

UNIVERSIDAD DEL AZUAY FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA MECÁNICA

ESTUDIO PARA LA IMPLEMENTACIÓN DE UNA LÍNEA DE REVISIÓN TÉCNICA PARA VEHÍCULOS LIVIANOS

Trabajo de grado previo a la obtención del Título de Ingeniero Automotriz

Autor:

César Geovanny Banegas Méndez

Director:

José Fernando Muñoz Vizhñay

Cuenca – Ecuador 2013

AGRADECIMIENTO

Agradezco a Dios por haberme guiado a lo largo de estos años y haber puesto en el camino obstáculos que me permitieron crecer como persona, así también a mi familia, pilar fundamental en mi vida, por supuesto a la Universidad del Azuay con su cuerpo docente de la Facultad de Ciencia y Tecnología que supieron impartir sus conocimientos sin egoísmo alguno.

DEDICATORIA

El presente trabajo va dedicado a mis padres quienes confiaron en mí al comenzar esta etapa que está por culminar con éxito, también a mi hermano y a todos mis amigos y amigas que de una u otra manera me ayudaron este tiempo y fueron parte fundamental de la cristalización de esta meta

ÍNDICE DE CONTENIDOS

AGRADECIMIENTO	ii
DEDICATORIA	iii
ÍNDICE DE CONTENIDOS	iv
ÍNDICE DE FIGURAS	vi
ÍNDICE DE TABLAS	vii
ÍNDICE DE ANEXOS	ix
RESUMEN	X
ABSTRACT	xi
INTRODUCCIÓN	1
CAPITULO I: FUNDAMENTO LEGAL	
1.1 Análisis de Ordenanza municipal vigente	2
1.2 Análisis de la Norma Ecuatoriana	4
1.3 Análisis de la Ley Nacional de Tránsito	5
CAPITULO II: REQUERIMIENTOS TÉCNICOS	
2.1 Maquinaria y equipo	7
2.1.1 Regloscopio:	7
2.1.2 Alineador al paso:	8
2.1.3. Frenómetro:	
2.1.4. Banco de suspensiones	11
2.1.5. Detector de holguras	
2.1.6 Sonómetro	14
2.1.7 Analizador de gases:	
2.1.8 Opacímetro de flujo parcial	
2.2 Requerimientos de infraestructura	21
2.2.1 Ventilación:	21
2.2.2 Iluminación:	22
2.2.3 Espacio requerido por la Línea:	
2.3 Hojas y fichas de control vehicular	23

2.3.1 Inspección visual 24
2.3.2 Inspección del alumbrado
2.3.3 Inspección de los frenos
2.3.4 Inspección de la dirección
2.3.4 Inspección de ejes y suspensión. 32
2.3.5 Inspección de chasis, motor y transmisión
CAPITULO III: ANALISIS DE COSTOS
3.1 Presupuesto de equipos
3.2 Adecuación de infraestructura
3.3 Costos de operación de la línea
3.3.1 Costos de mano de obra
3.3.2. Costos de funcionamiento del equipo
3.4 Costos de Mantenimiento
CONCLUSIONES
RECOMENDACIONES. 54
BIBLIOGRAFIA55

ÍNDICE DE FIGURAS

Figura 2.1_Regloscopio MAHA modelo Lite 1.1	8
Figura 2.2 _ Alineador al paso	9
Figura 2.3 _ Frenómetro empotrado en el piso	10
Figura 2.4 _ Banco de suspensiones y display de visualización	12
Figura 2.5 _ Banco de detección de holguras PMS-MAHA	13
Figura 2.6 _ Sonómetro modelo CA832	15
Figura 2.7 _ Equipo analizador de gases MGT 5 - MAHA	16
Figura 2.8 _ Opacímetro MAHA - MOD	19
Figura 2.9 _ Disposición del la Línea de revisión	23
Figura 3.1 _Taller del Colegio Politécnico Kennedy	38
Figura 3.2_ Vista actual desde el interior del Taller de Mecánica del Politécnico)
Kennedy	39

ÍNDICE DE TABLAS

Tabla 2.1 _ Datos técnicos del modelo Lite 1.1	8
Tabla 2.2_ Especificaciones para el alineador al paso	9
Tabla 2.3_Especificaciones para el frenómetro.	. 11
Tabla 2.4 _ especificaciones para el banco de suspensiones MSD 300	. 12
Tabla 2.5 _ Requerimientos y especificaciones del detector de holguras PMS-	
MAHA	. 14
Tabla 2.6 _ Comparación de especificaciones y requerimientos del sonómetro	. 15
Tabla 2.7 _ Características del MGT 5 con respecto a la norma NTE 2349	. 19
Tabla 2.8 _ Especificaciones y del opacímetro MAHA – MOD	. 21
Tabla 3.1_ valores de los equipos requeridos	. 38
Tabla 3.2 _ Costo estimado de las adecuaciones	. 40
Tabla 3.3 _Costo estimado de los sueldos	. 41
Tabla 3.4 _ Mantenimiento del analizador de gases	. 44
Tabla 3.5 _ Mantenimiento del opacímetro	. 45
Tabla 3.6 _ Costos estimados del mantenimiento del MGT 5	. 45
Tabla 3.7 _ Mantenimiento del frenómetro	. 46
Tabla 3.8 _ Costos estimados del mantenimiento del Frenómetro	. 47
Tabla 3.9 _ Mantenimiento del Luxómetro	. 47
Tabla 3.10 _ Costos estimados del mantenimiento del Luxómetro	. 47
Tabla 3.11 _ Mantenimiento del Banco de suspensiones	. 48
Tabla 3.12 _ Costos estimados del mantenimiento del Banco de suspensiones	. 48
Tabla 3.13 _ Mantenimiento del Alineador al paso	. 49
Tabla 3.14 _ Costos estimados del mantenimiento del Alineador al paso	. 49
Tabla 3.15 _ Mantenimiento del sonómetro	. 50
Tabla 3.16 _ Costos estimados del mantenimiento del sonómetro	. 50

Tabla 3.17 _ Mantenimiento del detector de holguras	51
Tabla 3.18 _ Costos estimados del mantenimiento del detector de holguras	51
Tabla 3.19 _ Costos y duración estimada del mantenimiento general de la línea	52

ÍNDICE DE ANEXOS

ANEXOS	55
Anexo 1: Ordenanza actual vigente	58
Anexo 2: Norma NTE INEN 23 49:2003	62
Anexo3: Ley Nacional de Tránsito, Transporte y seguridad Vial	65

RESUMEN

ESTUDIO PARA LA IMPLEMENTACIÓN DE UNA LÍNEA DE REVISIÓN TÉCNICA PARA VEHÍCULOS LIVIANOS

Para elaborar una guía de procesos que permita hacer más prolija la Revisión Técnica Vehicular dentro de talleres particulares y analizar costos de equipos y adecuaciones para una línea de revisión de este tipo, el presente trabajo comprendió la investigación de las Normas legales vigentes y aplicables a este campo, tanto a nivel local como a nivel nacional, para posteriormente centrarse en las máquinas y equipos que se necesitan, tomando como ejemplo los Centros de Revisión Técnica Vehicular existentes en nuestra ciudad. El trabajo también comprende información sobre los procesos, costos y mantenimientos dentro de la línea. Se concluyó que una línea de estas es muy costosa, pero con los datos que se proporciona en este documento se puede iniciar con la construcción de un proyecto de este tipo.

Palabras claves: estudio, implementación, revisión técnica, vehículos livianos, costos, equipos.

Ing. Hemán Viteri

JUNTA ACADÉMICA

Ing. Fernando Muñoz

DIRECTOR

Sr. Geovanny Banegas

ESTUDIANTE

ABSTRACT

STUDY FOR THE IMPLEMENTATION OF A TECHNICAL REVIEW EQUIPMENT FOR LIGHTWEIGHT VEHICLES

In order to develop a process guide that allows a detailed Vehicle Technical Review in private workshops and to analyze the costs of the tools and the adjustments for this type of equipment, we studied the current legal Regulations both local and national. Next, we focused on the machines and the equipment needed for this purpose and used the Vehicle Technical Revision Workshops in our city as an example. The study also contains information regarding processes, costs, and maintenance. We concluded that this line is very expensive; however, with the data provided in this document it is possible to begin with the construction of this type of project.

Key Words: study, implementation, technical revision, lightweight vehicles, costs, equipment.

Ing. Hernán Viteri

ACADEMIC BOARD

Ing. Fernando Muñoz DIRECTOR

STUDENT

Translated by, Diana Lee Rodas OPTO. IDIOMA"

Banegas Méndez César Geovanny Trabajo de Graduación Ing. José Fernando Muñoz Vizhñay Junio 2013

ESTUDIO PARA LA IMPLEMENTACIÓN DE UNA LÍNEA DE REVISIÓN TÉCNICA PARA VEHÍCULOS LIVIANOS

INTRODUCCIÓN

En la ciudad de Cuenca, en agosto de 2005 el I. Concejo Cantonal, expidió la "Ordenanza que norma el establecimiento del Sistema de Revisión Técnica Vehicular de Cuenca y la Delegación de competencias a CUENCAIRE", de ahí entonces se hizo necesario aplicar y adoptar otras normas para detallar los procedimientos aplicados.

Para noviembre de 2010, la Corporación para la calidad del Aire CUENCAIRE otorga todas sus competencias, obligaciones y funciones a la Empresa de Movilidad, Tránsito y Transporte Terrestre de Cuenca EMOV EP

Una vez conocido esto se comenzó con la revisión obligatoria anual de los vehículos que circulan en el Cantón Cuenca.

La conocida como Revisión Técnica de Vehículos o RTV por sus siglas, tiene como finalidad garantizar las condiciones mínimas de seguridad de los vehículos que circulan por vías terrestres, basadas en los criterios tanto de diseño y fabricación de los automotores, y además comprobar que cumplen con la normativa técnica que les corresponde cumplir y así también que tienen un nivel de emisiones de gases inferior a los límites establecidos en la normativa vigente.

Dentro de la los manuales de la RTV que se manejan a nivel tanto nacional como internacional (Argentina), uno de los puntos fundamentales, es que la Revisión se deberá realizar sin el desmontaje de piezas o elementos del vehículo, para evitar sobre todo malos entendidos y altercados con los propietarios de los vehículos

CAPITULO I

FUNDAMENTO LEGAL

En este capítulo se realiza un análisis de la Norma correspondiente, y la ley que se aplican dentro del proceso de Revisión Técnica Vehicular que deben ser aplicadas a nivel nacional y se incluye así también la Ordenanza Municipal que rige dentro del Cantón Cuenca.

En la ciudad de Cuenca el crecimiento del número de vehículos ha sido vertiginoso en estos últimos años, y por consiguiente, los problemas relacionados con esto se han multiplicado, hablamos entonces de problemas relacionados con el tráfico, seguridad vial y también la contaminación ambiental. Ante dicha problemática en esta urbe se creó por parte de la Ilustre Municipalidad la Unidad Municipal de Tránsito y Transporte (UMT) que es la encargada de organizar, planificar y regular el tránsito y transporte terrestre en el cantón con la finalidad de brindar un mejor servicio a la comunidad cuencana.

Una de las acciones que con mayor responsabilidad asumió la municipalidad ante este crecimiento del parque automotor, para minimizar el daño que esto causa en los habitantes y el ambiente, fue la de verificar el estado de los vehículos y para esto se comenzó con la implementación de Líneas de Revisión Técnica Vehicular en centros especializados.

1.1 Análisis de Ordenanza municipal vigente

EL Consejo Cantonal de Cuenca expidió una ordenanza en agosto del 2005, la cual estableció el sistema de RTV y la delegación de competencias a CUENCAIRE misma que se transcribe en el Anexo 1:

Lo Ordenanza se fundamenta en los artículos de la Constitución los cuales garantizan el derecho de las personas a vivir en un espacio sano en armonía con el Medio Ambiente y que dicha acción es de interés público. Además la misma Carta Magna delega estas competencias a cada uno de los municipios dentro de su jurisdicción y les da la libertad para poder regular y controlar el tránsito, pudiendo incluso delegar funciones a otras Instituciones según la necesidad de la comunidad.

Dicha ordenanza se ampara también en la Ley de Tránsito, Transporte y Seguridad Vial la cual dicta que se debe seguir un proceso y obtener un certificado obligatorio para la matriculación vehicular.

La Ordenanza como tal dicta que el ámbito de aplicación será todo el territorio del Cantón Cuenca y que deberá ser aplicado para:

- Revisión mecánica y de seguridad.
- Control de emisión de gases contaminantes.
- Control de Ruidos.
- Evaluación de documentos para revisar la legalidad del propietario del vehículo.

Así mismo se establece que debe ser obligatoria la revisión para todos los vehículos que circulen dentro del cantón y que los procesos deben ser basados en principios de concentración, universalidad, celeridad y eficiencia. Y para esto se encomienda a los Centros de Revisión Vehicular como los entes encargados de realizar las inspecciones cumpliendo con las normas establecidas por la Ley.

Se indica que la implementación de este sistema aplica desde el año 2006 y los subsiguientes.

La Ordenanza que se menciona fue aprobada y publicada el 29 de agosto del año 2005 por el Concejo Cantonal presidido en ese entonces por el Dr. Jorge Piedra Ledesma en ese entonces alcalde encargado de Cuenca.

La Ordenanza analizada da el fundamento legal para que CUENCAIRE entre en operaciones, sin embargo, a raíz de la Nueva Constitución expedida en Montecristi -Manabí se tuvo que cambiar esto debido a que se prohíbe expresamente en la Carta Magna la creación de corporaciones con fondos públicos, entonces para noviembre de 2010, la Corporación para la calidad del Aire CUENCAIRE otorga todas sus competencias, obligaciones y funciones a la Empresa de Movilidad, Tránsito y Transporte Terrestre de Cuenca EMOV EP

1.2 Análisis de la Norma Ecuatoriana

A nivel Nacional en lo referente a especificaciones y para nuestro estudio tomaremos la Norma NTE INEN 23 49:2003 transcrita en el Anexo 2.

La Norma Ecuatoriana mencionada anteriormente determina todo lo referente a procedimientos para la revisión en los Centros especializados, siendo efectiva en Todo el territorio Ecuatoriano, incluye las definiciones de los significados de autoridad competente, bancos de pruebas, Luxómetros, Analizadores de gases, Regloscopios, sonómetros, etc.

Así mismo la Norma es muy clara respecto a las funciones de los Centros de Revisión Vehicular y hace notar que son organizaciones que deben obtener una certificación de cumplimiento de especificaciones de sus equipos, expedida por la casa fabricante del equipamiento, y esto debe ser presentado a la autoridad competente para que sea verificado, tomando en cuenta que la autoridad competente en nuestra ciudad sería la Empresa Municipal de Movilidad.

La Norma hace referencia también a que los resultados tanto de la inspección visual como la de holguras, así como la identificación del vehículo sean documentados electrónicamente en terminales dentro de la misma línea, siendo estos resultados desconocidos para el operador y para el propietario hasta que haya terminado íntegramente la revisión del automóvil. La Norma recomienda así mismo que todo deba ser ingresado a una computadora central que tenga niveles de seguridad que no permitan la manipulación de datos de una o varias revisiones.

En los centros de Revisión Técnica tanto de Mayancela como de Capulispamba se maneja un sistema informático con altos niveles de seguridad, que no permiten que los datos sean manipulados y que además estas mediciones sean guardadas en una gran base de datos y si el usuario desea puede pedir el historial de revisiones de su vehículo de hace 5 años atrás.

Otro punto relevante de la Norma es que indica que absolutamente todos los resultados, incluidos los de la inspección visual deben ser impresos y presentados al propietario sin ningún rasgo caligráfico, tachón, borrón alteración de cualquier tipo ya que esto dejará sin validez el certificado.

Actualmente en los Centros de Revisión de Cuenca, tanto los directivos como los operarios están consientes de que se debe cumplir con esta Norma ya que cuando ingresa personal se da una capacitación respecto al tema, y además en sus manuales se incluye el procedimiento que se sigue durante la inspección vehicular

Es por eso que las personas que quieran empezar con la implementación de una línea de revisión conozcan muy bien esta reglamentación para evitar ser sancionados o clausurados por la autoridad competente.

1.3 Análisis de la Ley Nacional de Tránsito

Debido a la naturaleza de nuestro trabajo y por razones obvias se transcribirán los artículos inherentes al control y responsabilidades de los centros de revisión incluidos en la Ley Nacional de Tránsito, transporte y Seguridad Vial del la República del Ecuador y se incluyen en el Anexo 3.

La actual ley Nacional de Tránsito, Transporte y Seguridad Vial fue dada y suscrita en el Centro Cívico "Ciudad Alfaro" ubicado en el Cantón Montecristi, provincia de Manabí a los veinte y cuatro días del mes de julio de dos mil ocho y se basó en la Ley existente en ese entonces aprobada en 1996

En la parte que nos concierne expresa que están sujetas a esta Ley todas las personas que usen o transiten las vías a nivel nacional y que además se establezcan niveles mínimos de seguridad tanto activa como pasiva para garantizar la vida y el normal desenvolvimiento de las actividades cotidianas, de ahí que surge la necesidad de crear centros especializados y debidamente regulados que tengan como misión revisar automotores que circulan dentro de las vías del país.

Se indica también que la Comisión Nacional autorizará el funcionamiento de los Centros de Revisión y Control Técnico Vehicular en todo el país y otorgará los permisos correspondientes según exija la Ley, siendo estos los únicos autorizados para efectuar las revisiones previas al otorgamiento de la matrícula. En este punto hay que acotar que actualmente se han delegado estas funciones a los municipios a través de las empresas públicas de movilidad pero actualmente los Centros de Revisión funcionan efectivamente sólo en el cantón Cuenca y en el Distrito Metropolitano de Quito.

Para el resto de cantones del país la Revisión se realiza únicamente por agentes de cada comisión provincial de tránsito y que al ser realizada por una sola persona y sin equipos mecatrónicos no están efectiva como la que se realiza en los Centros de Revisión Vehicular.

Hay que acotar además que en la Ley anterior (1996) existían más artículos relacionados con los Centros de Revisión, no así la expedida en 2008 que delega esta competencia y reglamentos a las ordenanzas municipales y normas especializadas para este campo.

Banegas Méndez 7

CAPITULO II

REQUERIMIENTOS TECNICOS

Los equipos requeridos para los Centros de Revisión Vehicular deben cumplir satisfactoriamente con la Norma Técnica INEN NTE 23 49.

Hay que acotar además que en los centros de revisión existentes en el país se manejan equipos cuya marca es MAHA, por este motivo se hará una referencia sobre todo a esta casa fabricante debido a que si en un taller queremos implementar una Línea de Revisión igual a la de los RTV municipales, deberíamos usar los mismos equipos o en su defecto, equipos similares pero homologados para evitar errores en medición y los inconvenientes que pueden acarrear el hecho de usar equipos de cualquier proveedor.

2.1 Maquinaria y equipo

- 2.1.1 Regloscopio: el regloscopio es un equipo que nos permite medir la proyección del haz de luz del faro tanto en alumbrado de cruce como de carretera. Se hará a continuación una descripción del Regloscopio marca MAHA modelo Lite 1.1 (Figura
- 2.1) que es el recomendado para líneas de revisión.
- a. Descripción del equipo:
- Especialmente adecuado para líneas de revisión.
- Móvil sobre rieles y una columna rígida que permiten precisión.
- Posee espejo giratorio para alinear el aparato con el vehículo.
- Bloqueo automático de columna y carcasa.
- Control sencillo de la pantalla de medición desde la parte posterior del aparato mediante el espejo de desviación.
- Permite una medición exacta de la intensidad de los faros.
- b. Especificaciones:

En la Tabla 2.1 Podemos observar los datos técnicos requeridos para este equipo.

PARAMETRO	REQUERIMIENTO NORMA INEN 2349	ESPECIFICACIONES DE FABRICANTE
Rango de medición	De 0 a mínimo 25 000 candelas	De 0 a 50 000 candelas
Alineación con el eje del vehículo	Automática	Automática

Tabla 2.1 _ Datos técnicos del modelo Lite 1.1

Figura 2.1_Regloscopio MAHA modelo Lite 1.1¹

2.1.2 Alineador al paso: un alineador al paso es un equipo que nos permite la rápida comprobación de la geometría axial, delantera y posterior.

a. Descripción del equipo:

Los alineadores al paso de la serie MINC I sirven para la rápida comprobación de geometrías tanto delantera como posterior, la placa para pruebas va montada en el suelo y cuando el vehículo pasa por encima ésta se desplaza a izquierda o derecha. Esta desviación es mostrada en un display, el paso de la rueda positivo o negativo se representa mediante luces de señalización o gráficos correspondientes en la pantalla. Los alineadores al paso de la serie MINC I (Marca MAHA, figura 2.2) son adecuados para vehículos de hasta 3 toneladas.

¹ Fuente: http://www.capris.cr/index.php?route=product/categorycapris&catl1=0003&catl2=0062

Figura 2.2 $_$ Alineador al paso 2

b. Especificaciones:

En la tabla 2.2 podemos apreciar los requerimientos de la norma y las especificaciones del fabricante:

PARAMETRO	REQUERIMIENTO NORMA INEN 2349	ESPECIFICACIONES DE FABRICANTE
Tipo	Automática, de placa deslizante y empotrada a ras del piso	Automática, de placa deslizante y empotrada a ras del piso
Rango mínimo de medición	De – 15 a + 15 m/km	De – 20 a + 20 m/km
Velocidad aproximada de paso	4 km/h	-
Capacidad mínima portante	1500 kg para vehículos livianos	2 000 kg
Valor de una división de escala (resolución)	1 m/km	1 m/km

Tabla 2.2_ Especificaciones para el alineador al paso

² Fuente: manual virtual equipos MAHA.

- 2.1.3. Frenómetro: es aquel equipo que permite medir automáticamente la eficiencia total de frenado en porcentaje, tanto para el freno de servicio como de parqueo, además el desequilibrio dinámico entre las ruedas de un mismo eje en porcentaje y fuerza de frenado en daN. Debe ser incluso capaz de realizar pruebas en vehículos equipados con ABS y sistemas de transmisión permanente a las cuatro ruedas, con cajas de cambio manuales y automáticas.
- a. Descripción del equipo:
- Indicador analógico para visualizar los valores de fuerza de frenada.
- Banco de pruebas pre cableado con 12 m de cable.
- Control de programa mediante electrónica con microprocesador de 32 bits.
- Control de marcha electrónico y ayuda para salida.
- Conexión automática retardada al entrar en el banco de pruebas.
- Desconexión automática en caso de resbalamiento con bloqueo de las agujas.
- Desconexión automática al salir del banco de pruebas.

En la figura 2.3 podemos observar un frenómetro modelo MBT 2 100, el cual es adecuado para nuestro estudio.

Figura 2.3 _ Frenómetro empotrado en el piso³

³ Fuente: http://www.capris.cr/index.php?route=product/categorycapris&catl1=0003&catl2=0062

b. Especificaciones:

La tabla 2.3 deja ver la comparación de requerimientos del frenómetro con respecto a la Norma Técnica Ecuatoriana INEN 2 349.

PARAMETRO	REQUERIMIENTO NORMA INEN 2349	ESPECIFICACIONES DE FABRICANTE
Tipo de Frenómetro	De rodillos con superficie antideslizante, empotrado a ras del piso y para la prueba de un eje por vez.	De rodillos con superficie antideslizante, empotrado a ras del piso y para la prueba de un eje por vez.
Coeficiente mínimo de fricción	0,8 en seco y en mojado.	-
Carga mínima de absorción sobre rodillos	3 000 kg para vehículos livianos	3 500 kg para vehículos livianos
Valor de una división de escala (resolución)	1 % en eficiencia y desequilibrio; 0,1 daN en fuerza de frenado	-
Dispositivos de seguridad	Parada automática en caso de bloqueo de ruedas. Puesta a cero automático luego de cada prueba.	Parada automática en caso de bloqueo de ruedas. Puesta a cero automático luego de cada prueba.

Tabla 2.3_Especificaciones para el frenómetro.

- 2.1.4. Banco de suspensiones: es un dispositivo mecatrónico que está conformado por dos placas vibratorias y sensores, que permiten verificar el correcto funcionamiento del conjunto se la suspensión de un vehículo mediante la determinación de variables como eficiencia porcentual, amplitud de oscilaciones, etc. a. Descripción del equipo:
- El equipo usado es el modelo MSD 3 000 (Figura 2.4) de igual manera marca MAHA, el cual permite:
 - Comprobación rápida y física de la amortiguación del eje.
 - Inicio automático del equipo al someter a carga las dos placas de pruebas.

- Procedimiento de prueba totalmente automático.
- Determinación automática del peso axial y total del vehículo.
- Preparación para la búsqueda de ruidos con control de frecuencia.

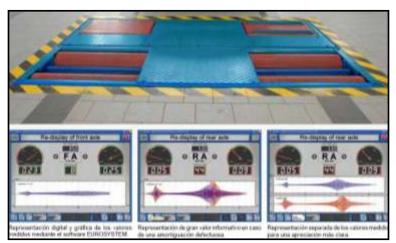


Figura 2.4 $_$ Banco de suspensiones y display de visualización 4

b. Especificaciones:

En la tabla 2.4 podemos observar los requerimientos técnicos para este equipo.

PARAMETRO	REQUERIMIENTO	ESPECIFICACIONES DE
FARAMETRO	NORMA INEN 2349	FABRICANTE
	De doble placa oscilante y	De doble placa oscilante y
	empotrada a nivel del piso, de	empotrada a nivel del piso,
Tipo	amplitud y frecuencia de	de amplitud y frecuencia de
	oscilación variables	oscilación variables
	automáticas.	automáticas.
Ancho de vía del	850 mm mínimo interno	880 mm mínimo interno
vehículo	2 000 máximo externo	2 200 mm máximo externo
Capacidad portante	1000 kg por eje	2 500 kg por eje
mínima		
Valor de una	1 % en la eficiencia; 1 mm en	1 % en la eficiencia; 1 mm en
división de escala		·
(resolución)	la amplitud.	la amplitud.

Tabla 2.4 _ especificaciones para el banco de suspensiones MSD 300

⁴Fuente: http://www.capris.cr/index.php?route=product/categorycapris&catl1=0003&catl2=0062

2.1.5. Detector de holguras: es aquel equipo que permite dar un diagnóstico del estado de rodamientos y desgaste en los elementos de la dirección y de la suspensión (Figura 2.5).

Figura 2.5 _ Banco de detección de holguras PMS-MAHA⁵

a. Descripción del equipo:

- Determinación rápida de defectos y desgaste en piezas de dirección, apoyos de rueda, amortiguación y suspensiones.
- Manejo con un solo hombre.
- Comprobación del juego del apoyo de la rueda sin elevar el vehículo.
- Construcción muy robusta.
- Dos placas de prueba montadas a ras de suelo en los cimientos.
- Movimiento vigoroso uniforme con accionamiento hidráulico.
- El accionamiento de serie es con una lámpara con cable y opcional sin cable.

b. Especificaciones:

La tabla 2.5 muestra la comparación de requerimientos y especificaciones.

⁵ Fuente: http://www.maha.de/cps/rde/xchg/SID-3A86545C-998B5CF9/maha_internet/hs.xsl/Productos.htm

PARAMETRO	REQUERIMIENTO	ESPECIFICACIONES DE
FARAMETRO	NORMA INEN 2349	FABRICANTE
	De dos placas, con	De dos placas, con
	movimientos longitudinales y	movimientos longitudinales y
	transversales, iguales y	transversales, iguales y
	contrarios.	contrarios.
Tipo de banco	Accionamiento de placas con	Accionamiento de placas con
	control remoto	control remoto
	Estará empotrado al	Estará empotrado al
	pavimento sobre la fosa o	pavimento sobre la fosa o
	incorporado al elevador.	incorporado al elevador.
Capacidad portante	1 000 kg por placa para	2 500 kg por placa
mínima	vehículos livianos	2 300 kg por praca
Iluminación para	Lámpara halógena de alta	Lámpara halógena de alta
inspección visual	potencia regulable.	potencia regulable.

Tabla 2.5 _ Requerimientos y especificaciones del detector de holguras PMS-MAHA

2.1.6 Sonómetro: cabe destacar que el sonómetro es un equipo que nos puede permitir cuantificar el nivel de presión sonora. En esencia se compone de un elemento primario (micrófono), además circuitos de conversión, manipulación y transmisión de variables (módulo de procesamiento electrónico) y un elemento de presentación o unidad de lectura.

a. Descripción del equipo:

Este es un sonómetro es el modelo CA832 de la casa AEMC instruments (figura 2.6), es un aparato portable, compatible con sistemas adicionales de software por ejemplo el EUROSYSTEM, puede ser utilizado con una mano o montado sobre un trípode como el de los fotógrafos.

Figura 2.6 _ Sonómetro modelo CA832⁶

b. Especificaciones:

PARAMETRO	REQUERIMIENTO	ESPECIFICACIONES DE
	NORMA INEN 2349	FABRICANTE
Características generales	Filtros de ponderación requeridos tipo A, que cumpla con la recomendación internacional de la OIML R 88, que será demostrado por certificación del fabricante.	De dos placas, con movimientos longitudinales y transversales, iguales y contrarios. Accionamiento de placas con control remoto Estará empotrado al pavimento sobre la fosa o incorporado al elevador.
Rango de frecuencia	20 – 10 000 Hz	20 – 11000 Hz
Rango de medición	35 130 dB.	35 130 dB.
Valor de una división de escala (resolución)	0.1dB	0.1dB

Tabla 2.6 _ Comparación de especificaciones y requerimientos del sonómetro

2.1.7 Analizador de gases: Es el equipo encargado de verificar la calidad de la combustión y de la emanación de gases contaminantes, este debe ser un analizador de cuatro gases con capacidad de actualización a cinco mediante la habilitación del

⁶ Disponible en: http://www.aemc.com/products/Spanish%20PDFs/2121.23-SP.pdf

canal de NOX. Para nuestro caso utilizaremos un Analizador de gases modelo MGT 5 de la marca MAHA (figura 2.7)

Figura 2.7 _ Equipo analizador de gases MGT 5 - MAHA⁷

- a. Descripción del equipo:
- Amplio campo de aplicación: desde un sencillo e independiente aparato móvil con LED y terminal de mano, a un equipo conectado a un PC y equipado con un programa de fácil manejo.
- Equipo para la medición de vehículos con Gas GLP ó CNG.
- Manejo fácil y cómodo, así como indicaciones de pantalla clara y estructurada.
- Un software inteligente facilità el uso adecuado, proporcionando a la vez todas las informaciones necesarias.
- Módulos inter fase con diversas posibilidades de conexión al PC y a la línea de pruebas.
- Preparado para ASA /Eurosystem, Citrix.
- Posibilidad de medición del NOX.
- Aparato universal útil para la medición de los gases de escape de motores a gasolina.
- Posibilidad de conexión a base de datos de vehículos (Opción).
- Filtro de carbón activo y sensores electroquímicos de oxígeno y NOX (Opción). Módulo de rpm. Todos los componentes son de fácil acceso.

⁷ Disponible en: http://www.maha.de/cps/rde/xbcr/SID-0BFD597E-C17A7DF5/maha_internet/BRO_MAHA_Alle-Abgastester_E.pdf

b. Especificaciones:

PARAMETRO INEN 2349		
		FABRICANTE
reporte aut concentració CO, CO2, H gases emitid escape de equipados o de cuatro tie generales por gasolina Cumplirán o la internaciona (clase 1) ISO INEN 2200 demostrado	de medición y omáticos de la on en volumen de IC's y O2, en los los por el tubo de los vehículos con motores Otto mpos alimentados a, GLP o GNC. con lo indicado en Recomendación I OMIL R 99	Capacidad de medición y reporte automáticos de la concentración en volumen de CO, CO2, HC's y O2, en los gases emitidos por el tubo de escape de los vehículos equipados con motores Otto de cuatro tiempos alimentados por gasolina, GLP o GNC., que cumple con la OMIL R 99

Especificaciones adicionales	temperatura de captación de rpm limitaciones responsistema de ence motor, sea co electrónico, DIS	eos de la lel motor en ambda y aceite. La no tendrá pecto del endido del nvencional, S, EDIS, lependiente,	Diversa captación de Factor lamba Temperatura de aces Sensor de mp	eite
	Variable	Rango de medición	Variable	Rango de medición
	Monóxido de Carbono CO	0 – 10 %	Monóxido de Carbono CO	0 – 15 %
Rango de	Dióxido de Carbono CO ₂	0 – 16 %	Dióxido de Carbono CO2	0 – 20 %
medición	Oxígeno	0 – 21 %	Oxígeno	0 – 25 %
	Hidrocarburos no	0 a 5 000	Hidrocarburos no	0 a 5 000
	combustionados	ppm	combustionados	ppm
	Velocidad de giro	0 a 10000	Velocidad de giro	100 a
	del motor	rpm	del motor	10000rpm
	Temperatura de aceite	0 – 150°C	Temperatura de aceite	0 – 150°C
	Factor Lambda	0 - 2	Factor Lambda	0.5 – 9.99
Condiciones	Temperatura	5 – 40 °C	Temperatura	5 – 45 ° C
ambientales en funcionamiento	Humedad Relativa	0 – 90 %	Humedad relativa	-

	Altitud	0 - 3000 msnm	Altitud	0 - 3000 msnm	
	Presión	500 760 mm Hg	Presión	750 1100 mbar	
Ajuste	Automática med mezcla certificada	iante una de gases	Mediante PC gas especial de calibración imprescindible		
Sistema de toma de muestra	Se realizará med sonda flexible a se en la parte final d escape	er insertada		er insertada	

Tabla 2.7 _ Características del MGT 5 con respecto a la norma NTE 2349

2.1.8 Opacímetro de flujo parcial: el opacímetro es el instrumento de medición que opera sobre el principio de reducción de la intensidad de luz que se utiliza para determinar el porcentaje de opacidad. Nuestro estudio hará referencia al equipo de la casa MAHA, MOD 2 utilizado actualmente en los CRTV (ver figura 2. 8)

Figura 2.8 _ Opacímetro MAHA - MOD⁸

⁸ Fuente: http://www.maha.de/cps/rde/xbcr/SID-CC3F6D8D-27C4EA07/maha_internet/BRO_MAHA_Alle-Abgastester_E.pdf

- a. Descripción del equipo
- Construido según las directivas europeas
- Sonda y cámara de medición de acero inoxidable
- Medición instantánea o continua
- Preparado para realizar puestas a punto en banco de potencia
- Funcionamiento controlado por menú
- Comparación gráfica de las rpm y la curva de opacidad
- Representación gráfica y digital de los resultados medidos
- Inter fase RS 232 para la conexión de sistemas de lectura (códigos de barra, tarjetas magnéticas, PC etc.)

b. Especificaciones

DECLIEDIMIENTO NODMA	ESPECIFICACIONES DE
INEN 2349	FABRICANTE
Capacidad de medición y	
reporte de opacidad del humo	
emitido por el tubo de escape	Capacidad de medición y
de los vehículos equipados	reporte de opacidad del humo
con motores de ciclo Diesel	emitido por el tubo de escape
cumplirán con la Norma	de los vehículos equipados con
Técnica ISO 11 614, que será	motores de ciclo Diesel
demostrado por certificación	
del fabricante.	
Capacidad de medición de la	Capacidad de medición de la
velocidad del giro del motor	velocidad del giro del motor en
en rpm y temperatura del	rpm y temperatura del aceite,
aceite, para cualquier tipo de	para cualquier tipo de
configuración del motor,	configuración del motor,
sistema de alimentación de	sistema de alimentación de
combustible o diámetro de la	combustible o diámetro de la
cañería.	cañería.
	Capacidad de medición y reporte de opacidad del humo emitido por el tubo de escape de los vehículos equipados con motores de ciclo Diesel cumplirán con la Norma Técnica ISO 11 614, que será demostrado por certificación del fabricante. Capacidad de medición de la velocidad del giro del motor en rpm y temperatura del aceite, para cualquier tipo de configuración del motor, sistema de alimentación de combustible o diámetro de la

Mediciones y resolución	0 - 100 % opacidad factor K de 0 - 9999 l/m	1 % de resol 0.01 1/m			
	Temperatura	5 – 40 °C	Temperatura	-	
Condiciones ambientales en	Humedad Relativa	0 – 90 %	Humedad relativa		
funcionamiento	Altitud	0 – 3 000 msnm	Altitud	0 – 3 000 msnm	
	Presión	500 760 mm Hg	Presión		
	Automática media	ante filtros	Automático media	ante filtros	
Ajuste	certificados (ma	terial de	certificados (material de		
	referencia certifica	do)	referencia certificado)		
	Se realizará med	diante una	Se realizará me	diante una	
Sistema de toma	sonda flexible a se	er insertada	sonda flexible a ser insertada		
de muestra	en la parte final o	del tubo de	en la parte final del tubo de		
	escape		escape		

Tabla 2.8 _ Especificaciones y del opacímetro MAHA – MOD

2.2 Requerimientos de infraestructura

La infraestructura de la línea de revisión deberá proveer al trabajador de protección ante las inclemencias del tiempo, así como un medio cómodo y seguro para laborar, de manera que se debe tomar en cuenta contar con la ventilación y la iluminación adecuada.

2.2.1 Ventilación:

Hay que entender primero que la ventilación no es más que sustituir el aire que contiene un recinto con otro proveniente del exterior. Con esto, lo que conseguimos es evacuar gases contaminantes, evitar humedades, quitar malos olores y disminuir temperaturas excesivas.

Para la elección de un sistema de ventilación se puede acudir a la norma DIN 1946⁹ que, en la parte correspondiente a la renovación del aire en talleres, nos dice que se debe hacer en un promedio de 4 renovaciones por hora. Ahora bien, habría que calcular el volumen del espacio físico de la línea de revisión y multiplicarlo 4 para saber el flujo en metros cúbicos por hora que se debe evacuar en el espacio físico analizado.

2.2.2 Iluminación:

La iluminación contribuye al buen desenvolvimiento de las actividades dentro del taller, así como a la seguridad del trabajador y de los usuarios de la línea de revisión. Para lograr una buena iluminación y tener una buen productividad hay que tener en cuenta los siguientes aspectos

- Dimensiones de los objetos a observar o manipular.
- Contraste.
- Dificultad de la tarea (duración, velocidad de respuesta, etc.).

Par talleres de este tipo la norma DIN 5035¹⁰ establece que se debe dar un mínimo de iluminación de 500 lux, lo cual se consigue con ventanales grandes en las instalaciones o con lámparas fluorescentes instaladas a lo largo de la línea de revisión.

2.2.3 Espacio requerido por la Línea:

Todos los equipos y las maquinarias anteriormente descritas deben ocupar un espacio físico adecuado y ordenado para de esta manera optimizar el tiempo y el recurso humano, en la figura 2.9 podemos observar una distribución de los equipos que conforman la Línea y que además es recomendada por el fabricante, donde se puede apreciar que se necesita de un espacio de 28 metros de largo y 5 metros de ancho para instalar todos los equipos.

⁹ Disponible en: http://www.calsi.com/doc_tec/tec_10.htm

¹⁰ Fuente: http://es.wikipedia.org/wiki/Iluminaci%C3%B3n f%C3%ADsica

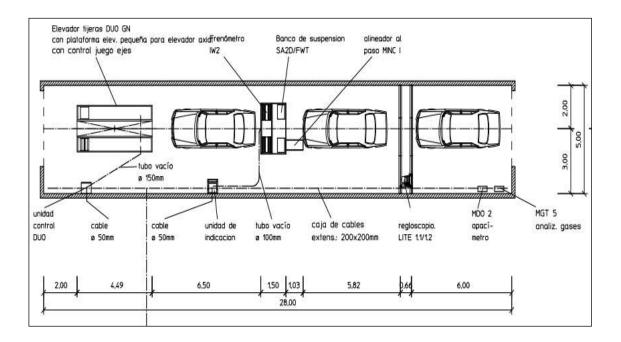


Figura 2.9 _ Disposición del la Línea de revisión 11

2.3 Hojas y fichas de control vehicular

Es sin duda es imprescindible que para este tipo de trabajo se lleven hojas de control, las cuales le sirvan al técnico primero como una guía de servicios y segundo como un respaldo para el trabajo que está realizando.

Hay que acotar además que la Norma 2 349 dicta los procedimientos a seguir para las distintas pruebas. Para efectos del estudio y debido a que el objetivo de este trabajo es dar una guía a los talleres interesados, los defectos se calificarán como leves, graves y peligrosos tal como se los hace en los Centros de Revisión, para poder incluso luego hacer una proforma de los servicios que necesite el automotor que pasó por la Línea de Revisión del taller.

La definición de los defectos se hace a continuación:

Defectos Leves: los defectos que una vez encontrados deben ser subsanados por el propietario sin que tenga la obligación de de regresar a la RTV.

Defectos Graves: los defectos que una vez detectados deben ser reparados por el propietario, con la obligatoriedad de regresar a la Línea para comprobar que haya sido reparado.

¹¹ Tomado de: http://www.maha.de/cps/rde/xbcr/SID-D5A01880-D2AE21FC/maha_internet/932sp.pdf

Defectos Peligrosos: son los defectos que detectados implican un riesgo inminente en la seguridad de los ocupantes del automotor y de los demás usuarios de la vía, lo que genera, la obligación del propietario en reparar el daño y llevar el vehículo nuevamente a la Línea para verificar la corrección del defecto.

Para realizar un servicio adecuado y que garantice la satisfacción del cliente se recomienda seguir el orden que se plantea a continuación:

2.3.1 Inspección visual

La inspección visual se la puede realizar al momento de la recepción del vehículo pudiendo apoyarse el mecánico en los formatos que se presentan seguidamente.

FORMATO PARA REVISIÓN DE PLACAS

ITEM	LEVE	GRAVE	PELIGROSO
Inexistencia ó no coincidencia con la documentación			
Ilegibilidad de placas delantera y/o trasera			
Defectos de sujeción y/o no sujetas rígidamente			

FORMATO PARA REVISIÓN DE RETROVISORES

ITEM	LEVE	GRAVE	PELIGROSO
Inexistentes, trizaduras o roturas			
No permiten visibilidad hacia atrás, reglaje defectuoso			

FORMATO PARA REVISIÓN DE LIMPIAPARABRISAS, LAVA PARABRISAS

ITEM	LEVE	GRAVE	PELIGROSO
Escobillas. Inexistencia, defecto de funcionamiento			

FORMATO PARA REVISIÓN DE GUARDABARROS

ITEM							LEVE	GRA	PELIGRO
Inexistencia.	Defectos	de	sujeción	con	peligro	de			
desprendimien	ito								

FORMATO PARA REVISIÓN DE SOPORTE RUEDA DE REPUESTO

ITEM	LEVE	GRA	PELIGRO
Posibilidad de desprendimiento			
Rotura o salientes del soporte que den lugar a aristas			

FORMATO PARA REVISIÓN DE PORTAEQUIPAJES

ITEM	LEVE	GRAVE	PELIGROSO
Existencia de aristas			
Defectos de fijación			
Defectos de fijación con peligro de desprendimiento			

FORMATO PARA REVISIÓN DE CARROCERIA (Parte exterior)

ITEM	LEVE	GRAVE	PELIGROSO
Abolladuras, desperfectos, corrosiones, fisuras, defectos de			
fijación, filos cortantes.			

FORMATO PARA REVISIÓN DE PUERTAS

ITEM	LEVE	GRAVE	PELIGROSO
Defectos de accionamiento			
Posible apertura intempestiva de puertas y/o tapa del motor			

FORMATO PARA REVISIÓN DE PARABRISAS Y VENTANAS

ITEM	LEVE	GRAVE	PELIGROSO
Parabrisas delantero de vidrio y/o trasero inexistentes, éste			
último cuando aplica			
Inexistencia de parabrisas de vidrio, ventanas y/o			
ventanillas en vehículos de transporte público			
Parabrisas delantero roto, soldado y/o con una fisura de un			
radio mayor a 5 cm o una longitud mayor a 10 cm, si está			
en el campo de visión directa del conductor			
Parabrisas delantero no posee el 100% de visibilidad libre			
Existencia de polarizado tipo espejo en cualquier ventana,			
ventanilla y/o en cualquiera de los parabrisas, Cualquier			
otro tipo de lámina polarizada o con letreros en el			
Existencia de cualquier tipo de oscurecimiento de			
ventanas, ventanillas y parabrisas de los vehículos de			
transporte público remunerado de personas, modalidad			

FORMATO PARA REVISIÓN DE PISOS

ITEM	LEVE	GRAVE	PELIGR
Abolladuras, dobleces, corrosión			
Fisuras, roturas y/o perforaciones que puedan entrañar peligro			

FORMATO PARA REVISIÓN DE PARACHOQUES

ITEM	LEVE	GRAVE	PELIGR
No existencia del frontal			
No existencia del dispositivo anti incrusta miento posterior, no			
cubre el ancho del vehículo.			
Estado y/o sujeción defectuosa			
Existe peligro de desprendimiento / presentan aristas			

FORMATO PARA REVISIÓN DE ASIENTO DEL CONDUCTOR

ITEM	LEVE	GRAVE	PELIGR
Defecto de estado y/o sujeción, deteriorado, con peligro de			
Inexistencia de reposacabezas			

FORMATO PARA REVISIÓN DE CINTURONES DE SEGURIDAD

ITEM	LEVE	GRAVE	PELIGR
No hay en las plazas de los asientos delanteros cuando del tipo			
exigido			
Sujeción al vehículo deficiente cuando entrañe			
peligro de desprendimiento del anclaje, con defectos de cierre			
Cinta o banda con desgarros, erosiones y/o cortes que entrañen			
peligro de rotura			
No funciona en asientos delanteros cuando sea exigible			

FORMATO PARA REVISIÓN DE RETROVISOR INTERIOR

ITEM	LEVE	GRAVE	PELIGR
No existe			
No permiten visibilidad hacia atrás y el vehículo no tiene			
retrovisor exterior derecho			
Roto o defectuoso			

Banegas Méndez 27

FORMATO PARA REVISIÓN DE EXTINTORES

ITE	M							LEVE	GRAVE	PELIGR
No	existe	cuando	es	obligatorio,	con	defectos	de			
funci	ionamier	nto, sin ca	rga o	están caducad	los					

FORMATO PARA REVISIÓN DE HERRAMIENTAS Y TRIANGULOS DE **SEGURIDAD**

ITEM	LEVE	GRAVE	PELIGR
Inexistencia de los triángulos, cuando es obligatorio			
Inexistencia de herramienta para cambio de rueda			

FORMATO PARA REVISIÓN DE BOCINA

ITEM	LEVE	GRAVE	PELIGR
Inexistente, existe, pero no funciona			
Niveles de sonido no permitidos legalmente, múltiples sonidos			

2.3.2 Inspección del alumbrado.

La revisión del reglaje e intensidad de la luz alta y baja se efectuará utilizando el regloscopio, pero además, el técnico hará también un método de inspección visual de los siguientes ítems.

FORMATO PARA REVISIÓN DE LUCES DIRECCIONALES

ITEM	LEVE	GRAVE	PELIGR
Ubicación incorrecta y/o efectos de sujeción			
Defectos en cableado y/o estado de lentes			
Si no cumple su función y/o color inadecuado			
Número de destellos superior o inferior al legalmente permitido			
Mal retorno conmutador a reposo			

FORMATO PARA REVISIÓN DE LUZ DE FRENO

ITEM	LEVE	GRAVE	PELIGR
No cumple su función, color inadecuado (no rojo)			
Número de luces, distintas a la luz central (tercera luz de freno),			
inferior al mínimo legalmente permitido			
No funciona alguna cuando tiene dos luces			
No funciona alguna cuando tiene más de dos luces			
Intensidad luminosa menor o igual que las de alumbrado de			
posición			

PARA REVISIÓN DE SEÑAL INTERMITENTE FORMATO DE **EMERGENCIAS**

ITEM	LEVE	GRAVE	PELIGR
Ubicación incorrecta, existe pero no funciona, inexistente			

FORMATO PARA REVISIÓN DE LUZ DE RETROCESO

ITEM	LEVE	GRAVE	PELIGR
Situación incorrecta			
Color inadecuado			
No cumple su función			
Defectos en cableado y/o estado de lentes			

FORMATO PARA REVISIÓN DE LUCES DE POSICION PORTERIOR Y **DELANTERA**

ITEM	LEVE	GRAVE	PELIGR
Inexistentes, existes, pero no funcionan			
Color no permitido, diferencia marcada entre ellas, pero no			
funcionan /ubicación incorrecta / sujeción incorrecta / número			
de luces inferior al reglamentario			

FORMATO PARA REVISIÓN DE PROYECTORES DE LUZ ALTA

ITEM	LEVE	GRAVE	PELIGR
Número de proyectores no permitidos legalmente			
Sujeción incorrecta con peligro de desprendimiento			
Inexistencia, ausencia de lentes, color no permitido			
Luces altas no deben exceder de 225 000 candelas			
Ubicación de los focos debe estar entre 0,35 m y 1,30 m del			
suelo.			

FORMATO PARA REVISIÓN DE PROYECTOR DE LUZ BAJA

ITEM	LEVE	GRAVE	PELIGR
No funciona			
Número de proyectores no permitidos legalmente			
Sujeción incorrecta con peligro de desprendimiento			
Color de luces no permitido legalmente, diferente color de las			
luces entre proyectores			
Ubicación incorrecta (Entre 0,35 m y 1,30 m del suelo).			

FORMATO PARA REVISIÓN DE PROYECTOR DE LUZ DE NEBLINA

ITEM	LEVE	GRAVE	PELIGR
Color no permitido legalmente, ubicación incorrecta			
Defecto de funcionamiento			

FORMATO PARA REVISIÓN DE LUZ DE PLACA DE MATRÍCULA **POSTERIOR**

ITEM	LEVE	GRAVE	PELIGR
Inexistencia, no funciona, sujeción incorrecta			

2.3.3 Inspección de los frenos

Con el vehículo colocado en el frenómetro se verificará en cada uno de sus ejes. El frenómetro está formado por dos rodillos giratorios destinados a recibir, por separado, las ruedas de cada eje, movidos cada uno de ellos por un potente motor eléctrico.

Estos rodillos van unidos a un tablero de control donde los medidores indican el valor de esfuerzo realizado para detener cada rueda. Con dichos valores especificados en Newton se procede a obtener los valores de eficacia y de desequilibrio. Para ello se seguirán las pautas establecidas en el procedimiento de inspección de los frenos que se indican en este apartado, teniéndose en cuenta las características específicas del tipo de frenómetro y las condiciones técnicas del vehículo ensayado.

FORMATO PARA REVISIÓN DE FRENO DE SERVICIO

ITEM	LEVE	GRAVE	PELIGR
Desequilibrio de frenada entre ruedas de un mismo eje > 35 %			
Eficacia de frenada inferior al mínimo legalmente permitido			
Progresión no gradual del agarre del frenado			
Retraso anormal en el funcionamiento de los frenos en			
cualquier rueda			
Alabeo en discos o excentricidad en tambores de freno > 20 %			

Banegas Méndez 30

FORMATO PARA REVISIÓN DE FRENO DE ESTACIONAMIENTO

ITEM	LEVE	GRAVE	PELIGR
Eficacia del vehículo, E ≤ 18 %			
El freno no actúa en una de las ruedas			
El freno no actúa en ambas ruedas de un mismo eje			
Vehículos con freno por entrampe, éste se bloquea			

FORMATO PARA REVISIÓN DE PEDAL DE FRENO

ITEM	LEVE	GRAVE	PELIGR
Desgastes o juegos excesivos en el pedal de freno			
Carrera excesiva o insuficiente del pedal de freno			
Fijación deficiente			
Retorno inadecuado del pedal de freno			

FORMATO PARA REVISIÓN DE CONDUCTOS RIGIDOS DEL CIRCUITO DE **FRENOS**

ITEM	LEVE	GRAVE	PELIGR
Fijación defectuosa con peligro de desprendimiento			
Falta de estanqueidad en las conexiones de tubo			
Derrame de líquido, fuga de aire comprimido			
Dañados y/ o corroídos			

FORMATO PARA REVISIÓN DE CINDUCTOS FLEXIBLES DEL CIRCUITO **DE FRENOS**

ITEM	LEVE	GRAVE	PELIGR
Deformadas, dañadas, con cortes o abombamientos			
Fijación con peligro de desprendimiento			

FORMATO PARA REVISIÓN DE PALANCAS

ITEM	LEVE	GRAVE	PELIGR
Defectos de fijación, desgaste en la palanca del freno			
Si existe peligro de rotura en cables o varillas del sistema			
Excesivo recorrido muerto en la palanca de freno			
Bielas o vástago de freno en mal estado			
Excesiva holgura que compromete el funcionamiento del			•

FORMATO PARA REVISIÓN DE VÁLVULAS Y RETENEDORES

ITEM	LEVE	GRAVE	PELIGR
Falta de estanqueidad al actuar el freno con fuga importante			
Rotas, dañadas, excesivamente gastadas			

Banegas Méndez 31

FORMATO PARA REVISIÓN DE SISTEMA ANTIBLOQUEO (FRENOS ABS)

ITEM	LEVE	GRAVE	PELIGR
Fuera de servicio (luz encendida)			

FORMATO PARA REVISIÓN DE TAMBOR, DISCO, PINZA, MORDAZA Y **GUARNICIONES**

ITEM	LEVE	GRAVE	PELIGR
Fugas de líquido en las pinzas, aire en las cámaras			
Sistemas de anclaje flojos o deteriorados			
Disco ó tambor agrietados o rotos			
Desgaste excesivo de las pastillas cuando esto se pueda			
verificar			
Agarrotamiento o movimiento anormal en los ajustadores			
automáticos			

2.3.4 Inspección de la dirección

La revisión de la Dirección se realizará utilizando el método de inspección mecanizada (alineadora al paso anteriormente descrita) y la inspección visual

FORMATO PARA REVISIÓN DE DESVIACIÓN DE RUEDAS

ITEM	LEVE	GRAVE	PELIGR
Desviación de ruedas, D ≥ 15 m/km			

FORMATO PARA REVISIÓN DE VOLANTE Y COLUMNA DE DIRECCIÓN. **JUEGOS**

ITEM	LEVE	GRAVE	PELIGR
Fijación defectuosa del volante a las columnas			
Holgura excesiva, fisura en flector y junta cardán			
Juego excesivo en volante			
Existencia de deformaciones, existencia, soldaduras, existencia			
de roturas			
Volante roto			

FORMATO PARA REVISIÓN DE CAJA DE DIRECCIÓN

ITEM	LEVE	GRAVE	PELIGR
Fijación defectuosa al chasis			
Existe perdida abundante de aceite			
Existe resistencia al giro			
Guardapolvos en mal estado, guardapolvos rotos			

FORMATO PARA REVISIÓN DE COLUMNA DE DIRECCIÓN, BRAZOS Y **BARRAS**

ITEM							LEVE	GRAVE	PELIGR
Existen	deformaciones	y/o	desperfectos	que	afecten	el			
funciona	miento								
Existen 1	Enderezamientos	y/o	soldaduras que	com	prometen	su			
resistenc	ia								

FORMATO PARA REVISIÓN DE RÓTULAS Y ARTICULACIONES (BARRAS DE DIRECCIÓN)

ITEM	LEVE	GRAVE	PELIGR
Existen defectos de sujeción, existen fisuras, existen roturas			
Existen deformaciones, existen soldaduras			
Holgura excesiva en rótulas y/o articulaciones			
Guardapolvos en mal estado, guardapolvos rotos, Guardapolvos			
ausentes			

FORMATO PARA REVISIÓN DE DIRECCIÓN ASISTIDA

ITEM	LEVE	GRAVE	PELIGR
Mal funcionamiento de la bomba de la dirección asistida (ruido excesivo)			
Sistemas con baja eficiencia (dureza)			
Falta de estanqueidad (fugas de aceite)			

2.3.4 Inspección de ejes y suspensión.

La comprobación del sistema de ejes y suspensión se efectuará mediante un control visual colocando el vehículo en un foso o elevador. Se contará, como complemento, con el detector de holguras.

FORMATO PARA REVISIÓN DE EJE DELANTERO, BRAZOS DE SUJECIÓN

ITEM	LEVE	GRAVE	PELIGR
Fijaciones defectuosas al chasis			
Bujes rotos, bujes inexistentes			
Si la holgura del pivote permite desplazamientos importantes			
(cabeceo de la rueda).			
Enderezamientos, soldaduras			

FORMATO PARA REVISIÓN DE EJE TRASERO, BRAZOS DE SUJECIÓN

ITEM	LEVE	GRAVE	PELIGR
Deformaciones o desperfectos importantes			
Enderezamientos, reparaciones por soldaduras			
Fijaciones al chasis defectuosas			
Bujes rotos, bujes inexistentes			

FORMATO PARA REVISIÓN DE AROS

ITEM	LEVE	GRAVE	PELIGR
Tuercas y espárragos defectuosos y/o flojos, Tuercas y			
espárragos incompletos > 25%			
Deformaciones o desperfectos importantes			
Uno o varios aros (o partes de los mismos) sobresalen de la			
proyección vertical de los guardabarros originales del vehículo			

LLANTAS, DIMENSIÓN, ESTADO CUBIERTAS

ITEM	LEVE	GRAVE	PELIGR
Profundidad de la banda de rodadura al mismo nivel que el			
testigo de profundidad ó, en su defecto, a menos de 2 mm			
Existencia de diferentes tipos de llantas en el mismo eje			
(nomenclaturas diferentes)			
Cortes, erosiones, abombamientos, envejecimiento, cables al			
descubierto			
Una o varias llantas sobresalen de la proyección vertical de los guardabarros originales del vehículo			

FORMATO PARA REVISIÓN DE BALLESTAS, RESORTES, TOPES

ITEM	LEVE	GRAVE	PELIGR
Fijación defectuosa al chasis o al eje (tornillos flojos o			
Hoja maestra o más de dos hojas rotas			
Grietas en soportes de ballestas			
Bujes rotos, bujes inexistentes			
Topes de ballestas inexistentes, topes en mal estado			

FORMATO PARA REVISIÓN DE AMORTIGUADORES Y SOPORTES

ITEM	LEVE	GRAVE	PELIGR
Si se siente agarrotados, incumplen su función			
Fijación defectuosa al chasis y suspensión			
Fugas de aceite hidráulico			

FORMATO PARA REVISIÓN DE BARRAS DE TORSIÓN, ESTABILIZADORA Y ARTICULACIONES

ITEM	LEVE	GRAVE	PELIGR
Inexistencia de barra estabilizadora, cuando aplica			
Deterioro importante, existe peligro de desprendimiento			
Fisuras o roturas			
Fijación floja y/o deteriorada de la barra estabilizadora al chasis			
y al triángulo o elemento de suspensión, cuando aplica			

FORMATO PARA REVISIÓN DE BRAZOS, BIELAS DE SUSPENSIÓN Y RÓTULAS

ITEM	LEVE	GRAVE	PELIGR
Inexistencia de una o más rótulas			
Bujes rotos o inexistentes			
Rótulas rotas, agrietadas o con holguras			
Mal estado de las botas de las rótulas de suspensión			

FORMATO PARA REVISIÓN DE SUSPENSIÓN NEUMÁTICA

ITEM	LEVE	GRAVE	PELIGR
Fugas en canalizaciones o racores			
Fugas por la válvula reguladora			
Bolsa muy deteriorada y/o con fugas			

2.3.5 Inspección de chasis, motor y transmisión

Colocado el vehículo en la fosa o en un elevador, y mediante inspección visual, se comprobará la ausencia de desperfectos, tales como torceduras, roturas, fisuras, corrosiones. En lo referente a gases contaminantes emanados por el motor hay q recordar que el trabajo lo realiza el analizador MGT 5.

FORMATO PARA REVISIÓN DE CAJA DE CAMBIOS, TRANSMISIÓN, **SEMIEJES**

ITEM	LEVE	GRAVE	PELIGR
Falta de estanqueidad en cárter			
Guardapolvos rotos o deteriorados de semiejes			
Fijaciones de soportes al chasis defectuosas			
Holguras y/o deficiencias en transmisión			
Desgaste excesivo en rodamientos de cruceta			
Soportes de barra central de transmisión dañados			

Banegas Méndez 35

FORMATO PARA REVISIÓN DE MOTOR

ITEM	LEVE	GRAVE	PELIGR
Fijación del motor defectuosa			
No coincidencia del tipo de combustible del motor y/o			
tecnología con lo señalado en la documentación.			
Pérdidas de aceite en el motor			

FORMATO PARA REVISIÓN DE DEPÓSITO DE COMBUSTIBLE, TAPÓN Y CONDUCCIONES

ITEM	LEVE	GRAVE	PELIGR
Fugas en el depósito y/o conducciones			
Defectos de sujeción			
Ausencia del tapón de llenado.			

FORMATO PARA REVISIÓN DE TUBO DE ESCAPE, SILENCIADOR, CONVERTIDOR CATALÍTICO, SENSOR DE OXÍGENO

ITEM	LEVE	GRAVE	PELIGR
Fijación defectuosa con peligro de desprendimiento del			
silenciador, tubo de escape y/o del convertidor catalítico			
Inexistencia del catalizador y/o del sensor de oxigeno (lambda)			
en los vehículos que les es exigida su existencia			
Fugas en el tubo de escape, silenciador, y/o en el catalizador			
Ubicación inadecuada del tubo de escape en vehículos de			
transporte de productos peligrosos.			
Inexistencia del silenciador		·	

FORMATO PARA REVISIÓN DE NIVEL DE RUIDOS (SONOMETRO)

ITEM	LEVE	GRAVE	PELIGR
Se superan los valores máximos legalmente estipulados (96 db)			

FORMATO PARA REVISIÓN DE EMISIÓN DE CONTAMINANTES

ITEM	LEVE	GRAVE	PELIGR
No reúne las condiciones previas a la prueba			
Se superan los valores máximos de emisiones de contaminantes			
legalmente estipulados (MOTORES A GASOLINA: CO \leq			
0.5% x volumen/ HC ≤ 125 p.p.m. /CO2 $\geq 10\%$); (MOTORES			
DIESEL: % opacidad $\leq 70/$ K ≤ 2.8)			

FORMATO PARA REVISIÓN DE INSTALACIÓN ELÉCTRICA Y BATERÍA

ITEM	LEVE	GRAVE	PELIGR
Defectos en la instalación eléctrica			
Fijación defectuosa de la batería			
Fugas de electrolito			

CAPITULO III

ANALISIS DE COSTOS

En el presente capítulo se hará una referencia de los costos que se involucran dentro de la línea de Revisión Técnica Vehicular, siendo ésta una guía en el caso de que alguna persona quiera invertir en un proyecto de esta naturaleza.

3.1 Presupuesto de equipos

Para el costo de los equipos se realizó consultas on-line y a personas que están relacionas con el medio, incluso en una visita que se realizó al Centro de Revisión Vehicular de Mayancela se nos pudo informar que existe un distribuidor MAHA en la ciudad de Quito (LEAL Imports, Luis Eduardo Albán López - Mariana de Jesús E78 y Pradera Edif. Business Plus, Piso 8 / telf. 22236527) y que puede proveer de los equipos en un plazo de 45 a 60 días.

A continuación la tabla 3.1 con los valores de los equipos investigados¹².

Detalle	Precio	Cantidad	Precio Total
	Unitario		
Secciòn1: Consola de control			
Eurosystem que incluye:			
Analizador de Gases MGT5	\$ 23 500	1	\$ 23 500
Opacímetro MDO2	\$ 23 300	1	φ 23 300
Decibelímetro QUEST 2400			
Luxómetro Lite 1.2			

¹² Datos tomados de: ESPINOZA, Mauricio: MENDEZ, Paùl"Proyecto de creación del Centro de verificación vehicular para la Ciudad de Cuenca", Universidad Politécnica Salesiana, Ingeniería Mecánica Automotriz CUE - Tesis Pregrado, 2004 disponible en: http://dspace.ups.edu.ec/bitstream/123456789/1178/4/CAPITULO%20III.pdf

Sección 2: Consola de control			
Eurosystem 2 que incluye:	.	1	\$ 32 500
Alineador al paso MIC I			
Banco amortiguadores SA2	\$ 32 500		
Frenómetro IW2			
Velocímetro TPS I			
Sección tres: Detector de	\$ 8 800	1	\$ 8 800
holguras PM	\$ 0 000	1	φ δ δ00
Instalación y capacitación	\$ 3 000	1	\$ 3 000
TOTAL		1	\$ 67 800

Tabla 3.1_ valores de los equipos requeridos

La instalación de los equipos mencionados se puede realizar en nuestra ciudad con la colaboración de la empresa que al momento opera los centros de revisión vehicular, quienes tienen experiencia en estos trabajos.

3.2 Adecuación de infraestructura

se hizo un presupuesto para adecuar una Línea de Revisión, A continuación tomando como ejemplo el Taller de Mecánica del Colegio Politécnico Kennedy. Este colegio que se encuentra ubicado actualmente en la Calle Paseo del Río Machángara 3 – 53, al Norte de la Ciudad (Figura 3.1). Se ha elegido este taller ya que presta condiciones muy favorables para la adecuación de dicha línea y porque además, esta especialidad se está cerrando en el colegio y podría ser una buena alternativa para un uso a futuro de este espacio físico.

Figura 3.1 Taller del Colegio Politécnico Kennedy

Por supuesto, este es un ejemplo que podría ser aplicado en un taller particular cualquiera, en el cual se preste el espacio necesario para la línea que como se anotó en el capítulo anterior MAHA recomienda que sea de veinte y ocho metros de largo por cinco de ancho para vehículos livianos.

Debido a la infraestructura que se posee en el taller tomado para el ejemplo, como son: baños, bodega de herramientas, parqueadero y cuarto de guardianía, en estos momentos en dicho taller la adecuación que se tendría que realizar es la de nivelar el piso y construir dos rampas, una para el ingreso y otra para la salida de los vehículos, así como, la construcción de una oficina en la parte exterior para atención al cliente y recepción de vehículos.

La adecuación fundamental entonces sería el construir la infraestructura para la línea en la parte derecha del taller y en la parte izquierda dejar el espacio para realizar los trabajos de mecánica que se requieran (Figura 3.2).

Figura 3.2_ Vista actual desde el interior del Taller de Mecánica del Politécnico Kennedy

Con las acotaciones anteriores podemos entonces determinar la siguiente tabla 3.2 para estimar costos:

Ítem	Observaciones	Costo
Diseño del proyecto	Realizado por un	\$ 500
Diseno dei proyecto	Arquitecto	
	Incluye todos los	
	materiales usados en la	\$2 500
Costo de los Materiales	construcción e	\$2 500
	iluminación (cemento,	
	bloques, hierro, etc.)	
Costo de la Mano de		
obra		\$ 1 500
	En el caso de que exista	
	alguna modificación	
Imprevistos	durante la marcha e	\$ 300
	incluso permisos	
	municipales	
TOTAL		\$ 4 800

Tabla 3.2 _ Costo estimado de las adecuaciones

Con los datos anteriormente expuestos podemos estimar entonces que el costo de la inversión inicial es de \$ 72 600 dólares, que serían la suma del costo de los equipos más las adecuaciones en el taller, presupuesto con el cual se puede iniciar a operar.

3.3 Costos de operación de la línea.

Una vez instalada una línea de Revisión los costos de operación incluirán tanto costos de funcionamiento de la línea así como la mano de obra que involucra lo operación del mismo

3.3.1 Costos de mano de obra

Cabe mencionar así también que para la operación de la Línea de Revisión se debe contar con al menos dos personas que intervienen directamente. Estas dos personas son: un conductor y un técnico con los siguientes perfiles:

• Perfil del Conductor:

Deberá ser una persona con experiencia en cargos similares, con Título de chofer profesional otorgado por la Agencia Nacional de Tránsito.

Perfil del Técnico:

Debido a la función que desempeña el técnico dentro de la línea esta debe ser una persona con un Título en Ingeniería automotriz o al menos que tenga tres años de estudios superiores en ramas afines a las técnicas y de preferencia con experiencia en talleres de mantenimiento automotriz.

Hay que acotar además que el técnico será capacitado para desempeñar las funciones de mantenimiento dentro de la línea, y que no se incluyen gastos administrativos ya que estos corren por parte directa de la administración del taller.

En la tabla 3.3 se puede apreciar el costo estimado que tendrían los sueldos que se aplican para los trabajadores de la Línea, en base a las responsabilidades de cada uno y que actualmente el salario básico unificado está en \$318

Cargo	Sueldo	Sueldo
	mensual	Anual
Conductor	\$ 380	\$ 4 560
Técnico de Línea	\$ 600	\$ 7 200
TOTAL		\$ 11 760

Tabla 3.3 _Costo estimado de los sueldos

3.3.2. Costos de funcionamiento del equipo¹³.

El parque automotriz en el cantón Cuenca es actualmente de alrededor de 90 000 vehículos, de los cuáles según el Ing. Edgar Acevedo, Director del Centro de revisión de Mayancela 82 000 son los automotores que ingresan a ser revisados anualmente en las líneas de los dos Centros Manejados por el Consorcio DANTON, informando además que el tiempo estimado que un vehículo se demora en cruzar toda la línea es de 11 minutos.

¹³ Tomado de: ESPINOZA , Mauricio: MENDEZ, Paùl"Proyecto de creación del Centro de verificación vehicular para la Ciudad de Cuenca", Universidad Politécnica Salesiana, Ingeniería Mecánica Automotriz CUE - Tesis Pregrado, 2004 disponible en: http://dspace.ups.edu.ec/bitstream/123456789/1178/4/CAPITULO%20III.pdf

Se analizará el costo de la energía eléctrica utilizada por los equipos durante el tiempo que éstas trabajan.

Para determinar el tiempo que las máquinas están encendidas estimaremos que en esta línea al día se atiendan a 30 vehículos, lo que nos daría como resultado que se utilicen los equipos por 330 minutos, es decir, cinco horas y media, a esto le agregamos 1 hora más como imprevistos.

De ahí, asumiendo que se va a trabajar de lunes a viernes, durante 40 semanas, al año el tiempo de funcionamiento sería de 1 300 horas.

Analizador de Gases/Opacímetro

```
kw = 0.125
pct = 90 \%
    = 1300 \text{ h/año}
ce kWh = 0.07 \$ / kWh
ce = (kw)(pct)(h)(cekWh)
ce = (0.125)(0.9)(1300)(0.08)
ce = 11,7 dólares/año
```

Frenómetro, Luxómetro (solo el consumo de la computadora de operaciones)

```
kw = 1,25
     = 2.064 \text{ h/año}
ce kWh = 0.08 \$ / kWh
ce = 1,250 \times 1300 \times 0,08
ce = 130 dólares / año
```

Analizador de suspensiones:

```
kw = 1.30
pct = 90 \%
    = 1300 \text{ h/año}
cekWh = 0.08 $ / kWh
ce = (Kw)(pct)(h)(cekWh)
ce = (1,30)(0,9)(1300)(0,08)
ce = 121,68 dólares / año
```

Alineador al paso:

```
kw = 1.15
pct = 90 \%
    = 1300 \text{ h/año}
ce kWh = 0.08 / kWh
ce = (kw)(PCT)(H)(cekWh)
ce = (1,15)(0,9)(1300)(0,08)
ce = 107,64 dólares / año
```

<u>Detector de Holguras:</u>

```
kw = 2.5
pct = 80 \%
    = 1300 \text{ h/año}
ce kWh = 0.08 / kWh
ce = (kw)(PCT)(H)(cekWh)
ce = (2,5)(0,8)(1300)(0,08)
ce = 208 dólares / año
```

3.4 Costos de Mantenimiento

Los procedimientos de Mantenimiento y las correcciones que se realizan en la operación de la Línea se harán de acuerdo a los catálogos que se incluyen al momento de adquirir los equipos. Sin embargo, a continuación, se detallan mantenimientos que actualmente se realizan en el Centro de Revisión Vehicular de Mayancela, siendo estos mensuales, semestrales y anuales, con un tiempo estimado de cuánto dura cada mantenimiento, y al final la estimación del costo que se tiene de acuerdo a los materiales utilizados y a la mano de obra, aunque hay que acotar que para nuestro caso la mano de obra no la hará una persona externa al taller sino más bien será el mismo técnico de la línea quien en conjunto con el conductor serán los que den el mantenimiento respectivo.

Analizador de Gases/Opacímetro

MANTENIMIENTO / ANALIZADOR DE GASES			
FECUENCIA	DESCRIPCIÓN	DURACION	MATERIALES
Mensual	 Limpieza externa, verificación de filtros, estado de las mangueras y limpieza de filtro auxiliar y sonda Verificación de trampas de agua Verificación de la existencia 	20 min	Gasolina Waype Silicona especial de protección
Semestral	de fugas de aire - Limpieza externa, verificación de filtros, estado de las mangueras y limpieza de filtro auxiliar y sonda - Verificación de trampas de agua - Verificación de la existencia de fugas de aire - Calibración del equipo con un tanque de gas especial de la marca, y con apoyo del software del equipo.	30 min	Gasolina Waype Silicona especial de protección Gas Especial
Anual	 El mismo mantenimiento semestral y además: Cambio de filtros y sensores de oxígeno, Limpieza de la bomba de succión con alcohol. 	50 min	Gasolina Waype Silicona especial Gas Especial Filtros

Tabla 3.4 _ Mantenimiento del analizador de gases

MANTENIMIENTO / OPACÍMETRO			
FECUENCIA	DESCRIPCION	DURACION	MATERIALES
	- Limpieza externa, estado de		Gasolina
	las mangueras		Waype
Mensual		10	Silicona
		10 min	especial de
			protección
	- Limpieza externa, estado de		Gasolina
Semestral	las mangueras.		Waype
	- Calibración de sensores	20 min	Silicona
	ópticos con espejos	20 111111	especial de
	especiales		protección
			Espejos
Anual	- El mismo que en el semestral	20 min	

Tabla 3.5 _ Mantenimiento del opacímetro

TIPO DE MANTENIMIENTO	COSTO
Mensual	\$ 20
Semestral	\$ 120
Anual	\$ 240

Tabla 3.6 $_$ Costos estimados del mantenimiento del MGT 5

Frenómetro.

MANTENIMIENTO / FRENÓMETRO			
FECUENCIA	DESCRIPCION	DURACION	MATERIALES
Mensual	 Limpieza externa, retirar tapas de la carcasa y aspirar impurezas. Limpiar muelles y rodillos Verificar estado y tensado de la cadena Inspeccionar el estado de sensores y chumaceras. 	30 min	Gasolina Waype Grasa
Semestral	 Limpieza externa, retirar tapas de la carcasa y aspirar impurezas. Limpiar muelles y rodillos Inspeccionar el estado de sensores y chumaceras Calibrado de la fuerza de frenado con una barra de acero especial. Retirar la cadena para lavar y tensarla nuevamente una vez engrasada. 	45 min	Gasolina Waype Grasa Equipo especial
Anual	 El mismo que en el semestral y además: Retirar los rodillos para lavarlos con desengrasante Reemplazar chumaceras 	70 min	Gasolina Waype Grasa Desengrasante

Tabla 3.7 _ Mantenimiento del frenómetro

Los costos estimados de estos mantenimientos de acuerdo a lo investigado serían:

TIPO DE MANTENIMIENTO	COSTO
Mensual	\$ 25
Semestral	\$ 50
Anual	\$100

Tabla 3.8 _ Costos estimados del mantenimiento del Frenómetro

Luxómetro.

MANTENIMIENTO / LUXOMETRO			
FECUENCIA	DESCRIPCION	DURACION	MATERIALES
	- Limpieza exterior de		
	carcasa.		Gasolina
Mensual	- Inspección y limpieza	10 min	Waype
	de espejos.		Silicona
	- Inspección de rieles		
	- Limpieza de espejos		Gasolina
Semestral	- Calibración con láser	15 min	Waype
Semesual	mediante verificación	15 mm	Silicona
	de puntos.		Equipo especial
	- Lo mismo que en el		Gasolina
Anual	semestral.	15 min	Waype
		13 111111	Silicona
			Equipo

Tabla 3.9 _ Mantenimiento del Luxómetro

Los costos estimados de estos mantenimientos son:

TIPO DE MANTENIMIENTO	COSTO
Mensual	\$ 10
Semestral	\$ 60

Tabla 3.10 _ Costos estimados del mantenimiento del Luxómetro

Banco de suspensiones:

MANTENIMIENTO / BANCO DE SUSPENSIONES			
FECUENCIA	DESCRIPCIÓN	DURACION	MATERIALES
Mensual	 Limpieza externa, retirar tapas de la carcasa y aspirar impurezas. Limpiar muelles y rodillos Inspeccionar el estado de sensores y chumaceras. 	15 min	Gasolina Waype Grasa
Semestral	 Limpieza externa, retirar tapas de la carcasa y aspirar impurezas. Limpiar muelles Inspeccionar el estado de sensores y chumaceras Calibrado con la ayuda de pesas especiales de 3 kg cada una. Verificación de la varilla oscilante 	30 min	Gasolina Waype Grasa Equipo especial
Anual	El mismo que en el semestral y además:Reemplazar chumaceras	45 min	Gasolina Waype Grasa

Tabla 3.11 _ Mantenimiento del Banco de suspensiones

TIPO DE MANTENIMIENTO	COSTO
Mensual	\$ 10
Semestral	\$ 60
Anual	\$ 120

Tabla 3.12 _ Costos estimados del mantenimiento del Banco de suspensiones

Alineador al paso:

MANTENIMIENTO / ALINEADOR AL PASO			
FECUENCIA	DESCRIPCION	DURACION	MATERIALES
Mensual	 Limpieza externa Inspección de la alfombra Chequeo de grasas 		Gasolina Waype Grasa
Semestral	- Limpieza externa - Inspección de la alfombra - Chequeo de grasas 30 min - Calibración con reloj comparador y software		Gasolina Waype Grasa Equipo especial
Anual	 Lo mismo que en semestral y además: Desmontado de la placa principal y de los bulones inferiores para cambio de grasas 	60 min	Gasolina Waype Equipo especial Grasa

Tabla 3.13 $_$ Mantenimiento del Alineador al paso

TIPO DE MANTENIMIENTO	COSTO
Mensual	\$ 10
Semestral	\$ 60
Anual	\$ 120

Tabla 3.14 _ Costos estimados del mantenimiento del Alineador al paso

Sonómetro:

MANTENIMIENTO / SONOMETRO			
FECUENCI	DESCRIPCION	DURACIO	MATERIALE
A		N	S
Mensual	Limpieza externaInspección conexiones	10 min	Gasolina Waype
Semestral	- Limpieza externa - Calibración con una botella de ruido		Gasolina Waype Equipo especial
Anual	- Lo mismo que en el semestral	15 min	Gasolina Waype Equipo especial

Tabla 3.15 _ Mantenimiento del sonómetro

TIPO DE MANTENIMIENTO	COSTO
Mensual	\$ 15
Semestral	\$ 75
Anual	\$ 150

Tabla 3.16 _ Costos estimados del mantenimiento del sonómetro

Detector de Holguras

MANTENIMIENTO / DETECTOR DE HOLGURAS			
FECUENCIA	JENCIA DESCRIPCION		MATERIALES
Mensual	Limpieza externaVerificación de mandos en la linterna	10 min	Gasolina Waype
Semestral	 Limpieza externa Verificación de ejes de movimiento Verificación de grasas 	15 min	Gasolina Waype
Anual	 Lo mismo que en el semestral y además: Verificación de bomba y circuito hidráulico 	20 min	Gasolina Waype Equipo especial

Tabla 3.17 _ Mantenimiento del detector de holguras

TIPO DE MANTENIMIENTO	COSTO
Mensual	\$ 7
Semestral	\$ 42
Anual	\$ 84

 $Tabla~3.18~_Costos~estimados~del~mantenimiento~del~detector~de~holguras$

Con los datos recopilados se puede entonces hacer un resumen de los costos y tiempos estimados en el mantenimiento de la línea de Revisión Vehicular.

MANTENIMIENTO / LINEA DE REVSIÒN			
TIPO DE MANTENIMIENTO	COSTO	DURACIÒN	
Mensual	\$ 97	2.08 horas	
Semestral	\$ 582	12.48 horas	
Anual	\$ 1164	24.96 horas.	

Tabla 3.19 _ Costos y duración estimada del mantenimiento general de la línea

CONCLUSIONES.

Una línea de Revisión Técnica Vehicular puede ser solicitada e instalada por cualquier persona natural o jurídica ya que no existe una prohibición al respecto, siempre y cuando se haga todo el proceso bajo el marco de la ley.

En nuestro País las que rigen los procedimientos de inspección son las Normas INEN, dichas normas en combinación con las Ordenanzas Municipales y la Ley Nacional de Tránsito, Transporte y Seguridad Vial dan como resultado un buen Marco Legal para las líneas de revisión, sin embargo, hace falta una fiscalización efectiva por parte de los entes rectores ya que todavía los ciudadanos no manejamos una buena cultura de respeto y cumplimiento de la Ley.

Para implementar una línea de revisión vehicular hay que tener claro que ésta es una inversión económicamente alta que de todas maneras manejada técnicamente, puede generar grandes réditos económicos y además puede servir como un control de calidad para los centros de revisión que actualmente funcionan en nuestra ciudad y que al momento mantienen una suerte de monopolio en cuanto a esta actividad.

Si bien es cierto, se presentan informes anuales de la calidad del aire en Cuenca, cuando uno acude a los centros de revisión en busca de mayor información lamentablemente ésta es restringida y se maneja hasta con cierto hermetismo.

Para garantizar credibilidad en el resultado y que el cliente se sienta satisfecho, se debería trabajar con equipos de la misma marca con la que se trabaja en los Centros tanto de Mayancela como Capulispamba y que por supuesto tengan un buen mantenimiento.

RECOMENDACIONES.

Recomiendo a las personas que quieran empezar con este proyecto revisar primero las Ordenanzas vigentes y todo el conjunto de Normas aplicables a los centros para cumplir a cabalidad con la Ley y no tener problemas a futuro cuando alguna inversión ya haya sido realizada.

Así mismo, sugiero a la Universidad del Azuay se plantee la posibilidad de tener una línea de revisión que funcione a manera de fiscalización del proceso de revisión que actualmente existe en la ciudad ya que de esta manera se contribuiría con la comunidad y a partir de aquello se podrían plantear nuevos proyectos.

BIBLIOGRAFIA

Fuentes Escritas

- > ALONSO, José. Técnicas del automóvil II chasis. Thompson. Madrid-España. 2008
- > CEAC, Manual CEAC del Automóvil Segunda Edición, Grupo editorial CEAC. Barcelona España 2005.
- > ESPINOZA, Fabricio, Proyecto de creación del Centro de verificación vehicular para la Ciudad de Cuenca. Cuenca – Ecuador 2008
- > GOMEZ Manuel, TINOCO Oscar. Determinación de los factores de emisión de los vehículos a gasolina, del parque automotor de la ciudad de Cuenca. Cuenca Ecuador 2009
- Ley orgánica de Tránsito, Transporte y Seguridad Vial. Asamblea Nacional Constituyente 2008
- MARTINEZ, Gil. Manual del automóvil. Cultural SA. España 2003.
- ➤ Subcomité técnico _ NORMA NTE INEN 2349:2003 Procedimientos y Normas para realizar la Revisión técnica vehicular.2003
- ➤ Subcomité técnico _ NORMA NTE INEN 3388:2008 Vehículos Automotores. Tipos, Términos y definiciones. 2008
- > Subcomité técnico _ NORMA NTE INEN 2202:2008 Determinación de opacidad de gases en vehículos Diesel mediante la prueba estática de libre aceleración. 2008
- TOBAR, Walter; ZEA Juan. Estudio de factibilidad técnica para un centro de revisión y control vehicular (CRCV) para los cantones Azogues y Biblián. Cuenca -Ecuador 2008.

Fuentes Digitales

- > "Equipos de inspección técnica", CAPRIS S.A.; disponible http://www.capris.cr/index.php?route=product/categorycapris&catl1=0003&c atl2=0062; mayo 2012
- > "Emisión de gases", GOMEZ Manuel, TINOCO Oscar; disponible en: http://www.institutocea.com/servicios/emision-de-gases; junio 2012
- > "Equipos MAHA" **CAPRIS** S.A; Disponible en: http://www.carcheck.com.ar/equipos/maha.htm; mayo 2012
- > "Equipos MAHA catálogo de utilización de productos" CAPRIS S.A; en:http://www.maha.de/cps/rde/xchg/SID-C41BCC48disponible AA1D61D5/maha_internet/hs.xsl/Elevadores.htm; agosto 2012
- Manual de revisión técnica vehicular"; ESPINOZA, Fabricio, disponible en: http://www.youblisher.com/p/8101-Manual-de-RTV/; junio 2012
- > "Normativa Europea de emisión de gases contaminantes" **UNION** EUROPEA; disponible en: http://es.wikipedia.org/wiki/Normativa_europea_sobre_emisiones mayo 2012
- > "Proyecto de creación del Centro de verificación vehicular para la Ciudad de Cuenca" ESPINOZA, Fabricio; disponible en: http://dspace.ups.edu.ec/simplesearch?query=revisi%C3%B3n+t%C3%A9cnica+vehicular&submit=Buscar ; septiembre 2012
- ➤ "Plan estratégico 2008 2012 de la ciudad de Buenos Aires" AGENCIA DE PROTECCIÓN AMBIENTAL PARA BUENOS AIRES ; disponible en: http://books.google.co.uk/books?id=4IssN4EfF9cC&pg=PT10&dq=libros+o nline+de+revision+tecnica+vehicular&hl=es&sa=X&ei=9hw8T9rgHseltweQ 0PXkCg&ved=0CDIQ6AEwAA#v=onepage&q=libros%20online%20de%20 revision%20tecnica%20vehicular&f=false; julio 2012
- > "Revisión técnica vehicular en Lima" AYUNTAMIENTO DE LA CIUDAD DE LIMA PERÚ: disponible en: http://www.invermet.gob.pe/archivo/rtv.htm; mayo 2012

- > "Verificación Técnica de Vehículos, Buenos Aires" VERIFICACION TECNICA VEHICULAR DEL RÍO DE LA PLATA, disponible en: http://www.infovtv.com.ar/; marzo 2012
- > "Unidad Municipal de Transporte, objetivos y fines" ALCALDÍA DE CUENCA – ECUADOR, disponible en:
 - http://www.cuenca.gov.ec/?q=page_umt; septiembre 2012
- ➤ "Norma INEN 2349 Revisión Técnica Vehicular" disponible en:
 - http://www.ant.gob.ec/index.php/transporte/internacional/doc_details/316norma-tecnica-ecuatoriana-nte-inen-2-3492003; mayo 2012
- > "Ley de Tránsito Transporte y Seguridad vial", ASAMBLEA NACIONAL CONSTITUYENTE DEL disponible ECUADOR, http://www.cte.gob.ec/descarga/ley-organica-de-transporte-terrestre-transitoy-seguridad-vial/; Julio 2012

ANEXOS

ANEXO 1: Ordenanza actual vigente

"ORDENANZA QUE NORMA EL ESTABLECIMIENTO DEL SISTEMA DE REVISIÓN TECNICA VEHICULAR DE CUENCA Y LA DELEGACIÓN DE COMPETENCIAS A CUENCAIRE¹⁴

El I. CONCEJO CANTONAL DE CUENCA

CONSIDERANDO:

Que, el artículo 23 numeral 6 de la Constitución Política de la República preceptúa que es deber del Estado reconocer y garantizar a las personas el derecho a vivir en un ambiente sano, ecológicamente equilibrado y libre de contaminación

Que, el artículo 86 numeral 2 de la carta magna declara de interés público la prevención de la contaminación ambiental;

Que, el artículo 234 inciso tercer de la Ley Suprema del Estado prescribe que el Concejo Municipal de cada cantón, además de las competencias que le asigna la Ley, podrá planificar, organizar y regular el tránsito y transporte terrestre, en forma directa, por concesión, autorización u otras formas de contratación administrativa, de acuerdo con las necesidades de la comunidad;

Que, el artículo 51 de la Ley de Tránsito y Transporte Terrestres define que los Centros de Revisión y Control Vehicular son los establecimientos legalmente autorizados para la revisión técnico-mecánica y el control de la emisión de contaminantes de vehículos automotores, previa la matriculación, o cualquier otro control ordenado por una autoridad de tránsito;

Que, el Art. 109 inciso tercero del Reglamento General para la aplicación de la Ley de Tránsito y Transporte Terrestre determina que el certificado de revisión vehicular es uno de los requisitos para el otorgamiento de la matrícula anual respectiva;

Que, el Art. 15, numeral 20-A de la Ley de Régimen Municipal establece que los Municipios del país podrán planificar, organizar y regular el tránsito y transporte terrestres, en forma directa, por concesión, autorización o cualquier otra forma de contratación administrativa en coordinación con los organismos de tránsito competentes, de acuerdo con las necesidades de la comunidad;

¹⁴ Ordenanza para el Cantón Cuenca, disponible en:http://www.municipalidadcuenca.gov.ec/?q=vista_ordenanzas&keys=revision+tecnica+vehicular

Que, es deber de la I. Municipalidad de Cuenca tomar todas las acciones necesarias para precautelar la vida, la salud, la integridad de las personas, el ambiente y el bienestar de los habitantes de la ciudad, más todavía cuando los accidentes de tránsito que tiene como uno de los móviles las deficientes condiciones mecánicas de los automotores, son causantes de un alto número de muertes y de incapacidades en la ciudad y el país;

Que, es también obligación del Gobierno Local preservar y conservar los recursos naturales y el patrimonio histórico y arquitectónico, minimizando las causales de la contaminación proveniente de los automotores;

Que, por iniciativa de la I. Municipalidad de Cuenca, se encuentra en proceso de constitución la Corporación para el Mejoramiento del Aire de Cuenca "CUENCAIRE", cuyo objetivo central será diseñar, promover e implementar mecanismos adecuados para mejorar la calidad de aire del Cantón Cuenca, protegiendo la salud y mejorando la calidad de vida de los habitantes; así como la ejecución de los actos necesarios para llevar adelante el proceso de contratación y fiscalización permanente de la operación del los Centro de Revisión y Control Vehicular, fiscalización de los automotores en la vía pública y administración general de sistema de Revisión Técnica Vehicular;

Que, los principios ambientales universales incorporados en la Constitución Política de la República, en los convenios internaciones de los que el Ecuador es parte, en la Ley de Gestión Ambiental y, en la Ley de Descentralización del Estado, así como las normas INEN y demás preceptos pertinentes de la legislación ecuatoriana, constituyen las bases conceptuales de la temática ambiental de Revisión Técnica Vehicular en el cantón Cuenca:

Oue, haciendo aplicación del concepto de mancomunidad, amparado en la constitución, podrá el cantón coordinar con otros municipios de la provincia y región, para ampliar el ámbito de cobertura de la presente ordenanza;

Que, la I. Municipalidad de Cuenca, mediante convenios de transferencia de competencias ejerce atribuciones en regulación planificación y organización del tránsito y transporte terrestre, así como en materia medio ambiental tanto más cuanto que, la Comisión de Gestión Ambiental ejerce competencia en la temática; y, En ejercicio de sus atribuciones constitucionales y legales;

EXPIDE

La siguiente: ORDENANZA QUE NORMA EL ESTABLECIMIENTO DEL SISTEMA DE REVISIÓN TECNICA VEHICULAR DE CUENCA Y LA DELEGACIÓN DE COMPETENCIAS A CUENCAIRE

CAPITULO I (de la ordenanza)

DISPOSICIONES GENERALES

- Art. 1.- AMBITO DE APLICACIÓN.- La presente Ordenanza establece las normas para la revisión técnica vehicular que es el conjunto de procedimientos técnicos, normalizados, utilizados para determinar la aptitud de circulación de vehículos motorizados terrestres que circulen en el territorio del cantón Cuenca.
- Art. 2.- ASPECTOS QUE COMPRENDE LA REVISIÓN TECNICA.-La revisión técnica vehicular comprende:
 - a) Revisión mecánica y de seguridad
 - b) Control de emisiones de gases contaminantes o de opacidad y ruido dentro de los límites máximos permisibles; y,
 - c) Revisión de idoneidad en los casos específicos que se determinen reglamentariamente.
 - d) Examen de la legalidad de la documentación que acredite la propiedad o tenencia del vehículo de conformidad con la Ley.
- Art. 3.- ANTELACIÓN DE LA REVISIÓN A LA MATRICULACION.-Se establece la obligatoriedad de la revisión técnica vehicular periódica, como requisito para la matriculación vehicular dentro del Cantón.
- Art. 4.- PRINCIPIOS DEL PROCESOS DE REVISIÓN.- El proceso de Revisión Técnica Vehicular deberá estar orientado por los principios de concentración, universalidad, celeridad y eficiencia, es decir en los Centros de Revisión y Control Vehicular se iniciará, desarrollará y concluirá el proceso de Revisión Técnica Vehicular de todos los vehículos a motor que circulen por vía terrestre en el territorio del cantón Cuenca de propiedad pública y privada en el menor tiempo posible y con atención de óptima calidad.
- Art. 5.- DELEGACION.-Delegase a la Corporación Cuencaire la revisión técnica vehicular en el cantón Cuenca como un instrumento de protección del medio ambiente y la reducción de accidentes por fallas mecánicas.

DISPOSICIONES GENERALES

PRIMERA.- El llustre Concejo Cantonal de Cuenca expedirá las normas necesarias para regular todos los aspectos y funciones que, por medio de esta Ordenanza, se encomienda a CUENCAIRE, además se reserva la facultad a la Ilustre Municipalidad de fiscalización sobre todos los procesos que son objeto de las delegaciones establecidas en esta resolución.

DISPOSICIONES TRANSITORIAS

El proceso de Revisión Técnica Vehicular del año 2006 y los subsiguientes, deberán estar sujetos por estas normas

CERTIFICADO DE DISCUSION.- Certificamos que la presente Ordenanza fue conocida, discutida y aprobada por el Ilustre Concejo Cantonal en Primer Debate en la sesión del 20 de julio del 2005; y, en Segundo Debate en sesiones del 10, 23 y 24 de agosto del 2005 Cuenca, 26 de agosto del 2005.

Dr. Iván Saquicela Rodas,

PRESIDENTE OCASIONAL DEL ILUSTRE CONCEJO CANTONAL

Dr. Guillermo Ochoa Andrade,

SECRETARIO DEL ILUSTRE CONCEJO CANTONAL ALCALDIA DE CUENCA.-

Ejecútese y Publíquese.- Cuenca, 29 de agosto del 2005.

Proveyó y firmó el decreto que antecede, el Sr. Jorge Piedra Ledesma, Alcalde de Cuenca (e), a los 29 días del mes de agosto del 2005.- CERTIFICO.

Jorge Piedra Ledesma,

ALCALDE DE CUENCA (e)

Dr. Guillermo Ochoa Andrade,

SECRETARIO DEL ILUSTRE CONCEJO CANTONAL"

Anexo 2: Norma NTE INEN 23 49:2003

Norma NTE INEN 23 49:2003

A nivel Nacional en lo referente a especificaciones y para nuestro estudio tomaremos la Norma NTE INEN 23 49:2003¹⁵

1. OBJETO

1.1 Esta norma establece los procedimientos que se deben seguir para la realización de la revisión técnica vehicular (RTV) obligatoria.

2. ALCANCE

2.1 Esta norma se aplica al proceso de revisión que realizan los Centros de Revisión y Control Vehicular (CRCV), dentro del territorio ecuatoriano, en lo relacionado con sus procedimientos y su equipamiento.

3. DEFINICIONES

- 3.1 Para los efectos de esta norma se adoptan las definiciones contempladas en las NTE INEN 2 202, 2 203, 2 204, 2 205 y 2 207 y en la Ley de Tránsito y transporte y su reglamento general y las que a continuación se detallan:
- 3.1.1 Autoridad competente: Es la organización, institución o persona responsable de la aprobación de un equipo, una instalación o un procedimiento.
- 3.1.2 Banco de prueba de suspensiones: Dispositivo mecatrónico consistente en un par de placas vibratorias y sensores convenientemente dispuestos, que permiten verificar el correcto funcionamiento del conjunto de la suspensión de un vehículo mediante la determinación de variables como amplitud de oscilación en resonancia, eficiencia porcentual de la suspensión, etc.
- 3.1.3 Banco de prueba de frenos: Equipo mecatrónico diseñado para realizar pruebas no invasivas en el sistema de frenos de un vehículo. Básicamente existen dos tipos de sistemas, los de placas y los de rodillos, los mismos que determinan variables tales como: eficiencia de los frenos, desequilibrio del sistema de frenos en un mismo eje, ovalización del tambor del freno, etc.

¹⁵Norma NTE INEN 23 49:2003, disponible en: http://www.ant.gob.ec/index.php/transporte/internacional/doc_details/316-norma-tecnicaecuatoriana-nte-inen-2-3492003

- 3.1.4 Banco de prueba para deriva dinámica: Dispositivo consistente en una placa deslizante convenientemente equipada con sensores y que permite determinar cuantitativamente la tendencia al deslizamiento lateral de las ruedas de dirección de un vehículo, brindando adicionalmente una idea aproximada del estado del sistema integral de dirección.
- 3.1.5 Centro de Revisión y Control vehicular (CRCV): Unidad técnica diseñada, construida, equipada y autorizada para realizar la Revisión Técnica vehicular (RTV) obligatoria y emitir los correspondientes certificados de Ley.
- 3.1.6 Luxómetro: Equipo electrónico que permite determinar la intensidad luminosa de una fuente.
- 3.1.7 Regloscopio: Dispositivo que permite conocer la alineación bidimensional del haz de luz emitido por una fuente.
- 3.1.8 Revisión Técnica vehicular (R.T.V): Conjunto de procedimientos técnicos normalizados utilizados para determinar la aptitud de circulación de vehículos motorizados terrestres y unidades de carga.
- 3.1.9 Sonómetro: Equipo que permite medir la intensidad sonora de una determinada fuente.
- 3.1.10 VIN: Acrónimo inglés derivado de "Vehicle Identification Number", es decir, Número de Identificación Vehicular. Corresponde al número único asignado por el fabricante del automotor, como identificación del vehículo. Se aplica únicamente a los modelos más recientes y reemplaza al número de chasis.

4. DISPOSICIONES GENERALES

- 4.1 Las Organizaciones Operadoras de los Centros de Revisión y Control Vehicular, cuando sea aplicable, deben obtener una certificación de cumplimiento de especificaciones técnicas de sus equipos en base a las Recomendaciones Internacionales de la Organización Internacional de Metrología Legal, OIML, expedida por la casa fabricante o propietaria del diseño o por un organismo acreditado en el país de origen para dicho efecto. Los procedimientos de evaluación base para certificar los equipos de medición a ser utilizados y los requerimientos técnicos a cumplir por los equipos se establecen en las siguientes Recomendaciones Internacionales OIML: R 23, R 55, y R 88.
- 4.2 Las Organizaciones Operadoras debe solicitar al fabricante de los equipos y presentar ante la autoridad competente el certificado de su exactitud y de su

incertidumbre; certificación que debe estar avalada o emitida por un organismo acreditado.

- 4.3 La autoridad competente podrá, en cualquier momento, verificar la legalidad de las certificaciones presentadas por las organizaciones operadoras, sobre el cumplimiento de lo establecido en esta norma, así como el adecuado funcionamiento de los equipos.
- 4.4 Con excepción de la inspección visual del vehículo y la detección de holguras, todas las pruebas de revisión deben ser automáticas, computarizadas e íntegramente realizadas por equipo mecatrónico. Los resultados deben ser instantáneamente procesados por una central computarizada, en función de las mediciones efectuadas por cada uno de los equipos de la línea. El centro deberá disponer de los adecuados niveles de seguridad, que impidan la alteración o manipulación de los resultados de una o de varias revisiones.
- 4.5 Los resultados de la inspección visual y de holguras, así como la identificación del vehículo serán documentados electrónicamente a través de terminales de computadora convenientemente dispuestos en la línea de revisión.
- 4.6 Los resultados totales de la revisión no deben ser conocidos por el propietario del vehículo ni tampoco por ninguno de los miembros del personal de los centros hasta finalizada la revisión integral del automotor.
- 4.7 La identificación del vehículo y el control legal del mismo deben ser realizados exclusivamente por un representante de la autoridad de tránsito competente o su delegado.
- 4.8 Los certificados de revisión vehicular y todos los resultados, incluidos los de las inspecciones visuales, deben ser automáticamente impresos en un formulario diseñado y provisto a los Centros por la autoridad competente. Cualquier rasgo caligráfico, tachón, borrón o alteración presente en el certificado de revisión lo invalidará.

Anexo3: Ley Nacional de Tránsito, Transporte y seguridad Vial

Ley Nacional de Transito, Transporte y Seguridad Vial del Ecuador¹⁶

... "LIBRO TERCERO

DEL TRANSITO Y LA SEGURIDAD VIAL

TITULO I

DEL AMBITO DEL TRANSITO Y LA SEGURIDAD VIAL

Art. 87.- Están sujetas a las disposiciones del presente libro, todas las personas que como peatones, pasajeros, ciclistas o conductores de cualquier clase de vehículos, usen o transiten por las vías destinadas al tránsito en el territorio nacional.

Art. 88.- En materia de tránsito y seguridad vial, la presente Ley tiene por objetivo, entre otros, los siguientes:

- g) Disponer la implantación de requisitos mínimos de seguridad para el funcionamiento de los vehículos, de los elementos de seguridad activa y pasiva y su régimen de utilización, de sus condiciones técnicas y de las actividades industriales que afecten de manera directa a la seguridad vial.
- h) La reducción de la contaminación ambiental, producida por ruidos y emisiones de gases emanados de los vehículos a motor; así como la visual ocasionada por la ocupación indiscriminada y masiva de los espacios de la vía pública.

CAPITULO II

DE LOS VEHICULOS

SECCION 1

DE LOS DOCUMENTOS HABILITANTES DEL VEHICULO

Art. 102.- Al propietario del vehículo se le otorgará una sola matrícula del automotor, que será el documento habilitante para su circulación por las vías del país, y en ella constará el nombre del propietario, las características y especificaciones del mismo y el servicio para el cual está autorizado. La matrícula del vehículo registra el título de propiedad.

¹⁶ Ley Nacional de Tránsito, Transporte y Seguridad vial de la República del Ecuador, disponible en: http://www.eltiempo.com.ec/images/LEY TRANSITO.pdf

La Comisión Nacional o sus órganos desconcentrados conferirán certificaciones sobre la propiedad del vehículo.

Art. 103.- La matrícula será emitida por las Comisiones Provinciales de Transporte Terrestre, Tránsito y Seguridad Vial, previo el pago de las tasas e impuestos correspondientes y el cumplimiento de los requisitos previstos en el Reglamento. El documento que acredite el contrato de seguro obligatorio para accidentes de tránsito, será documento habilitante previo para la matriculación y circulación de un vehículo.

CAPITULO II

DE LOS VEHICULOS

SECCION 2

REVISION TECNICA VEHICULAR Y HOMOLOGACIONES

Art. 205.- Los importadores de vehículos, de repuestos, equipos, partes y piezas; carroceros y ensambladores, podrán comercializarlos si cumplen con todas las disposiciones de seguridad automotriz expedidas por el Instituto Ecuatoriano de Normalización-INEN, la Comisión Nacional y otras autoridades nacionales en materia de transporte terrestre; para ello el Director Ejecutivo de la Comisión Nacional estará en capacidad de supervisar, fiscalizar y sancionar el incumplimiento de esta disposición.

Art. 206.- La Comisión Nacional autorizará el funcionamiento de Centros de Revisión y Control Técnico Vehicular en todo el país y otorgará los permisos correspondientes, según la Ley y los reglamentos, siendo estos centros los únicos autorizados para efectuar las revisiones técnico mecánicas y de emisión de gases de los vehículos automotores, previo a su matriculación

DIPOSICIONES TRANSITORIAS:

TERCERA.- Hasta que se expidan nuevos reglamentos de la presente Ley de Tránsito y Transporte Terrestres, continuarán rigiendo los actuales..."