cortes claros, césped, o		gran parte a la zona.	las actividades humanas.
	cosechas) no hay una zona			
	impactada.			
PUNT (LB)	Orilla izquierda 10 9	8 7 6	5 4 3	2 1 0
PUNT (RB)	Orilla derecha 10 9	8 7 6	5 4 3	2 1 0

Anexo 5. Estaciones con sus respectivas fechas y repeticiones, valores de parámetros físicos-químicos medidos en campo y en laboratorio

Muestra y Repetición	Fecha	Altura	TºC	Conductividad	02	pН	Dureza (mg CaCO3/lit.)	Alcalinidad (mEq/litr)	Acidez (mEq/litr)	Turbiedad (UTN)	DQO (ppm)	DBO(ppm)	NO2 (ppm)	NO3 (ppm)	NH4 (ppm)	Fosforo Total (ppm)	Fosfatos (ppm)
0.50	45/00/0000		40.00	40			10.01			40.00	40.00		<0.1	<0.09			
058	15/09/2008	2.233	12,00	40	12	7,55	19,64	0,06	0,00	13,22	18,66	7,20	ppm	ppm	<0.1ppm	2,40	<0.1ppm
050 11	24/40/2000		15.0	F0	10.00	77	0.00	0.07	0.00	40.00	447	F 00	<0.1	<0.09	.0.1555	2.20	.0.4
058 II	24/10/2008		15,2	50	10,62	7,7	2,28	0,07	0,00	12,93	14,7	5,80	ppm <0.1	ppm <0.09	<0.1ppm	2,38	<0.1ppm
058 III	25/11/08		13,8	45	10,58	7,6	1,41	0,18	0.00	76,06	20,4	7,83	ppm	ppm	<0.1ppm	1,10	0.88
000 111	20/11/00		10,0	10	10,00	1,0	.,	0,10	0,00	70,00	20, 1	7,00	<0.1	<0.09	чол гррпп	1,10	0,00
060	15/09/2008	2.253	16,8	80	8	6,95	7,40	0,11	0,00	12,63	4,0	1,97	ppm	ppm	<0.1ppm	0,80	<0.1ppm
									-				<0.1	<0.09			
060 II	24/10/2008		15,2	50	10,83	7,6	5,48	0,08	0,00	13,00	25,2	9,53	ppm	ppm	<0.1ppm	2,20	<0.1ppm
													<0.1	<0.09			
060 III	25/11/08		13,9	50	10,44	7,4	1,05	0,11	0,00	33,81	12,1	4,87	ppm	ppm	<0.1ppm	2,20	0,78
061	23/09/2008	3.194	11,4	20	12.07	7,2	20.52	0.11	0.00	14,93	19,0	7,33	<0.1	<0.09	<0.1ppm	3,42	.0.4
061	23/09/2008	3.194	11,4	20	12,07	1,2	20,52	0,11	0,00	14,93	19,0	7,33	ppm <0.1	ppm <0.09	<0.1ppm	3,42	<0.1ppm
061 II	07/11/2008		9,1	20	10,30	6,8	14,66	0,07	0.00	12,85	5.7	2,57	ppm	ppm	1,42	2,00	<0.1ppm
00111	0771772000		0,1	20	10,00	0,0	1 1,00	0,01	0,00	12,00	0,1	2,01	<0.1	ррпп	1, 12	2,00	νο. гррпп
061 III	5/12/08		11,4	20	12,07	7,2	2,99	0,17	0,00	192,64	5,7	2,58	ppm	1,19	<0.1ppm	1,00	<0.1ppm
													<0.1	< 0.09			
062	23/09/2008	3.167	12,7	30	11,99	7,2	24,93	0,08	0,00	13,97	40,4	14,97	ppm	ppm	<0.1ppm	0,90	<0.1ppm
	0=////0000												<0.1	<0.09			
062 II	07/11/2008		10,0	30	10,81	6,8	8,10	0,11	0,00	12,85	1,2	0,97	ppm	ppm	0,55	1,87	<0.1ppm
062 III	5/12/08		12.7	30	11,99	7,2	4.03	0,08	0.00	102.60	5.8	0.86	<0.1 ppm	0.26	<0.1ppm	1,80	<0.1ppm
002 111	3/12/00		12,1	30	11,33	1,2	4,03	0,00	0,00	102,00	5,0	0,80	<0.1	<0.09	CO. TOPPITI	1,00	<υ. τρριτί
063	23/09/08	2.583	12,45	50	11,5	7,4	4,86	0,11	0,00	12,33	5.7	2,57	ppm	ppm	<0.1ppm	2,90	<0.1ppm
			,		,	,	,	,	,	,	- /	,	<0.1	<0.09		, , , , , , , , , , , , , , , , , , , ,	
063 II	07/11/2008		13,9	60	11,97	7,9	10,35	0,07	0,00	13,82	8,1	3,43	ppm	ppm	<0.1ppm	0,95	<0.1ppm
													<0.1	< 0.09			
063 III	5/12/08		11,0	60	10,67	7,0	3,07	0,14	0,00	192,64	2,5	1,42	ppm	ppm	<0.1ppm	1,60	<0.1ppm
004	45/00/0000	0.047	40.4	00	0.00	7.0	40.57	0.00	0.00	44.40	7.4	0.07	<0.1	<0.09	0.4	4.07	0.4
064	15/09/2008	2.247	16,4	60	9,90	7,3	10,57	0,08	0,00	14,49	7,1	3,07	ppm	ppm	<0.1ppm	1,67	<0.1ppm
064 II	07/11/2008		13.3	70	10.34	7,3	9.83	0.11	0.00	14.34	2.5	0.60	<0.1 ppm	<0.09 ppm	<0.1ppm	0.33	<0.1ppm
00411	07/11/2000	-	10,0	70	10,54	7,5	3,03	0,11	0,00	14,04	2,5	0,00	<0.1	<0.09	vo. ippili	0,55	-υ. τρριπ
064 III	28/11/08		16,4	60	9,90	7,3	13,41	0,20	0.00	76,40	11,2	4,52	ppm	ppm	<0.1ppm	2,60	0.62
					- /	,-	- /	, -	-,	-, -	, , , , , , , , , , , , , , , , , , ,	, -	<0.1	<0.09		/	- / -
065	15/09/2008	2.253	12,1	30	10,74	7,5	4,25	0,10	0,00	13,15	7,6	3,27	ppm	ppm	<0.1ppm	0,33	<0.1ppm
													<0.1	<0.09			
065 II	24/10/2008		14,7	40	12,81	7,4	3,24	0,06	0,00	15,01	10,9	4,43	ppm	ppm	<0.1ppm	0,49	<0.1ppm

Muestra y Repetición	Fecha	Altura	т⁰С	Conductividad	O 2	pН	Dureza (mg CaCO3/lit)	Alcalinidad (mEq/litr)	Acidez (mEq/litr)	Turbiedad (UTN)	DQO (ppm)	DBO(ppm)	NO2 (ppm)	NO3 (ppm)	NH4 (ppm)	Fosforo Total (ppm)	Fosfatos (ppm)
065 III	25/11/08		12,6	45	10,28	7,0	14,37	0,14	0,00	61,86	8,5	3,58	<0.1 ppm	<0.09 ppm	<0.1ppm	2,29	0,56
066	19/11/2008	2.447	15,8	50	9,70	6.9	5,18	0.04	0,00	12,70	13,3	5,30	<0.1 ppm	<0.09 ppm	<0.1ppm	1,67	<0.1ppm
066 II	07/11/2008		14,1	50	9.91	7,9	0.45	0.14	0.00	16.64	3.4	1.79	<0.1 ppm	<0.09 ppm	<0.1ppm	0,58	<0.1ppm
066 III	28/11/2008		15,8	10	50,00	6.9	0,32	0,11	0,00	12,70	7,2	3,54	<0.1 ppm	<0.09 ppm	<0.1ppm	1,12	<0.1ppm
		0.000			,	,		,	,	·	,	,	<0.1			,	
067	23/08/2008	2.600	13,2	40	10,29	7,7	16,62	0,15	0,00	12,85	7,9	3,10	ppm <0.1	0,10 <0.09	<0.1ppm	2,90	<0.1ppm
067 II	18/11/2008		10,9	20	11	7,50	0,62	0,10	0,00	18,20	31,9	11,92		ppm <0.09	<0.1ppm	0,66	<0.1ppm
067 III	28/11/08		12,1	30	10,5	7,6	8,6	0,1	0,0	15,5	19,9	7,5	ppm <0.1	ppm <0.09	<0.1ppm	1,8	<0.1ppm
068	19/10/2008	2.462	16,9	100	9,55	7,6	18,72	0,00	0,00	13,74	11,6	4,67	ppm <0.1	ppm	<0.1ppm	1,90	<0.1ppm
068 II	18/11/2008		11,7	50	10,60	8,1	0,52	0,04	0,00	13,30	1,0	0,03	ppm	0,55	<0.1ppm	0,49	<0.1ppm
068 III	28/11/08		16,9	100	9,55	7,6	3,89	0,18	0,00	140,69	33,9	12,63	<0.1 ppm	0,54	<0.1ppm	2,90	<0.1ppm
SB1	02/10/2008	2.454	14,5	30	9,3	6,5	0,41	0,08	0,00	22,07	12,5	5,00	<0.1 ppm	<0.09 ppm	<0.1ppm	0,54	<0.1ppm
SB1 II	14/11/2008		14,8	30	9,20	6,4	58,66	0,10	0,00	12,85	5,0	0,53	<0.1 ppm	0,04	<0.1ppm	1,25	<0.1ppm
SB1 III	4/12/08		13,8	30	10,20	7,1	30.45	0,09	0.00	17,46	8,75	2,77	<0.1 ppm	<0.09 ppm	<0.1ppm	0,89	<0.1ppm
SB2	14/11/2008	2.272	13,1	60	11.2	7	13,61	0,00	0,00	14,34	3,5	0,70	<0.1 ppm	0.06	<0.1ppm	0,70	<0.1ppm
SB2 II	19/09/2008	L.L.I L	13,6	70	10,19	7,1	8,90	0,14	0,00	12,63	5,8	2.60	<0.1	0,84		3,90	
					,	,		,	,	·	,	,	ppm <0.1	,	<0.1ppm		<0.1ppm
SB2 III	4/12/08		15,5	60	11	7,0	6,62	0,18	0,00	102,60	1,1	0,94	ppm <0.1	0,44	<0.1ppm	0,70	<0.1ppm
SB3	19/09/2008	2.745	11,8	130	10,48	8,2	23,60	0,11	0,00	14,12	16,9	6,57	ppm <0.1	0,67	<0.1ppm	0,60	<0.1ppm
SB3 II	18/11/2008		12,9	50	9,73	8,4	4,25	0,06	0,00	13,22	3,4	0,80	ppm <0.1	0,06	<0.1ppm	0,54	<0.1ppm
SB3 III	4/12/08		12,4	90	10,1	8,3	13,9	0,1	0,0	13,7	10,1	3,7	ppm <0.1	0,4	<0.1ppm	0,6	<0.1ppm
SB4	5/12/08	2.773	12,4	30	10,1	6,3	2,83	0,14	0,00	223,81	1,7	1,14	ppm	ppm	<0.1ppm	2,10	<0.1ppm
SB4 II	21/11/2008		12,4	20	10,19	6,0	9,79	0,07	0,00	14,34	5,6	2,53	<0.1 ppm	<0.09 ppm	<0.1ppm	0,70	<0.1ppm
SB4 III	4/12/08		12,7	30	10,80	6,2	9,81	0,08	0,00	12,33	44,4	16,40	<0.1 ppm	0,27	<0.1ppm	2,00	<0.1ppm

Muestra y Repetición	Fecha	Altura	т⁰С	Conductividad	O2	На	Dureza (mg CaCO3/lit)	Alcalinidad (mEɑ/litr)	Acidez (mEq/litr)	Turbiedad (UTN)	DQO (ppm)	DBO(ppm)	NO2 (ppm)	NO3 (ppm)	NH4 (ppm)	Fosforo Total (ppm)	Fosfatos (ppm)
Repetition	recita	Aitaia	. 0	Conductividad	02	Pii	Gacconity	(IIIEq/IIII)	(IIIEq/IIII)	(0114)	(ррііі)	ВВО(ррін)	<0.1	<0.09	(ррііі)	(ррпі)	(PPIII)
SB5	14/10/2008	2.636	13,1	50	10,13	6,9	0,74	0,11	0,00	15,53	11,6	4,67	ppm	ppm	<0.1ppm	0,45	<0.1ppm
													<0.1	<0.09			
SB5 II	21/11/2008		12,2	50	10,20	6.8	5,37	0,00	0,00	15,23	6,0	2,67	ppm	ppm	<0.1ppm	0,41	<0.1ppm
SB5 III	04/12/2008		12,8	50	10,30	6.9	3,06	0.06	0.00	15,38	8,77	3,67	<0.1 ppm	<0.09 ppm	<0.1ppm	0,43	<0.1ppm
303 111	04/12/2008		12,0	30	10,30	0,9	3,00	0,00	0,00	15,56	0,77	3,07	<0.1	<0.09	CO. TPPIII	0,43	CO. TPPIII
SB8	02/10/2008	2.408	14,2	60	10,30	7,0	7,52	0,06	0,00	13,00	12,6	5,03	ppm	ppm	<0.1ppm	0,49	<0.1ppm
													<0.1	<0.09			
SB8 II	14/10/2008		13,2	55	10,73	7,6	11,05	0,00	0,00	15,01	5,2	2,40	ppm	ppm	<0.1ppm	0,50	<0.1ppm
ODO III	07/44/00		40.0		40.70	7.0	0.04	0.44	0.00	00.07	40.4	4.40	<0.1	<0.09	0.4	4.00	0.4
SB8 III	27/11/08		13,2	55	10,73	7,6	9,24	0,11	0,00	23,07	10,1	4,13	ppm <0.1	ppm	<0.1ppm	1,00	<0.1ppm
SB9	14/11/2008	2.307	16.1	40	10.3	7,5	3,27	0,03	0.00	13.82	3.6	1,83	ppm	0,24	<0.1ppm	0,49	<0.1ppm
020	,, 2000	2.00.			.0,0	.,0	0,2.	0,00	0,00	.0,02	0,0	.,00	<0.1	<0.09	чот.рр	0,.0	тот грр
SB9 II	02/10/2008		16,3	40	9,43	6,8	7,51	0,08	0,00	12,78	43,8	16,17	ppm	ppm	<0.1ppm	0,60	<0.1ppm
													<0.1	<0.09			
SB9 III	27/11/08		14,5	45	10,50	7,4	7,60	0,11	0,00	16,84	45,5	16,80	ppm	ppm	<0.1ppm	2,10	<0.1ppm
SB11	02/10/2008	2.328	16,9	50	8.4	9,1	26.62	0.08	0.00	12.70	14,4	5.67	<0.1 ppm	<0.09 ppm	<0.1ppm	1.03	<0.1ppm
3611	02/10/2008	2.320	10,9	30	0.4	9,1	20,02	0,08	0,00	12,70	14,4	5,07	<0.1	ррпп	CO. TPPIII	1,03	CO. TPPITI
SB11 II	14/11/2008		17,3	70	7,02	9,0	0,63	0,08	0,00	72,46	5,5	2,50	ppm	1,05	<0.1ppm	0,62	<0.1ppm
													<0.1				
SB11 III	27/11/08		15,2	55	10,90	7,5	6,00	0,07	0,00	21,68	47,2	17,40	ppm	0,48	<0.1ppm	2,90	<0.1ppm
SB12	02/10/2008	2.431	12.9	20	11,46	7,05	13.78	0.00	0.00	14,12	19.0	7.32	<0.1	<0.09	<0.1ppm	0.33	<0.1ppm
3612	02/10/2006	2.431	12,9	20	11,40	7,00	13,76	0,00	0,00	14,12	19,0	1,32	ppm <0.1	ppm	<u. ippili<="" td=""><td>0,33</td><td><u. rppm<="" td=""></u.></td></u.>	0,33	<u. rppm<="" td=""></u.>
SB12 II	14/09/2008		13,3	20	10,60	6,5	0,45	0,03	0,00	19,17	10,5	4,30	ppm	0,53	<0.1ppm	0,66	<0.1ppm
													<0.1	<0.09			
SB12 III	27/11/08		12,2	40	9,35	7,3	0,78	0,22	0,00	16,11	17,2	6,67	ppm	ppm	<0.1ppm	2,40	0,51
SB15	15/09/2008		12,2	29	10.42	7,3	21.67	0,07	0.00	13,82	11.1	4.50	<0.1	<0.09 ppm	<0.1ppm	1.30	<0.1ppm
3613	15/09/2006		12,2	29	10,42	7,3	21,07	0,07	0,00	13,02	11,1	4,50	ppm <0.1	ррпп	<u. ippili<="" td=""><td>1,30</td><td><u. rppm<="" td=""></u.></td></u.>	1,30	<u. rppm<="" td=""></u.>
SB15 II	07/11/2008		16,3	60	9,60	7,0	0,36	0,03	0,00	13,37	7,0	3,03	ppm	0,69	<0.1ppm	0,33	<0.1ppm
													<0.1	<0.09			
SB15 III	25/11/08		12,5	40	10,22	7,1	7,42	0,17	0,00	25,49	53,9	19,80	ppm	ppm	<0.1ppm	2,30	<0.1ppm
CD46	24/10/2008	0.700	10.4	40	10.50	6.5	0.40	0.06	0.00	13.37	7.0	2.02	<0.1	0.65	.0 1nn:	0.60	.0.1555
SB16	24/10/2008	2.782	10,4	40	10,50	6,5	0,49	0,06	0,00	13,37	7,0	3,03	ppm <0.1	0,65	<0.1ppm	0,60	<0.1ppm
SB16 II	21/11/2008		11,9	30	9,59	6,5	0,31	0,08	0,00	30,61	1,3	1,00	ppm	0,08	<0.1ppm	0,41	<0.1ppm
			,-		-,	- / -	-,-	-,	-/	,-	,-	,	<0.1	-,		-,	- 11
SB16 III	4/12/08		10,6	30	9,00	6,7	5,28	0,17	0,00	12,33	21,8	8,32	ppm	1,40	<0.1ppm	1,10	<0.1ppm

Muestra y Repetición	CI (ppm)	F (ppm)	AI (pp m)	Mg (ppm)	Ca (ppm)	K (ppm)	Na (ppm)	Fe (ppm)	Cu (ppm)	Mn (ppm)	Zn (ppm)	Cd (ppm)	Pb (ppm)	Cr (ppm)	Ni (ppm)	Coliformes totales en NMP/100ml	Coliformes fecales en NMP/100ml
058	3,21	0,31	<0.1 ppm	1,06214 191	0,92433 924	0,440 75171	1,67	<ld< td=""><td>0,24800 164</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,24800 164	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<>	<ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<>	≥16.000	≥16.000
058 II	1,57	0,68	<0.1	1,39444 689	1,11254 72	0,717 55231	2,17094 323	<ld< td=""><td>0,23734 372</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,23734 372	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<>	<ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<>	≥16.000	≥16.000
058 III	1,94	0,65	<0.1	1,00384 986	0,97324 819	0,556 60377	1,71422 312	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<>	<ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<>	≥16.000	≥16.000
060	1,65	0,31	<0.1 ppm	1,05068 312	0,90081 324	0,589 98334	1,99	<ld< td=""><td>0,24267 268</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,24267 268	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<>	<ld< td=""><td>2.800</td><td>2.800</td></ld<>	2.800	2.800
060 II	1,17	0,41	0,27	0,96487 007	0,92664 826	0,607 54717	1,59	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<>	<ld< td=""><td>2.800</td><td>2.800</td></ld<>	2.800	2.800
060 III	1,14	0,53	<0.1 ppm	1,21174 206	0,71228 857	1,218 86792	3,18157 918	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<>	<ld< td=""><td>2.800</td><td>2.800</td></ld<>	2.800	2.800
061	1,12	0,29	<0.1 ppm	<ld< td=""><td>0,91649 724</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,24800 164</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,91649 724	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,24800 164</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,24800 164</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,24800 164</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,24800 164	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<>	<ld< td=""><td>14</td><td>0</td></ld<>	14	0
061 II	1,30	0,35	0,25	0,64962 539	1,54385 71	<ld< td=""><td>0,52</td><td><ld< td=""><td>0,23201 476</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,52	<ld< td=""><td>0,23201 476</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,23201 476	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<>	<ld< td=""><td>14</td><td>0</td></ld<>	14	0
061 III	2,07	0,70	<0.1 ppm	0,66602 502	1,68156 714	<ld< td=""><td>0,71851 722</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,71851 722	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>14</td><td>0</td></ld<></td></ld<>	<ld< td=""><td>14</td><td>0</td></ld<>	14	0
062	2,66	0,33	<0.1 ppm	0,32877 92	0,73613 128	<ld< td=""><td>0,33687 975</td><td><ld< td=""><td>0,26398 852</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>30</td><td>30</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,33687 975	<ld< td=""><td>0,26398 852</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>30</td><td>30</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,26398 852	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>30</td><td>30</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>30</td><td>30</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>30</td><td>30</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>30</td><td>30</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>30</td><td>30</td></ld<></td></ld<>	<ld< td=""><td>30</td><td>30</td></ld<>	30	30
062 II	5,70	0,42	0,43	0,63816 659	1,21449 317	<ld< td=""><td>0,86</td><td><ld< td=""><td>0,22668 58</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>30</td><td>30</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,86	<ld< td=""><td>0,22668 58</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>30</td><td>30</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,22668 58	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>30</td><td>30</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>30</td><td>30</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>30</td><td>30</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>30</td><td>30</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>30</td><td>30</td></ld<></td></ld<>	<ld< td=""><td>30</td><td>30</td></ld<>	30	30
062 III	7,35	0,36	<0.1 ppm	0,61405 197	1,30876 769	<ld< td=""><td>0,90991 149</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>30</td><td>30</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,90991 149	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>30</td><td>30</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>30</td><td>30</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>30</td><td>30</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>30</td><td>30</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>30</td><td>30</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>30</td><td>30</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>30</td><td>30</td></ld<></td></ld<>	<ld< td=""><td>30</td><td>30</td></ld<>	30	30
063	1.71	0,27	<0.1 ppm	0,98193 037	1,16744 119	<ld< td=""><td>0,76924 452</td><td><ld< td=""><td>0,24800 164</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>220</td><td>220</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,76924 452	<ld< td=""><td>0,24800 164</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>220</td><td>220</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,24800 164	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>220</td><td>220</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>220</td><td>220</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>220</td><td>220</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>220</td><td>220</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>220</td><td>220</td></ld<></td></ld<>	<ld< td=""><td>220</td><td>220</td></ld<>	220	220
063 II	0,92	0,24	0,19	2,01322 168	1,67717 107	0,262 63655	1,68	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>220</td><td>220</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>220</td><td>220</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>220</td><td>220</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>220</td><td>220</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>220</td><td>220</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>220</td><td>220</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>220</td><td>220</td></ld<></td></ld<>	<ld< td=""><td>220</td><td>220</td></ld<>	220	220
063 III	6,03	0,50	<0.1 ppm	2,03031 761	1,38332 758	0,335 84906	1,79397 073	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>220</td><td>220</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>220</td><td>220</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>220</td><td>220</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>220</td><td>220</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>220</td><td>220</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>220</td><td>220</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>220</td><td>220</td></ld<></td></ld<>	<ld< td=""><td>220</td><td>220</td></ld<>	220	220

Muestra y	CI	F	Al (pp	Mg	Са	k	Na	Fe	Cu	Mn	Zn	Cd	Pb	Cr	Ni	Coliformes totales	Coliformes fecales
Repetición	(ppm)	(ppm)	m)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	en NMP/100ml	en NMP/100ml
064	2,90	0,47	<0.1 ppm	1,17672 984	1,32428 115	<ld< td=""><td>0,91336 612</td><td><ld< td=""><td>0,25865 956</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,91336 612	<ld< td=""><td>0,25865 956</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,25865 956	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>16.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>16.000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>≥16.000</td><td>16.000</td></ld<></td></ld<>	<ld< td=""><td>≥16.000</td><td>16.000</td></ld<>	≥16.000	16.000
064 II	1,46	0,20	<0.1	2,41427 942	2,05358 699	0,322 81059	1,94	<ld< td=""><td>0,21602 787</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,21602 787	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<>	<ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<>	≥16.000	≥16.000
064 III	4,00	0,36	<0.1	1,12078 922	0,72160 856	2,186 79245	3,19069 319	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<>	<ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<>	≥16.000	≥16.000
065	1,50	0,65	<0.1 ppm	0,92463 64	0,75965 728	0,467 22829	1,67581 582	<ld< td=""><td>0,23734 372</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>16.000</td><td>5.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,23734 372	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>16.000</td><td>5.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>16.000</td><td>5.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>16.000</td><td>5.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>16.000</td><td>5.000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>16.000</td><td>5.000</td></ld<></td></ld<>	<ld< td=""><td>16.000</td><td>5.000</td></ld<>	16.000	5.000
065 II	6,25	0,25	<0.1 ppm	1,14235 346	0,80670 927	0,825 86558	2,29	<ld< td=""><td>0,21602 787</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>16.000</td><td>5.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,21602 787	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>16.000</td><td>5.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>16.000</td><td>5.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>16.000</td><td>5.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>16.000</td><td>5.000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>16.000</td><td>5.000</td></ld<></td></ld<>	<ld< td=""><td>16.000</td><td>5.000</td></ld<>	16.000	5.000
065 III	3,00	0,57	<0.1 ppm	0,69201 155	0,44200 897	0,556 60377	1,45675 226	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>16.000</td><td>5.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>16.000</td><td>5.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>16.000</td><td>5.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>16.000</td><td>5.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>16.000</td><td>5.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>16.000</td><td>5.000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>16.000</td><td>5.000</td></ld<></td></ld<>	<ld< td=""><td>16.000</td><td>5.000</td></ld<>	16.000	5.000
066	2,40	0,58	<0.1 ppm	1,05068 312	0,58713 331	0,890 85355	2,74742 959	<ld< td=""><td>0,23201 476</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2400</td><td>2400</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,23201 476	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2400</td><td>2400</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2400</td><td>2400</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2400</td><td>2400</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>2400</td><td>2400</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>2400</td><td>2400</td></ld<></td></ld<>	<ld< td=""><td>2400</td><td>2400</td></ld<>	2400	2400
066 II	2,40	0,47	<0.1 ppm	1,06214 191	0,55576 532	0,924 55101	2,81	<ld< td=""><td>0,22135 684</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2400</td><td>2400</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,22135 684	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2400</td><td>2400</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2400</td><td>2400</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2400</td><td>2400</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>2400</td><td>2400</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>2400</td><td>2400</td></ld<></td></ld<>	<ld< td=""><td>2400</td><td>2400</td></ld<>	2400	2400
066 III	2,40	0,52	<0.1 ppm	0,65303 176	0,16240 939	1,049 0566	3,18841 469	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2400</td><td>2400</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2400</td><td>2400</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2400</td><td>2400</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2400</td><td>2400</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2400</td><td>2400</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>2400</td><td>2400</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>2400</td><td>2400</td></ld<></td></ld<>	<ld< td=""><td>2400</td><td>2400</td></ld<>	2400	2400
067	2,45	0,57	<0.1 ppm	0,92463 64	0,58713 331	0,835 49343	2,33598 57	<ld< td=""><td>0,26398 852</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>170</td><td>170</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,26398 852	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>170</td><td>170</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>170</td><td>170</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>170</td><td>170</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>170</td><td>170</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>170</td><td>170</td></ld<></td></ld<>	<ld< td=""><td>170</td><td>170</td></ld<>	170	170
067 II	2,90	0,46	<0.1 ppm	1,00484 795	0,46950 334	0,813 83077	2,48475 637	<ld< td=""><td>0,22135 684</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>170</td><td>170</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,22135 684	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>170</td><td>170</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>170</td><td>170</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>170</td><td>170</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>170</td><td>170</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>170</td><td>170</td></ld<></td></ld<>	<ld< td=""><td>170</td><td>170</td></ld<>	170	170
067 III	2,7	0,5	<0.1 ppm	0,92463 598	0,52959 504	0,823 47569	2,33437 586	<ld< td=""><td>0,23734 372</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>170</td><td>170</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,23734 372	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>170</td><td>170</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>170</td><td>170</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>170</td><td>170</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>170</td><td>170</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>170</td><td>170</td></ld<></td></ld<>	<ld< td=""><td>170</td><td>170</td></ld<>	170	170
068	1,34	0,44	<0.1 ppm	1,91009 255	1,30075 516	1,998 05592	3,34018 775	<ld< td=""><td>0,25865 956</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>9000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,25865 956	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>9000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>9000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>9000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>9000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>9000</td><td>9000</td></ld<></td></ld<>	<ld< td=""><td>9000</td><td>9000</td></ld<>	9000	9000
068 II	1,20	0,24	<0.1 ppm	2,27677 391	1,36349 114	1,908 99833	3,34	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>9000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>9000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>9000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>9000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>9000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>9000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>9000</td><td>9000</td></ld<></td></ld<>	<ld< td=""><td>9000</td><td>9000</td></ld<>	9000	9000
			<0.1	2,34215	1,99844	0,352	2,00131										
068 III	1,06	0,80	ppm	592	667	83019	452	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>9000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>9000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>9000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>9000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>9000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>9000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>9000</td><td>9000</td></ld<></td></ld<>	<ld< td=""><td>9000</td><td>9000</td></ld<>	9000	9000

Muestra y Repetición	CI (ppm)	F (ppm)	Al (pp m)	Mg (ppm)	Ca (ppm)	k (ppm)	Na (ppm)	Fe (ppm)	Cu (ppm)	Mn (ppm)	Zn (ppm)	Cd (ppm)	Pb (ppm)	Cr (ppm)	Ni (ppm)	Coliformes totales en NMP/100ml	Coliformes fecales en NMP/100ml
SB1	1,54	0,40	<0.1 ppm	0,75275 452	0,43813 535	0,614 05295	1,80134 108	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<>	<ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<>	≥16.000	≥16.000
SB1 II	1,30	0,42	0,62	0,61524 901	0,39108 336	0,491 29791	1,24	<ld< td=""><td>0,22668 58</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,22668 58	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<>	<ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<>	≥16.000	≥16.000
SB1 III	1,42	0.41	<0.1	0,47112 608	0,15308 94	0,590 56604	1,32459 907	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<>	<ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<>	≥16.000	≥16.000
SB2	0,53	0,42	0,51	1,57778 757	1,49680 511	0,411 86817	1,59910 595	<ld< td=""><td>0,25333 06</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>3800</td><td>3800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,25333 06	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>3800</td><td>3800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>3800</td><td>3800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>3800</td><td>3800</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>3800</td><td>3800</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>3800</td><td>3800</td></ld<></td></ld<>	<ld< td=""><td>3800</td><td>3800</td></ld<>	3800	3800
SB2 II	2,43	0,28	<0.1	0,61524 901	<ld< td=""><td>0,508 14664</td><td>1,55</td><td><ld< td=""><td>0,21602 787</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>3800</td><td>3800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,508 14664	1,55	<ld< td=""><td>0,21602 787</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>3800</td><td>3800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,21602 787	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>3800</td><td>3800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>3800</td><td>3800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>3800</td><td>3800</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>3800</td><td>3800</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>3800</td><td>3800</td></ld<></td></ld<>	<ld< td=""><td>3800</td><td>3800</td></ld<>	3800	3800
SB2 III	3,10	0,53	<0.1	2,34215 592	1,54176 735	0,437 73585	2,31	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>3800</td><td>3800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>3800</td><td>3800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>3800</td><td>3800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>3800</td><td>3800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>3800</td><td>3800</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>3800</td><td>3800</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>3800</td><td>3800</td></ld<></td></ld<>	<ld< td=""><td>3800</td><td>3800</td></ld<>	3800	3800
SB3	1,50	0,30	<0.1	5,18730 718	2,30453 093	0,510 5536	3,35645 954	<ld< td=""><td>0,25333 06</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>6000</td><td>2800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,25333 06	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>6000</td><td>2800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>6000</td><td>2800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>6000</td><td>2800</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>6000</td><td>2800</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>6000</td><td>2800</td></ld<></td></ld<>	<ld< td=""><td>6000</td><td>2800</td></ld<>	6000	2800
SB3 II	0,82	0,20	0,70	4,61436 756	1,77911 705	0,679 04092	3,33786 321	<ld< td=""><td>0,22668 58</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>6000</td><td>2800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,22668 58	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>6000</td><td>2800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>6000</td><td>2800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>6000</td><td>2800</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>6000</td><td>2800</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>6000</td><td>2800</td></ld<></td></ld<>	<ld< td=""><td>6000</td><td>2800</td></ld<>	6000	2800
SB3 III	1,2	0,3	<0.1 ppm	4,9	2,0	0,6	3,3	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<>	<ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<>	≥16.000	≥16.000
SB4	0,82	0,40	<0.1	1,26840 018	1,05765 321	0,888 44658	2,34528 386	<ld< td=""><td>0,24800 164</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>7500</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,24800 164	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>7500</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>7500</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>7500</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>7500</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>9000</td><td>7500</td></ld<></td></ld<>	<ld< td=""><td>9000</td><td>7500</td></ld<>	9000	7500
SB4 II	6,37	0,38	<0.1 ppm	<ld< td=""><td><ld< td=""><td>0,479 2631</td><td>1,26669 647</td><td><ld< td=""><td>0,22135 684</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>1700</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,479 2631</td><td>1,26669 647</td><td><ld< td=""><td>0,22135 684</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>1700</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,479 2631	1,26669 647	<ld< td=""><td>0,22135 684</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>1700</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,22135 684	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>1700</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>1700</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>1700</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>1700</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>9000</td><td>1700</td></ld<></td></ld<>	<ld< td=""><td>9000</td><td>1700</td></ld<>	9000	1700
SB4 III	0,86	0,55	<0.1 ppm	<ld< td=""><td><ld< td=""><td>0,420 75472</td><td>1,44535 974</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>1700</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,420 75472</td><td>1,44535 974</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>1700</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,420 75472	1,44535 974	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>1700</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>1700</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>1700</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>1700</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>1700</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>9000</td><td>1700</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>9000</td><td>1700</td></ld<></td></ld<>	<ld< td=""><td>9000</td><td>1700</td></ld<>	9000	1700
SB5	1,49	0,50	<0.1 ppm	0,58087 263	<ld< td=""><td>0,996 75986</td><td>3,28672 329</td><td><ld< td=""><td>0,22135 684</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>7500</td><td>7500</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,996 75986	3,28672 329	<ld< td=""><td>0,22135 684</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>7500</td><td>7500</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,22135 684	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>7500</td><td>7500</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>7500</td><td>7500</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>7500</td><td>7500</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>7500</td><td>7500</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>7500</td><td>7500</td></ld<></td></ld<>	<ld< td=""><td>7500</td><td>7500</td></ld<>	7500	7500
SB5 II	0,82	0,41	<0.1 ppm	0,67254 297	<ld< td=""><td>1,232 6421</td><td>3,35</td><td><ld< td=""><td>0,22135 684</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>7500</td><td>7500</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	1,232 6421	3,35	<ld< td=""><td>0,22135 684</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>7500</td><td>7500</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,22135 684	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>7500</td><td>7500</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>7500</td><td>7500</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>7500</td><td>7500</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>7500</td><td>7500</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>7500</td><td>7500</td></ld<></td></ld<>	<ld< td=""><td>7500</td><td>7500</td></ld<>	7500	7500
SB5 III	1,15	0,46	<0.1 ppm	0,53609 24	<ld< td=""><td>1,371 69811</td><td>3,19069 319</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>7500</td><td>7500</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	1,371 69811	3,19069 319	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>7500</td><td>7500</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>7500</td><td>7500</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>7500</td><td>7500</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>7500</td><td>7500</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>7500</td><td>7500</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>7500</td><td>7500</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>7500</td><td>7500</td></ld<></td></ld<>	<ld< td=""><td>7500</td><td>7500</td></ld<>	7500	7500

Muestra y Repetición	CI (ppm)	F (ppm)	Al (pp m)	Mg (ppm)	Ca (ppm)	k (ppm)	Na (ppm)	Fe (ppm)	Cu (ppm)	Mn (ppm)	Zn (ppm)	Cd (ppm)	Pb (ppm)	Cr (ppm)	Ni (ppm)	Coliformes totales en NMP/100ml	Coliformes fecales en NMP/100ml
SB8	1.43	0.43	<0.1	1,48611 723	1,18312 518	0,688 66877	1,85945 463	<ld< td=""><td>0,24267 268</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,24267 268	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<>	<ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<>	≥16.000	≥16.000
SB8 II	1,67	0,28	<0.1 ppm	1,62362 274	1,08117 92	1,300 03703	<ld< td=""><td><ld< td=""><td>0,23734 372</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,23734 372</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,23734 372	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<>	<ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<>	≥16.000	≥16.000
SB8 III	1,40	0,90	<0.1 ppm	1,32868 142	0,91732 827	0,777 35849	2,03321 357	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,552 8169</td><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,552 8169</td><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,552 8169</td><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,552 8169</td><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,552 8169</td><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<>	0,552 8169	<ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<>	<ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<>	≥16.000	≥16.000
SB9	2,42	0,27	<0.1 ppm	0,68400 176	0,45381 934	0,695 88965	1,91524 363	<ld< td=""><td>0,24800 164</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,24800 164	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<>	<ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<>	≥16.000	≥16.000
SB9 II	1,89	0,47	<0.1 ppm	2,31115 029	1,92027 302	0,570 72764	2,57	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<>	<ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<>	≥16.000	≥16.000
SB9 III	0,67	0,50	<0.1 ppm	<ld< td=""><td>0,17172 938</td><td>1,167 92453</td><td>2,56182 631</td><td>1,03710 938</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,552 8169</td><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,17172 938	1,167 92453	2,56182 631	1,03710 938	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,552 8169</td><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,552 8169</td><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,552 8169</td><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,552 8169</td><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<>	0,552 8169	<ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<>	<ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<>	≥16.000	≥16.000
SB11	0,73	0,33	<0.1 ppm	0,89026 003	0,64202 73	1,466 11739	3,35181 046	<ld< td=""><td>0,25333 06</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9.000</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,25333 06	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9.000</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9.000</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9.000</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>9.000</td><td>2.800</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>9.000</td><td>2.800</td></ld<></td></ld<>	<ld< td=""><td>9.000</td><td>2.800</td></ld<>	9.000	2.800
SB11 II	0,69	0,41	<0.1 ppm	1,24548 259	0,63418 53	1,733 29013	3,34	<ld< td=""><td>0,24267 268</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9.000</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,24267 268	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9.000</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9.000</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9.000</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>9.000</td><td>2.800</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>9.000</td><td>2.800</td></ld<></td></ld<>	<ld< td=""><td>9.000</td><td>2.800</td></ld<>	9.000	2.800
SB11 III	1,84	0,30	<0.1 ppm	0,36717 998	0,21832 931	2,237 73585	3,19069 319	2,20507 813	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9.000</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9.000</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9.000</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>9.000</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>9.000</td><td>2.800</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>9.000</td><td>2.800</td></ld<></td></ld<>	<ld< td=""><td>9.000</td><td>2.800</td></ld<>	9.000	2.800
SB12	0,54	0,43	<0.1 ppm	0,47774 35	<ld< td=""><td>0,368 54286</td><td>1,07143 496</td><td><ld< td=""><td>0,25333 06</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,368 54286	1,07143 496	<ld< td=""><td>0,25333 06</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,25333 06	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<>	<ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<>	≥16.000	≥16.000
SB12 II	1,10	0,34	<0.1 ppm	1,05068 312	0,52439 733	1,061 74782	3,01	<ld< td=""><td>0,22668 58</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,22668 58	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<>	<ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<>	≥16.000	≥16.000
SB12 III	2,50	0,23	<0.1 ppm	0,36717 998	<ld< td=""><td>0,437 73585</td><td>0,93041 802</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,437 73585	0,93041 802	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<>	<ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<>	≥16.000	≥16.000
SB15	2,20	0,25	<0.1 ppm	0,63816 659	0,58713 331	0,378 17071	1,24112 651	<ld< td=""><td>0,25333 06</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,25333 06	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<>	<ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<>	≥16.000	≥16.000
SB15 II	1,30	0,28	<0.1 ppm	1,70383 429	1,29291 316	1,179 68895	3,31	<ld< td=""><td>0,22135 684</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,22135 684	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<>	<ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<>	≥16.000	≥16.000
SB15 III	2,51	0,60	<0.1 ppm	0,62704 524	0,47928 892	0,454 71698	1,25624 398	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<></td></ld<>	<ld< td=""><td>≥16.000</td><td>≥16.000</td></ld<>	≥16.000	≥16.000

Muestra y Repetición	CI (ppm)	F (ppm)	Al (pp m)	Mg (ppm)	Ca (ppm)	k (ppm)	Na (ppm)	Fe (ppm)	Cu (ppm)	Mn (ppm)	Zn (ppm)	Cd (ppm)	Pb (ppm)	Cr (ppm)	Ni (ppm)	Coliformes totales en NMP/100ml	Coliformes fecales en NMP/100ml
SB16	5,51	0,19	<0.1 ppm	0,78713 089	1,70069 707	0,541 8441	1,55261 511	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<>	<ld< td=""><td>2.800</td><td>2.800</td></ld<>	2.800	2.800
SB16 II	5,33	0,26	<0.1 ppm	0,56941 384	<ld< td=""><td>0,849 9352</td><td>2,25</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,849 9352	2,25	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<>	<ld< td=""><td>2.800</td><td>2.800</td></ld<>	2.800	2.800
SB16 III	1,60	0,76	<0.1 ppm	0,44513 956	<ld< td=""><td>0,590 56604</td><td>1,87371 834</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,590 56604	1,87371 834	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>2.800</td><td>2.800</td></ld<></td></ld<>	<ld< td=""><td>2.800</td><td>2.800</td></ld<>	2.800	2.800

Anexo 6. Estaciones con sus respectivas fechas y repeticiones, valores de coliformes fecales ICA, rango ICA, calidad ICA y rango ABI

Muestra y					
Repetición	Fecha	Coliformes fecales ICA	Rango ICA	Calidad ICA	Rango ABI
058	15/09/2008	9			
058 II	24/10/2008	9			
058 III	25/11/08	9	53	media	82
060	15/09/2008	17			
060 II	24/10/2008	17			
060 III	25/11/08	17	61	media	57
061	23/09/2008	99			
061 II	07/11/2008	99			
061 III	5/12/08	99	84	buena	42
062	23/09/2008	58			
062 II	07/11/2008	58			
062 III	5/12/08	58	74	buena	53
063	23/09/08	36			
063 II	07/11/2008	36			
063 III	5/12/08	36	69	media	89
064	15/09/2008	9			
064 II	07/11/2008	9			
064 III	28/11/08	9	61	media	59
065	15/09/2008	14			
065 II	24/10/2008	14			
065 III	25/11/08	14	60	media	55
066	19/11/2008	17			
066 II	07/11/2008	17			
066 III	28/11/2008	17	64	media	76
067	23/08/2008	39			
067 II	18/11/2008	39			

067 III	03/12/2008	39	63	media	60
068	19/10/2008	11			
068 II	18/11/2008	11			
068 III	28/11/08	11	60	media	49
SB1	02/10/2008	9			
SB1 II	14/11/2008	9			
SB1 III	19/12/2008	9	65	media	33
SB2	14/11/2008	15			
SB2 II	19/09/2008	15			
SB2 III	4/12/08	15	66	media	64
SB3	19/09/2008	17			
SB3 II	18/11/2008	17			
SB3 III	21/11/2008	17	63	media	69
SB4	15/10/2008	19			
SB4 II	21/11/2008	19			
SB4 III	4/12/08	19	62	media	79
SB5	15/10/2008	11			
SB5 II	21/11/2008	11			
SB5 III	01/11/2009	11	62	media	69
SB8	02/10/2008	9			
SB8 II	14/10/2008	9			
SB8 III	27/11/08	9	63	media	90
SB9	14/11/2008	9			
SB9	02/10/2008	9			
SB9 III	27/11/08	9	58	media	70
SB11	02/10/2008	17			
SB11 II	14/11/2008	17			
SB11 III	27/11/08	17	59	media	49
SB12	02/10/2008	9			
SB12 II	14/09/2008	9			
SB12 III	27/11/08	9	58	media	58
SB15	15/09/2008	9			
SB15 II	07/11/2008	9			

SB15 III	25/11/08	9	58	media	70
SB16	24/10/2008	17			
SB16 II	21/11/2008	17			
SB16 III	4/12/08	17	65	media	45