UNIVERSIDAD DEL AZUAY

FACULTAD DE CIENCIA Y TECNOLOGÍA

ESCUELA DE INGENIERÍA DE ALIMENTOS

“Diseño de un producto alimenticio aprovechando los residuos de frutas y vegetales generados por la Industria”

Trabajo de graduación previo a la obtención del título de:

INGENIERA EN ALIMENTOS

Autora:

ERIKA XIMENA GALINDO ROMO

Directora:

LADY DIANA GONZALEZ APOLO

CUENCA, ECUADOR

2017
DEDICATORIA

A mis padres, ejemplo para mi preparación y superación, quienes con su entrega y testimonio me enseñan a conjugar esfuerzo con constancia, con la finalidad de encontrar el camino positivo y aporte a la sociedad.

A mi esposo, por su amor y paciencia y a mis hermanos por su apoyo incondicional.
AGRADECIMIENTO

Gracias sinceras principalmente a Dios, quien es mi guía espiritual. A mis padres por su generoso y decidido aporte en la realización de este proyecto.

A la Universidad del Azuay, sus directivos y docentes; de manera especial a mi directora Ing. Lady González, por la voluntad, empeño, tiempo, preparación, pues unimos esfuerzo y responsabilidad indispensables para culminar con éxito este proyecto.
ÍNDICE DE CONTENIDOS

DEDICATORIA .. ii
AGRADECIMIENTO .. iv
ÍNDICE DE CONTENIDOS .. iv
ÍNDICE DE GRÁFICOS Y FIGURAS .. vi
ÍNDICE DE TABLAS ... vi
ÍNDICE DE ANEXOS... vii
RESUMEN .. viii
ABSTRACT .. ix

INTRODUCCIÓN ... 1

OBJETIVO GENERAL: .. 2
OBJETIVOS ESPECÍFICOS: .. 2

CAPÍTULO I: REVISIÓN BIBLIOGRÁFICA .. 3

1.1 Residuos de la Industria Alimentaria ... 3
 1.1.1 Mango ... 4
 1.1.2 Zanahoria ... 4
 1.1.3 Maracuyá ... 5
 1.1.4 Cacao ... 5
1.2 Métodos de tratamiento de residuos .. 6
1.3 Diseño de productos ... 8

CAPÍTULO II: MATERIALES Y MÉTODOS .. 9

2.1 Materiales y equipos para la elaboración del producto 9
2.2 Materiales, equipos y reactivos para los análisis de laboratorio 9
2.3 Métodos ... 10
 2.3.1 Diseño y formulación del producto ... 10
 2.3.1.1 Desarrollo de la fórmula base ... 10
ÍNDICE DE GRÁFICOS Y FIGURAS

Figura 2.1: Diseño de mezclas Simplex-Lattice con n=3 .. 15
Figura 2.2: Papel probabilístico Normal .. 19
Figura 3.1: Gráfico Normal Plot para valores significativos en las características organolépticas generales ... 26
Figura 3.2: Gráfico Normal Plot para valores significativos en el factor aspecto 27
Figura 3.3: Layout de planta procesadora de barras de cereal 35

Gráfico 2.1: Diagrama de proceso productivo ... 14
Gráfico 3.1: Análisis sensorial de la formulación base .. 24
Gráfico 3.2: Diseño de empaque ... 28

ÍNDICE DE TABLAS

Tabla 1.1: Composición nutritiva de cáscara de maracuyá .. 5
Tabla 1.2: Tiempos y Temperaturas de Deshidratado .. 7
Tabla 1.3: Nutrientes presentes en los cereales ... 8
Tabla 2.1: Tiempos y Temperaturas de Deshidratación .. 10
Tabla 2.2: Mezclas de ligantes ... 11
Tabla 2.3: Tiempos, Temperaturas y Tipo de cocción ... 11
Tabla 2.4: Formulación de los tratamientos base ... 12
Tabla 2.5: Matriz de experimentación teórica ... 14
Tabla 2.6: Matriz diseño de mezclas ... 16
Tabla 2.7: Valores de cada variable con diseño de mezclas 16
Tabla 2.8: Variables controlables .. 17
Tabla 2.9: Matriz de experimentación práctica ... 17
Tabla 3.1: Aceptabilidad de los tratamientos base ... 22
Tabla 3.2: Formulación Base de la barra de residuos de frutas y vegetales 22
Tabla 3.3: Rendimiento global de características organolépticas 23
Tabla 3.4: Rendimiento individual de características organolépticas de los diferentes tratamientos ... 23
Tabla 3.5: Matriz de Interacciones .. 24
Tabla 3.6: Matriz de Significancia ... 25
Tabla 3.7: Resultados del recuento de aerobios mesófilos (ufc/g) .. 28
Tabla 3.8: Resultados del recuento de *Escherichia coli* (ufc/g) 29
Tabla 3.9: Resultados del recuento de *Staphylococcus aureus* 29
Tabla 3.10: Resultados del recuento de Mohos ... 29
Tabla 3.11: Resultados del recuento de *Salmonella* .. 29
Tabla 3.12: Resultados del recuento de Levaduras .. 29
Tabla 3.13: Resultados de análisis físico-químicos .. 30
Tabla 3.14: Resultados de aceptabilidad de producto final 30
Tabla 3.15: Equipos y materiales .. 31
Tabla 3.16: Área de Instalaciones ... 34
Tabla 3.17: Costo de producto .. 36
Tabla 3.18: Inversión Total en Activo Fijo y Diferido ... 37

ÍNDICE DE ANEXOS

Anexo 1: Fórmulas para los tratamientos base ... 45
Anexo 2: Ficha de cata utilizada para la evaluación sensorial de la fórmula base 46
Anexo 3: Ficha de cata utilizada para diseño de mezclas 47
Anexo 4: Resultados de Evaluación Sensorial .. 47
Anexo 5: Matriz de interacciones y significancia .. 48
Anexo 6: Análisis costo-beneficio .. 49
Anexo 7: Procedimiento para determinación de análisis microbiológicos 55
Anexo 8: Procedimiento para determinación de análisis físico-químicos 59
Anexo 9: Diseño de empaque ... 65
Anexo 10: Resultados de análisis físico-químico y microbiológicos 66
“DISEÑO DE UN PRODUCTO ALIMENTICIO APROVECHANDO LOS RESIDUOS DE FRUTAS Y VEGETALES GENERADOS POR LA INDUSTRIA”.

RESUMEN

El objetivo del estudio fue determinar la factibilidad de aprovechamiento de los residuos de frutas y vegetales generados en la industria alimenticia en el diseño de un producto alimenticio, con el fin de fomentar el consumo de alimentos de alto valor nutritivo e incorporar materia prima desaprovechada. Se desarrolló una fórmula base a la cual se aplicó un diseño experimental factorial 2^3 para evaluar diferentes factores que influyen en el rendimiento sensorial de los tratamientos. La mejor formulación fue sometida a un análisis de sus características físico-químicas, microbiológicas y de vida útil; además se estableció la ingeniería del proceso productivo y el costo-beneficio del producto.

Palabras Clave: residuos, valor nutritivo, producto alimenticio, vida útil

Lady Diana González Apolo
Directora de Titulación

Diana Chalco Quezada
Director de Escuela

Erika Ximena Galindo Romo
Autora
DESIGN OF A FOOD PRODUCT USING THE RESIDUES OF FRUITS AND VEGETABLES GENERATED BY THE INDUSTRY

ABSTRACT

This study aimed to determine the feasibility of using fruit and vegetable residues generated by the food industry in the design of a food product with the purpose of promoting the consumption of high nutritional value foods and incorporating wasted raw material. A base formula was developed, and a 2^3 factorial experiment design was applied to it in order to evaluate the different factors that influence the sensorial performance of the treatments. The best formulation was subjected to the analysis of its physicochemical, microbiological and shelf-life characteristics. In addition, the engineering of the production process and the cost-benefit of the product were established.

Keywords: residues, nutritional value, food product, shelf-life

Lady Diana González Apolo
Thesis Director

Diana Chalco Quezada
School Director

Erika Ximena Galindo Romo
Author

Translated by,
Lic. Lourdes Crespo
DISEÑO DE UN PRODUCTO ALIMENTICIO APROVECHANDO LOS RESIDUOS DE FRUTAS Y VEGETALES GENERADOS POR LA INDUSTRIA.

INTRODUCCIÓN

En la actualidad, los residuos de frutas y vegetales generados en las industrias alimentarias tienen una gran importancia, debido a su amplia diversidad y cantidad. Es así, que se hace necesaria la implementación de técnicas de aprovechamiento con el fin de mejorar el manejo y la disposición de los mismos, los cuales pueden ser utilizados como materias primas para el desarrollo de nuevos productos.

En el Ecuador se generan 3,75 millones de toneladas por año de desperdicios provenientes de frutas y vegetales, los mismos que no son aprovechados, ya sea por el desconocimiento de su valor nutricional o de los distintos procesos tecnológicos para su preparación (Díaz, 2006).

Entre los residuos que se generan están: cáscara, pulpa, semillas, tallos, entre otros, que no son aptos para el consumo humano sin un adecuado tratamiento, pero que pueden ser utilizados después del mismo. Estos residuos constituyen una importante fuente de nutrientes y no nutrientes, por lo que su alto valor nutricional, capacidad antioxidante y bajo aporte calórico, ha generado un creciente interés por su estudio y uso en la elaboración de alimentos.

Los productos elaborados a base de residuos desaprovechados son de un costo menor a los existentes en el mercado, por lo que es factible que personas de bajos recursos puedan adquirirlos a precios más bajos y de esta manera agregar a la dieta nutrientes adecuados para un correcto desarrollo y así evitar la presencia de enfermedades causadas por la dieta.
OBJETIVO GENERAL:

- Diseñar un producto alimenticio elaborado a partir de residuos orgánicos desaprovechados y una combinación de cereales.

OBJETIVOS ESPECÍFICOS:

- Determinar la mejor formulación mediante diseño experimental.
- Evaluar las características organolépticas.
- Evaluar las características físico-químicas y microbiológicas.
- Evaluar la vida útil y aceptación del producto.
- Evaluar el costo-beneficio del producto.
CAPÍTULO I

REVISIÓN BIBLIOGRÁFICA

1.1. Residuos de la Industria Alimentaria

En la actualidad, existe un sinnúmero de industrias que se dedican al procesamiento y transformación de materia prima en alimentos para el consumo humano. Entre ellas están aquellas que procesan frutas y vegetales, cárnicos, lácteos, etc.

La industria alimentaria trae como consecuencia la producción de una gran cantidad de desechos, que la mayoría de veces ocasionan contaminación ambiental, ya que la acumulación de los mismos es constante y las fábricas no realizan una eliminación adecuada y los desechan en ríos, quebradas, etc. (Espinoza, 2004)

Es así que la Producción Más Limpia (P.M.L.) aplicada a procesos, productos y servicios, tiene la finalidad de minimizar los riesgos a la población y al medio ambiente, tomando como principio reducir al mínimo o eliminar los residuos y emisiones en la fuente y no tratarlos después de que se hayan generado (Restrepo, 2006).

A nivel industrial existen diferentes procesos de transformación de alimentos que generan una gran cantidad de desechos y residuos que pueden ser utilizados en la elaboración de productos nuevos. Sin embargo, en el Ecuador no existe un aprovechamiento eficiente de los mismos, en parte, porque su valor no es conocido o porque no existen técnicas adecuadas para su preparación.

Entre los principales residuos están las cáscaras, semillas, pulpas que son separadas sin ningún valor agregado, lo cuales al ser aprovechados de la manera adecuada pueden servir para generar nuevos alimentos, después de recibir un tratamiento correcto, lo que representaría un beneficio económico adicional (Vélez, 2009).

Específicamente, los costos de secado, almacenamiento y transporte de los residuos son factores que limitan económicamente su aplicación industrial y, por lo tanto, son
a menudo utilizados con un escaso tratamiento como alimento para animales, como fertilizantes o simplemente se convierten en focos de contaminación para las fuentes de agua (Wadhwa, Bakshi, & Makkar, 2013).

Cada sector en particular genera residuos en diferentes porcentajes de acuerdo con los tipos de productos que fabrican. Existen frutas como mango, cacao, maracuyá, y vegetales como la zanahoria, de los que se generan gran cantidad de residuos.

Los residuos orgánicos son una fuente importante de compuestos que pueden ser utilizados debido a sus propiedades favorables tecnológica o nutricionalmente, de hecho, recientemente se ha mostrado que los residuos de cítricos contienen antioxidantes que pueden tener un efecto benéfico para la salud humana (Londoño et al., 2010).

1.1.1 Mango
El mango (Mangifera indica L., Anacardiaceae) es una de las frutas tropicales más importantes, ha ganado gran popularidad en todo el mundo y cada vez mayor importancia. La recuperación de residuos de dicha fruta es ahora una adecuada vía para la obtención de diversos residuos debido al alto porcentaje de los mismos que se generan en los diversos procesos productivos. (Bernardini et al., 2005)

La cáscara puede constituir del 15 al 18% del peso total del fruto. (Bangerth et al., 2002). Dichos residuos además son una fuente importante de compuestos bioactivos tales como: pectina, polifenoles y antioxidantes (Larrauri et al., 1996). Según García (2003), se ha reportado que la cáscara de mango presenta en promedio 4.8% de proteína cruda, 29% de fibra soluble y 27% de fibra insoluble. La cantidad mencionada de fibra es similar al valor que presenta la avena, por lo que es aconsejable utilizar dicho residuo.

1.1.2 Zanahoria
La zanahoria (Daucus carota L., Apiaceae) es una fuente importante de vitaminas y minerales. Se sabe que una parte importante de compuestos valiosos, tales como los carotenos, antioxidantes y azúcares neutros se conservan en la corteza de zanahoria, pero lamentablemente estos nutrientes nos son aprovechados al máximo ya que las
cáscaras donde se encuentran contenidos son eliminadas al basurero donde son mezclados con residuos no degradables. (Pérez, et al., 2007). El contenido de caroteno total en la cáscara puede ser de hasta 2g por kg de materia seca, dependiendo de las condiciones de procesamiento (Stoll, et al., 2001).

1.1.3 Maracuyá

El fruto de maracuyá (Passiflora edulis f. flavicarpa Deg.), es una fuente importante de proteínas (7,70%), minerales como calcio, fósforo y potasio, proporciona una gran cantidad de energía, grasa (Tabla 1.1).

Tabla 1.1: Composición nutritiva de cáscara de maracuyá

<table>
<thead>
<tr>
<th>COMPOSICIÓN</th>
<th>PORCENTAJE EN BASE SECA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIA SECA</td>
<td>87.50</td>
</tr>
<tr>
<td>PROTEÍNA</td>
<td>7.70</td>
</tr>
<tr>
<td>FIBRA</td>
<td>39.74</td>
</tr>
<tr>
<td>GRASA</td>
<td>2.87</td>
</tr>
<tr>
<td>MINERALES</td>
<td>8.57</td>
</tr>
</tbody>
</table>

Fuente: (Puente, 2001)

Según Contreras (2003), los desechos del maracuyá representan el 52% (cáscara del maracuyá) y el 4,46% (semilla del maracuyá), por lo que se genera una contaminación ambiental en las regiones de producción de dicha fruta. La cáscara aporta con fibra soluble, la misma que puede ayudar a prevenir enfermedades gastrointestinales (Iniap, 2009). La FAO en el 2006, informa que la cáscara de dicha fruta es rica en pectina. Las semillas contienen un alto grado de aceite con un excelente valor nutricional.

1.1.4 Cacao

La cascarilla de cacao (*Theobroma cacao L*). representa el mayor subproducto en la industria chocolatera. Corresponde al 12% del peso total del fruto, la que es obtenida después de la fase de tostado
Según Soto (2006), la cascarilla de cacao aporta con un 20% de contenido proteico que, junto con otros componentes como la fibra, hace que esta sea de gran interés para su posterior uso en elaboración de ciertos alimentos. Además, la cascarilla está libre de grasas y su alto contenido de cenizas indica que se trata de un producto rico en minerales, principalmente calcio y potasio. Aporta también con una cantidad significativa de vitamina A y C, además de su contenido de antioxidantes (Abarca, 2010)

1.2. Métodos de tratamiento de residuos

Una de las técnicas que se puede usar para el tratamiento de los residuos es el secado, que es una de las técnicas de conservación más utilizada desde la antigüedad por el ser humano, con el fin de alargar la vida útil de un alimento.

Llamado también proceso de deshidratación consiste en la extracción del agua contenida en los alimentos por medios físicos hasta que la misma llegue a un nivel donde el alimento pueda mantenerse en un largo período de tiempo sin sufrir alteraciones físicas o químicas.

El nivel de agua deseado lo determina el tipo de producto final, por ejemplo, el secado de granos y cereales se realiza hasta alcanzar alrededor de 12% de agua en el producto que es parecido a la humedad del aire normal, en el caso de las frutas secas, los niveles son más bajos (8-10%), en el caso de nueces y semillas los niveles son todavía más bajos (3-5%). Cuando la humedad final que se desea está por debajo de la humedad del aire normal o del medio ambiente, es necesario realizar un proceso controlado de secado (R. P. Singh & Heldman, 2009).

Es importante que el secado sea gradual y homogéneo y no exceder ciertos valores de temperatura para no modificar la estructura del alimento ni afectar su nivel de nutrientes y vitaminas. Un proceso adecuado de deshidratación permite que el producto final mantenga entre el 50 y 80% de su contenido inicial de vitaminas.

Existen algunas condiciones dependiendo del tipo de alimento:

- Cada alimento mantiene diferente tiempo y condiciones de deshidratación.
• Colocar en bandejas de deshidratado, el alimento del mismo tamaño para conseguir un secado homogéneo
• Tener un grosor estimado entre 0,5 y 1 cm, ya que, si es muy grueso, el alimento se seca solamente en el exterior, mientras que si es muy fino el alimento puede ser duro luego del secado.

La temperatura del aire del secado es un factor importante en el proceso de deshidratación con aire caliente. El incremento de la temperatura aumenta la difusividad del agua, dentro del producto, acelerando, de esta forma el proceso. (Brennan et al., 2001).

De igual manera se debe controlar que no exista un incremento excesivo de temperatura, ya que puede causar el deterioro de las propiedades del alimento. El tiempo y temperatura de deshidratado es específico para cada uno de los alimentos. (Tabla 1.2).

Tabla 1.2: Tiempos y Temperaturas de Deshidratado

<table>
<thead>
<tr>
<th>ALIMENTO</th>
<th>TIEMPO (HORAS)</th>
<th>TEMPERATURA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melocotón</td>
<td>9</td>
<td>60°C</td>
</tr>
<tr>
<td>Uvas</td>
<td>12</td>
<td>55°C</td>
</tr>
<tr>
<td>Mango</td>
<td>10</td>
<td>65°C</td>
</tr>
<tr>
<td>Zanahoria</td>
<td>11</td>
<td>60°C</td>
</tr>
<tr>
<td>Naranja</td>
<td>12</td>
<td>50°C</td>
</tr>
<tr>
<td>Maracuyá</td>
<td>6</td>
<td>53°C</td>
</tr>
<tr>
<td>Banano</td>
<td>12</td>
<td>70°C</td>
</tr>
<tr>
<td>Tomate</td>
<td>14</td>
<td>65°C</td>
</tr>
<tr>
<td>Manzana</td>
<td>5</td>
<td>50°C</td>
</tr>
</tbody>
</table>

Fuente: (Marín, P. 2007)
1.3 Diseño de Productos

Las industrias de alimentos pueden aprovechar los residuos generados para elaborar nuevos productos. El diseño de los mismos está asociado con el proceso de innovación tecnológica. Inicialmente, se desarrolla una idea principal para luego diseñar un prototipo de producto.

Actualmente, los consumidores se encuentran ante la necesidad de encontrar fuentes alternativas de nutrientes, buscando propiedades beneficiosas para mantener así un estado de vida adecuado. Es por ello que las industrias alimenticias buscan diseñar alimentos funcionales y nutritivos, para una población preocupada por su salud y calidad de vida (Cóccaro, 2010).

Existen un sinnúmero de alimentos nutritivos, siendo uno de los más versátiles, las barras de cereales, ya que son una opción práctica para incrementar los niveles diarios de ingesta de fibra y nutrientes necesarios en la dieta. Sin embargo, muchas de las veces los costos en el mercado son altos, por lo que la mayoría de la población no pueden adquirirlas, es por eso que se busca diseñar productos sanos y a un menor costo.

Es así, que en el presente estudio se busca además incorporar cereales andinos, que no son altamente aprovechados, la avena, la misma que constituyen una fuente importante de nutrientes como calcio, hierro, fósforo, hidratos de carbono, lípidos y fibra para el desarrollo adecuado (Tabla 1.3).

Tabla 1.3: Nutrientes presentes en los cereales

<table>
<thead>
<tr>
<th>Cereal</th>
<th>Proteínas</th>
<th>Fibra</th>
<th>Vitaminas</th>
<th>Minerales</th>
</tr>
</thead>
</table>

Fuente: (Latham, 2002)
CAPÍTULO II
MATERIALES Y MÉTODOS

2.1. Materiales y equipos para la elaboración del producto

<table>
<thead>
<tr>
<th>INGREDIENTES</th>
<th>UTENSILIOS</th>
<th>EQUIPOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residuos de frutas y vegetales: maracuyá, mango, zanahoria y cacao</td>
<td>Recipientes</td>
<td>Deshidratador</td>
</tr>
<tr>
<td>Cereales: avena</td>
<td>Cuchillos</td>
<td>Prensa</td>
</tr>
<tr>
<td>Agentes ligantes: miel de abeja, jarabe de glucosa, mantequilla</td>
<td>Termómetro</td>
<td>Cocina</td>
</tr>
<tr>
<td>Agua</td>
<td>Papel encerado</td>
<td></td>
</tr>
</tbody>
</table>

2.2 Materiales, equipos y reactivos para los análisis de laboratorio

<table>
<thead>
<tr>
<th>MATERIALES</th>
<th>EQUIPOS</th>
<th>REACTIVOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probetas de 50 y 100ml</td>
<td>Desecador</td>
<td>Agua Destilada</td>
</tr>
<tr>
<td>Pinza de bureta</td>
<td>Balanza analítica</td>
<td>Agua de Peptona</td>
</tr>
<tr>
<td>Papel encerado</td>
<td>Tubos de digestión Kjendhal</td>
<td>Medio para Salmonella</td>
</tr>
<tr>
<td>Pipetas serológicas</td>
<td>Autoclave</td>
<td>Hidróxido de Sodio</td>
</tr>
<tr>
<td>Pipetas volumétricas</td>
<td>Mufla</td>
<td>EDTA</td>
</tr>
<tr>
<td>Erlenmeyer</td>
<td>Horno</td>
<td></td>
</tr>
<tr>
<td>Placas para aerobios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placas para E. Coli</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.3 Métodos

2.3.1 Diseño y formulación del producto

2.3.1.1. Desarrollo de fórmula base

Para el desarrollo de la fórmula base del producto, primero se realizaron pruebas preliminares para determinar factores como la temperatura y tiempo de deshidratación de los residuos, tipo de ligante del producto, tiempo y temperatura de cocción.

Temperatura y tiempo de deshidratación de residuos

El tiempo y temperatura de deshidratación aplicados fueron diferentes para cada uno de los residuos, ya que unos residuos proceden a secarse de manera inmediata y a baja temperatura, mientras otros lo hacen lentamente a temperaturas medias o altas (Tabla 2.1).

<table>
<thead>
<tr>
<th>ALIMENTO</th>
<th>TIEMPO (HORAS)</th>
<th>TEMPERATURA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mango</td>
<td>10</td>
<td>65°C</td>
</tr>
<tr>
<td>Zanahoria</td>
<td>11</td>
<td>60°C</td>
</tr>
<tr>
<td>Maracuyá</td>
<td>6</td>
<td>53°C</td>
</tr>
</tbody>
</table>

Tipo de ligante

Para evaluar la ligazón de los residuos con los cereales en la formación de la barra se realizaron ocho tratamientos diferentes, utilizando ligantes como la mantequilla, miel de abeja y jarabe de glucosa. El rendimiento de los mismos se evaluó en función de su textura, sabor y olor. El tratamiento TL7 elaborado a partir de 5% de miel de abeja y 15% de jarabe de glucosa, obtuvo un rendimiento, con una textura maleable, sabor y olor agradables. El tratamiento menos aceptado fue el TL1, elaborado a partir de 15% de miel de abeja, ya que se obtuvo un sabor y olor desagradable y la dureza fue excesiva (Tabla 2.2).
Tabla 2.2: Mezclas de ligantes

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>LIGANTES</th>
<th>CARACTERÍSTICAS FINALES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Miel de abeja</td>
<td>Sabor</td>
</tr>
<tr>
<td>TL1</td>
<td>15%</td>
<td>Desagradable</td>
</tr>
<tr>
<td></td>
<td>Mantequilla</td>
<td>Desagradable</td>
</tr>
<tr>
<td></td>
<td>Jarabe de Glucosa</td>
<td>Desagradable</td>
</tr>
<tr>
<td>TL2</td>
<td>10%</td>
<td>Desagradable</td>
</tr>
<tr>
<td></td>
<td>Mantequilla</td>
<td>Desagradable</td>
</tr>
<tr>
<td></td>
<td>Jarabe de Glucosa</td>
<td>Desagradable</td>
</tr>
<tr>
<td>TL3</td>
<td>10%</td>
<td>Agradable</td>
</tr>
<tr>
<td></td>
<td>Mantequilla</td>
<td>Agradable</td>
</tr>
<tr>
<td></td>
<td>Jarabe de Glucosa</td>
<td>Exceso Dureza</td>
</tr>
<tr>
<td>TL4</td>
<td>7%</td>
<td>Agradable</td>
</tr>
<tr>
<td></td>
<td>Mantequilla</td>
<td>Agradable</td>
</tr>
<tr>
<td></td>
<td>Jarabe de Glucosa</td>
<td>Maleable</td>
</tr>
<tr>
<td>TL5</td>
<td>0%</td>
<td>Mucha Mantequilla</td>
</tr>
<tr>
<td></td>
<td>Mantequilla</td>
<td>Desagradable</td>
</tr>
<tr>
<td></td>
<td>Jarabe de Glucosa</td>
<td>Maleable</td>
</tr>
<tr>
<td>TL6</td>
<td>0%</td>
<td>Insipido</td>
</tr>
<tr>
<td></td>
<td>Mantequilla</td>
<td>Agradable</td>
</tr>
<tr>
<td></td>
<td>Jarabe de Glucosa</td>
<td>Corteza dura</td>
</tr>
<tr>
<td>TL7</td>
<td>5%</td>
<td>Agradable</td>
</tr>
<tr>
<td></td>
<td>Mantequilla</td>
<td>Agradable</td>
</tr>
<tr>
<td></td>
<td>Jarabe de Glucosa</td>
<td>Maleable</td>
</tr>
<tr>
<td>TL8</td>
<td>0%</td>
<td>Insipido</td>
</tr>
<tr>
<td></td>
<td>Mantequilla</td>
<td>Desagradable</td>
</tr>
<tr>
<td></td>
<td>Jarabe de Glucosa</td>
<td>Maleable</td>
</tr>
</tbody>
</table>

Temperatura y tiempo de cocción

Los residuos, cereales y ligantes fueron sometidas a diferentes tiempos y temperaturas de cocción, hasta obtener una textura adecuada. Se realizaron tres tratamientos diferentes, siendo el mejor a 200°C por un tiempo de 5 minutos (Tabla 2.3).

Tabla 2.3: Tiempos, Temperaturas y Tipo de cocción

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Temperatura</th>
<th>Tiempo</th>
<th>Tipo Cocción</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC1</td>
<td>180°C</td>
<td>7 minutos</td>
<td>Insuficiente</td>
</tr>
<tr>
<td>TC2</td>
<td>200°C</td>
<td>5 minutos</td>
<td>Adecuada y Homogénea</td>
</tr>
<tr>
<td>TC3</td>
<td>210°C</td>
<td>10 minutos</td>
<td>Excesiva</td>
</tr>
</tbody>
</table>

Fórmula base

Una vez establecidos los factores anteriores se procedió a desarrollar la fórmula base, para lo cual se realizaron ocho tratamientos (TB), partiendo del concepto de que el 65% de la barra tiene que contener los residuos de frutas y vegetales y el 35% restante los otros ingredientes (Tabla 2.4) y (Anexo 1). En el caso de la cascarilla de cacao, se
Galindo Romo 12

aplicó como parte de la cobertura del producto, utilizando una mezcla del 3% de
cascarilla de cacao y 2% de pasta de cacao 70% dark.

Tabla 2.4: Formulación de los tratamientos base de las barras de residuos de frutas y
vegetales

<table>
<thead>
<tr>
<th>INGREDIENTE</th>
<th>TB1</th>
<th>TB2</th>
<th>TB3</th>
<th>TB4</th>
<th>TB5</th>
<th>TB6</th>
<th>TB7</th>
<th>TB8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cáscara Zanahoria</td>
<td>0</td>
<td>30</td>
<td>15</td>
<td>25</td>
<td>20</td>
<td>30</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Cáscara Maracuyá</td>
<td>35</td>
<td>25</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Cáscara Mango</td>
<td>30</td>
<td>10</td>
<td>30</td>
<td>30</td>
<td>35</td>
<td>15</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>Pasta de cacao 70% dark</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Cascarilla de cacao</td>
<td>10</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Avena</td>
<td>5</td>
<td>15</td>
<td>20</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Jarabe de glucosa</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Miel de abeja</td>
<td>10</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Para evaluar el rendimiento de los tratamientos base, se analizaron sus características
organolépticas, como sabor, color, olor, textura a través de un panel de catación semi-
entrenado, conformado por diez catadores, en base a la ficha de catación (Anexo 2),
con la misma que se establecieron si los ingredientes utilizados fueron los adecuados.
Además, dicha ficha permitió establecer el grado de aceptabilidad del producto, con
una calificación sobre cinco puntos y de esa manera escoger el mejor tratamiento
(Anexo 4).

2.3.1.2 Descripción del proceso productivo

En función de todos los parámetros analizados se estableció el proceso productivo
ideal para la elaboración de barras a base de residuos y cereales (Gráfico 2.1).

Recepción de la materia prima: Se recepta los ingredientes que serán utilizados
como materia prima. Entre los ingredientes están: avena, residuos de frutas y vegetales,
agentes ligantes. Todos los ingredientes deberán ser almacenados en condiciones adecuadas, en un lugar fresco y seco hasta su posterior utilización.

Deshidratación de residuos: Si los ingredientes (residuos de frutas y vegetales) cumplen con las condiciones de aceptación; es decir son óptimos para el consumo se procede a realizar la deshidratación de los mismos a tiempos y temperaturas adecuadas. Para el mango se necesitó 10 horas a 65°C, para la zanahoria 11 horas y 60°C y para el maracuyá 6 horas a 53°C

Cocción de cereales y residuos: Se procede a realizar la cocción de estos ingredientes, en un horno a temperatura de 200°C por un tiempo de 5 minutos, con el fin de lograr una posterior compactación y la obtención del producto final deseado.

Mezclado de ingredientes: Posterior a la cocción, se realiza el mezclado de los cereales y residuos lentamente con agentes ligantes, esto se realiza a una temperatura de 150°C por un tiempo de 3 minutos. Si durante ese tiempo no se obtiene una compactación adecuada, se procede a mezclar por un tiempo de 2 minutos adicionales.

Prensado y Formado: Al obtener una mezcla compacta, se procede a realizar el prensado y formado del producto final. Se puede realizar un formado rectangular de un grosor aproximado de 2cm.

Cortado y secado: Finalmente se realiza el cortado del producto final, y se realiza el secado a temperatura ambiente para evitar el endurecimiento del mismo.
Para determinar la mejor formulación del producto se realizó un diseño experimental factorial 2^K, considerando la influencia de tres factores significativos en la variable respuesta. Es así, que con el diseño factorial 2^3 se estudia el efecto de 3 factores en 2 niveles cada uno, constando de $2^3 = 2 \times 2 \times 2 = 8$ tratamientos diferentes. La matriz de diseño se construyó alternando el signo menos y más en la primera columna; dos menos y dos más en la segunda columna y cuatro menos y cuatro más en la tercera columna (Tabla 2.5).

Tabla 2.5: Matriz de experimentación teórica

<table>
<thead>
<tr>
<th>N.°</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Para la aplicación del diseño se consideraron como variables controlables la cantidad de residuos de frutas y vegetales, cobertura, aglutinante, ya que son las que más influyen en las características organolépticas del producto como sabor, olor y textura.

Con la finalidad de determinar la mezcla ideal de residuos de frutas y vegetales (cáscara de mango, maracuyá y zanahoria) se aplicó un diseño “Simplex- Lattice”, el cual se utiliza para estudiar el efecto de los ingredientes sobre las variables de respuesta que se van a determinar. Snee (1971), recomienda un diseño con diez corridas como se ilustra en la Figura 2.1, donde los vértices representan cada ingrediente.

<table>
<thead>
<tr>
<th></th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>5</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>6</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>7</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>8</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
</tbody>
</table>

Fuente: (Gutiérrez et al, 2008)

En la matriz del diseño de mezclas los puntos 1, 2, y 3 representan el 100% de un componente, los puntos 4,5, y 6 representan mezclas binarias (50%) de cada par de componentes, el punto 7 representa cantidades iguales de cada componente, y los puntos 8,9, y 10; representan el 66,7% que corresponde a un componente y el 16,7% que corresponde a cada uno de los otros dos componentes. (Tabla 2.6).
Tabla 2.6: Matriz diseño de mezclas para los residuos de frutas y vegetales

<table>
<thead>
<tr>
<th>ZANAHORIA</th>
<th>MANGO</th>
<th>MARACUYÁ</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>100%</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>50%</td>
<td>50%</td>
<td>0</td>
</tr>
<tr>
<td>50%</td>
<td>0</td>
<td>50%</td>
</tr>
<tr>
<td>0</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>33.33%</td>
<td>33.33%</td>
<td>33.33%</td>
</tr>
<tr>
<td>16.67%</td>
<td>16.67%</td>
<td>66.67%</td>
</tr>
<tr>
<td>16.66%</td>
<td>66.67%</td>
<td>16.66%</td>
</tr>
<tr>
<td>66.67%</td>
<td>16.66%</td>
<td>16.66%</td>
</tr>
</tbody>
</table>

Fuente: (Gutiérrez et al, 2008)

Para determinar el mejor diseño de mezcla, se estableció un panel de catación semientrenado conformado por 10 personas, quienes realizaron una calificación sensorial sobre 10 puntos, siendo 1 el peor y 10 el mejor (Anexo 3). Es así, que se determinó que el diseño de mezcla (DM1) es el menos aceptado y el diseño de mezclas (DM8) el más aceptado, el cual contiene mayor cantidad de maracuyá y partes iguales de zanahoria y mango (Tabla 2.7).

Tabla 2.7: Valores de cada variable con diseño de mezclas

<table>
<thead>
<tr>
<th>MEZCLA</th>
<th>ZANAHORIA</th>
<th>MANGO</th>
<th>MARACUYÁ</th>
<th>P/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM1</td>
<td>65g</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>DM2</td>
<td>0</td>
<td>65g</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>DM3</td>
<td>0</td>
<td>0</td>
<td>65g</td>
<td>2</td>
</tr>
<tr>
<td>DM4</td>
<td>32,5g</td>
<td>32,5g</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>DM5</td>
<td>32,5g</td>
<td>0</td>
<td>32,5g</td>
<td>7</td>
</tr>
<tr>
<td>DM6</td>
<td>0</td>
<td>32,5g</td>
<td>32,5g</td>
<td>6</td>
</tr>
<tr>
<td>DM7</td>
<td>21,66g</td>
<td>21,66g</td>
<td>21,66g</td>
<td>5</td>
</tr>
</tbody>
</table>
Luego de realizar un diseño de mezclas y determinar el mejor tratamiento, se construyó la matriz de máximos y mínimos, modificando las variables controlables ±15% (Tabla 2.8). Una vez definido los factores con sus respectivas variaciones se construyó la matriz de experimentación práctica (Tabla 2.9).

Tabla 2.8: Tabla de mínimos y máximos de las variables controlables

<table>
<thead>
<tr>
<th>Variables</th>
<th>Ítem</th>
<th>%</th>
<th>Mínimo</th>
<th>Media (testigo)</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>Residuos de frutas y vegetales</td>
<td>15</td>
<td>12,75</td>
<td>15g</td>
<td>17,25</td>
</tr>
<tr>
<td>X2</td>
<td>Cobertura</td>
<td>15</td>
<td>55,25</td>
<td>65g</td>
<td>74,75</td>
</tr>
<tr>
<td>X3</td>
<td>Agente ligante</td>
<td>15</td>
<td>17</td>
<td>20g</td>
<td>23</td>
</tr>
</tbody>
</table>

Fuente: (Gutiérrez et al, 2008)

Tabla 2.9: Matriz de experimentación práctica de la barra de residuos de frutas y vegetales

<table>
<thead>
<tr>
<th>N.°</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12,75</td>
<td>55,25</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>17,25</td>
<td>55,25</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>12,75</td>
<td>74,75</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>17,25</td>
<td>74,75</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>12,75</td>
<td>55,25</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>17,25</td>
<td>55,25</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>12,75</td>
<td>74,75</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>17,25</td>
<td>74,75</td>
<td>23</td>
</tr>
</tbody>
</table>
Para obtener el rendimiento de los experimentos se realizó un análisis sensorial, para lo cual se aplicó una ficha de cata de cinco niveles en donde se evaluaron parámetros como el aspecto, color, olor, textura, sabor, cantidad de cáscara, dulzor y aceptabilidad global (Anexo 2). El proceso a seguir para la catación fue:

- Seleccionar diez catadores familiarizados con el producto (Ingenieros o Egresados de Alimentos)
- Explicar cómo se debe llenar la ficha de cata
- Presentar el producto en porciones de 10g
- Retirar las fichas llenas

Para comprobar los datos obtenidos del análisis sensorial y determinar el mejor tratamiento del diseño se analizó la influencia de los factores y sus interacciones, mediante el gráfico normal plot. Se debe tomar en cuenta que existen interacciones entre las variables que pueden cambiar significativamente el rendimiento de un proceso, es por esa razón, que la matriz de experimentación puede ampliarse a una matriz de interacciones, el efecto de dicha interacción se calcula con los resultados obtenidos inicialmente.

Los efectos obtenidos de un diseño experimental factorial siguen un patrón de distribución entre valores significativos y los no significativos, en donde los efectos no significativos tienden a distribución normal con media igual a cero y varianza constante, mientras que los significativos tienden a alejarse de la normalidad; es así, que en el gráfico normal plot, los efectos no representativos tienden a formar una línea recta ubicada a la altura del cero (Figura 2.2).
Figura 2.2: Papel probabilístico Normal

2.3.2 Diseño de empaque

El diseño de empaque es muy importante al momento de elaborar un producto alimenticio, ya que al momento de seleccionar el más adecuado se debe tomar en cuenta el uso del empaque, la duración de almacenamiento y distribución, las condiciones climáticas de la zona de distribución y la disponibilidad del material de empaque.

El empaque utilizado para la barrera es de polietileno, presenta una película multicapa laminada y metalizada, que ofrece alta barrera a la humedad y protección al oxígeno, brinda estabilidad, resistencia a los agentes químicos; además, de facilidad de abertura. Su absorción de humedad es menor del 0,5%, no guardan ni liberan olores ni sabores, pueden proteger al producto de la luz y los rayos UV.

2.3.3 Determinación de las características microbiológicas y vida útil

La determinación de vida útil se realizó al mejor tratamiento, a los días 0, 7, 14 y 21, que representa 0, 1, 2 y 3 meses en tiempo acelerado, a condiciones climáticas de conservación de 37°C±2 y humedad relativa de 50±5% en cámaras de envejecimiento. En este periodo se evaluó el deterioro del producto en condiciones alteradas, que simulan un aceleramiento en la degradación del mismo, para lograr la estimación de vida útil en tiempo reducido. Los resultados se analizaron en base a los requisitos establecidos en la Norma NTE INEN 3084 (2015) “Mezclas alimenticias”, Norma
NTE INEN 2983 (2015) “Suplementos Alimenticios”, y los parámetros analizados fueron:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Método</th>
<th>Norma INEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>Compact Dry</td>
<td>2983</td>
</tr>
<tr>
<td>Salmonella</td>
<td>Reveal</td>
<td>2983</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>Compact Dry</td>
<td>2983</td>
</tr>
<tr>
<td>Aerobios mesófilos</td>
<td>Compact Dry</td>
<td>2983</td>
</tr>
<tr>
<td>Mohos</td>
<td>Compact Dry</td>
<td>3084</td>
</tr>
<tr>
<td>Levaduras</td>
<td>Compact Dry</td>
<td>3084</td>
</tr>
</tbody>
</table>

Es así que se determinó que el tiempo apropiado para el consumo humano es de 3 meses, manteniendo al producto en su envase original, funda de polietileno y con sistema de cierre inalterable.

2.3.4 Determinación de características físico-químicas

Los resultados se analizaron en base a los requisitos establecidos en la Norma NTE INEN 3084 (2015) “Mezclas alimenticias” y la norma NTE INEN ISO 11085 “Cereales y productos de cereales”. Los análisis físico-químicos se realizaron al mejor tratamiento. Se analizaron varios parámetros como:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Método</th>
<th>Norma INEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humedad</td>
<td>Gravimétrico</td>
<td>3084</td>
</tr>
<tr>
<td>Grasa</td>
<td>Soxlhet</td>
<td>11085</td>
</tr>
<tr>
<td>Proteinas</td>
<td>Kjendalh</td>
<td>11085</td>
</tr>
<tr>
<td>Azúcares Totales</td>
<td>Hidrolísis</td>
<td>11085</td>
</tr>
<tr>
<td>Fibra</td>
<td>Filtración</td>
<td>11085</td>
</tr>
<tr>
<td>Sodio</td>
<td>Filtración</td>
<td>11085</td>
</tr>
<tr>
<td>Carbohidratos totales</td>
<td>Hidrolísis</td>
<td>11085</td>
</tr>
</tbody>
</table>

2.3.5 Ingeniería del proceso productivo

En base a los parámetros analizados, se estableció un modelo a seguir para el producto final a nivel industrial. En esta etapa se describen los procesos, maquinarias, equipos, layout de la planta, etc.
2.3.6 Análisis Costo-Beneficio

El análisis costo-beneficio se determinó en base a la relación de los ingresos y egresos actualizados, se determinó costos totales, inversión y ventas anuales de manera aproximada. Además, se calcularon los valores de TIR (Tasa interna de retorno) y VAN (Valor actual neto), importantes para determinar la rentabilidad.

2.3.7 Aceptabilidad del producto final

Para determinar la aceptabilidad del producto final se realizó una prueba a 75 consumidores comunes de barras de cereal. Las pruebas de aceptabilidad se pueden realizar en cualquier lugar como son: centros comerciales, hogar, colegios; ya que no es necesario un lugar específico para esta prueba.
CAPITULO III
RESULTADOS

3.1 Desarrollo de la fórmula base

En base a la evaluación sensorial se determinó que el mejor tratamiento fue el TB8 con un porcentaje de aceptabilidad del 88% y el TB1 el menos aceptado con un porcentaje del 62%, debido a la ausencia de zanahoria en la formulación (Tabla 3.1), y se determinó la formulación base (Tabla 3.2).

Tabla 3.1: Aceptabilidad de los tratamientos base

<table>
<thead>
<tr>
<th>PRODUCTO</th>
<th>P / I</th>
<th>Aceptabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,62</td>
<td>62%</td>
</tr>
<tr>
<td>2</td>
<td>0,74</td>
<td>74%</td>
</tr>
<tr>
<td>3</td>
<td>0,64</td>
<td>64%</td>
</tr>
<tr>
<td>4</td>
<td>0,76</td>
<td>76%</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
<td>74%</td>
</tr>
<tr>
<td>6</td>
<td>0,78</td>
<td>78%</td>
</tr>
<tr>
<td>7</td>
<td>0,80</td>
<td>80%</td>
</tr>
<tr>
<td>8</td>
<td>0,88</td>
<td>88%</td>
</tr>
</tbody>
</table>

Tabla 3.2: Formulación base de la barra de residuos de frutas y vegetales

<table>
<thead>
<tr>
<th>INGREDIENTE</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cáscara Zanahoria</td>
<td>20</td>
</tr>
<tr>
<td>Cáscara Maracuyá</td>
<td>30</td>
</tr>
<tr>
<td>Cáscara Mango</td>
<td>15</td>
</tr>
<tr>
<td>Pasta de cacao 70% dark</td>
<td>2</td>
</tr>
<tr>
<td>Cascarilla</td>
<td>3</td>
</tr>
<tr>
<td>Avena</td>
<td>10</td>
</tr>
<tr>
<td>Jarabe glucosa</td>
<td>15</td>
</tr>
<tr>
<td>Miel abeja</td>
<td>5</td>
</tr>
</tbody>
</table>
3.2. Diseño experimental

Los rendimientos de los tratamientos determinados mediante evaluación sensorial están comprendidos entre 72 y 85%, pudiéndose determinar que el mejor experimento fue T2, el mismo que fue elaborado con mayor cantidad de cobertura y menor cantidad de residuos y de agente ligante (Tabla 3.3).

<table>
<thead>
<tr>
<th>Catadores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamiento</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

Al realizar un análisis por separado de los diferentes factores, se determinó que en cuanto al aspecto, color, sabor, textura y cantidad de residuos el tratamiento T2 presenta las mejores características y con respecto al olor el tratamiento T8 (Tabla 3.4 y Gráfico 3.1).

<table>
<thead>
<tr>
<th>Tabla 3.4: Rendimiento individual de características organolépticas de los diferentes tratamientos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamiento</td>
</tr>
<tr>
<td>TB1</td>
</tr>
<tr>
<td>TB2</td>
</tr>
<tr>
<td>TB3</td>
</tr>
</tbody>
</table>
Gráfico 3.1: Análisis sensorial de la formulación base

Si bien, en base a los resultados generales de características organolépticas, se determinó que el mejor experimento es T2, se analizó el efecto de factores y sus interacciones mediante normal plot, para lo cual se estableció la matriz de interacciones (Tabla 3.5) y la matriz de significancia (Tabla 3.6) con los rendimientos globales de las características organolépticas (Tabla 3.3). La matriz de interacciones y significancia se muestra en el Anexo 5.

Tabla 3.5 Matriz de Interacciones

<table>
<thead>
<tr>
<th>TB1</th>
<th>TB2</th>
<th>TB3</th>
<th>TB4</th>
<th>TB5</th>
<th>TB6</th>
<th>TB7</th>
<th>TB8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0,721</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>0,856</td>
</tr>
</tbody>
</table>

Tabla 3.3 Matriz de significación
<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>INTERACCIONES</th>
<th>SIGNIFICANCIA</th>
<th>PROBABILIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residuos de Frutas y Vegetales-Agente Ligante</td>
<td>X1X3</td>
<td>-0,183</td>
<td>0,14</td>
</tr>
<tr>
<td>Cobertura</td>
<td>X2</td>
<td>-0,043</td>
<td>0,28</td>
</tr>
<tr>
<td>Residuos de Frutas y Vegetales-Cobertura</td>
<td>X1X2</td>
<td>0,025</td>
<td>0,42</td>
</tr>
<tr>
<td>Agente ligante</td>
<td>X3</td>
<td>0,093</td>
<td>0,56</td>
</tr>
<tr>
<td>Cobertura-Agente ligante</td>
<td>X2X3</td>
<td>0,061</td>
<td>0,70</td>
</tr>
<tr>
<td>Cobertura-Residuos de Frutas y Vegetales-Agente ligante</td>
<td>X1X2X3</td>
<td>0,153</td>
<td>0,84</td>
</tr>
<tr>
<td>Residuos de Frutas y Vegetales</td>
<td>X1</td>
<td>0,229</td>
<td>1</td>
</tr>
</tbody>
</table>

En el gráfico normal plot (Figura 3.1), se observó que el factor X2 (Cobertura) fue significativo e influyó positivamente; es decir, ayudó en las características organolépticas del producto, mientras que la interacción X1X3 (Residuos de Frutas y Vegetales-Agente Ligante) influyó negativamente, por lo que no se recomienda usar gran cantidad de agente ligante y residuos al mismo tiempo, ya que alteraría la textura del producto. El factor X1 (residuos) fue significativo, pero influyó de manera negativa, ya que en gran cantidad afectaría el sabor del producto. La interacción X1X2 (Cobertura-Residuos), influyó positivamente, y también fue significativo, mejorando las características organolépticas. El factor X3 (Agente Ligante), influyó positivamente y fue significativo, mejorando el sabor del producto.
La interacción X1X2X3 (Cobertura-Residuos-Agente Ligante), fue significativo e influenció de manera positiva, mejorando así, las características organolépticas. De igual manera resultó la interacción X2X3 (Cobertura-Agente Ligante), por lo que se recomienda utilizar la cobertura para mejorar el sabor y agente ligante para mejorar la textura del producto.

Figura 3.1: Gráfico Normal Plot para valores significativos en las características organolépticas generales

Al analizar el aspecto a través del gráfico normal plot (Figura 3.2), se observó que el factor X2 (Cobertura) fue significativo e influyó positivamente; es decir, ayudó a mejorar el aspecto del producto. La interacción X1X2 (Cobertura-Residuos), influyó positivamente, y también fue significativo, mejorando las características organolépticas.

La interacción X1X2X3 (Cobertura-Residuos-Agente Ligante), fue significativo e influenció de manera positiva, mejorando así, las características organolépticas. De igual manera resultó la interacción X2X3 (Cobertura-Agente Ligante), por lo que se recomienda utilizar la cobertura y agente ligante, mejorando el aspecto final del producto.
Figura 3.2: Gráfico Normal Plot para valores significativos en el factor aspecto

El análisis del efecto de los factores en interacciones de las variables del diseño permitió determinar que el mejor tratamiento es el T2 elaborado a partir de mayor cantidad de cacao, menor cantidad de agente ligante y residuos.

3.3 Diseño de empaque

El empaque seleccionado para el producto final es de polietileno, ya que es una lámina que impide la absorción de olores y sabores. El empaque contiene 6 productos de 50g cada uno (Gráfico 3.2).
3.4 Características microbiológicas y vida útil

Es así, que el producto final, mantiene la calidad microbiológica aceptable bajo condiciones de temperatura y humedad controlada. Se determinó que el tiempo apropiado para el consumo humano es de 3 meses, manteniendo al producto en su envase original, funda de polietileno y con sistema de cierre inalterable.

Tabla 3.7: Resultados del recuento de Aerobios mesófilos (ufc/g)

<table>
<thead>
<tr>
<th></th>
<th>0 DIAS</th>
<th>7 DIAS (1 mes)</th>
<th>14 DIAS (2 meses)</th>
<th>21 DIAS (3 meses)</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,2x10³</td>
<td>1,2x10³</td>
<td>2,0x10³</td>
<td>2,0x10³</td>
<td>2,0x10⁶</td>
</tr>
<tr>
<td>0 DIAS</td>
<td>7 DIAS (1 mes)</td>
<td>14 DIAS (2 meses)</td>
<td>21 DIAS (3 meses)</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td><10</td>
<td>1,0x10²</td>
<td><10</td>
<td>1,0x10³</td>
<td>1,0x10⁴</td>
<td></td>
</tr>
<tr>
<td><10</td>
<td>1,4x10²</td>
<td><10</td>
<td>1,5x10²</td>
<td>1,0x10⁴</td>
<td></td>
</tr>
<tr>
<td><10</td>
<td>1,3x10³</td>
<td><10</td>
<td>1,7x10³</td>
<td>1,0x10⁴</td>
<td></td>
</tr>
<tr>
<td><10</td>
<td>1,3x10⁴</td>
<td><10</td>
<td>1,2x10³</td>
<td>1,0x10⁴</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 3.8: Resultados del recuento de *Escherichia coli* (ufc/g)

<table>
<thead>
<tr>
<th>0 DIAS</th>
<th>7 DIAS (1 mes)</th>
<th>14 DIAS (2 meses)</th>
<th>21 DIAS (3 meses)</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>1,2x10⁴</td>
<td><10</td>
<td>2,2x10³</td>
<td>1,0x10⁵</td>
</tr>
<tr>
<td><10</td>
<td>1,4x10³</td>
<td><10</td>
<td>1,9x10⁴</td>
<td>1,0x10⁵</td>
</tr>
<tr>
<td><10</td>
<td>1,7x10³</td>
<td><10</td>
<td>2,1x10³</td>
<td>1,0x10⁵</td>
</tr>
<tr>
<td><10</td>
<td>1,6x10⁴</td>
<td><10</td>
<td>1,3x10²</td>
<td>1,0x10⁵</td>
</tr>
</tbody>
</table>

Tabla 3.9: Resultados del recuento de *Staphylococcus aureus*

<table>
<thead>
<tr>
<th>0 DIAS</th>
<th>7 DIAS (1 mes)</th>
<th>14 DIAS (2 meses)</th>
<th>21 DIAS (3 meses)</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>1,0x10¹</td>
<td>1,5x10¹</td>
<td>1,0x10¹</td>
<td>1,0x10³</td>
</tr>
<tr>
<td><10</td>
<td>1,0x10¹</td>
<td>1,4x10²</td>
<td>1,0x10¹</td>
<td>1,0x10³</td>
</tr>
<tr>
<td><10</td>
<td>1,0x10¹</td>
<td>1,5x10¹</td>
<td>1,2x10²</td>
<td>1,0x10³</td>
</tr>
<tr>
<td><10</td>
<td>1,0x10¹</td>
<td>1,3x10¹</td>
<td>1,0x10¹</td>
<td>1,0x10³</td>
</tr>
</tbody>
</table>

Tabla 3.10: Resultados del recuento de Mohos

<table>
<thead>
<tr>
<th>0 DIAS</th>
<th>7 DIAS (1 mes)</th>
<th>14 DIAS (2 meses)</th>
<th>21 DIAS (3 meses)</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>Ausencia</td>
<td>Ausencia</td>
<td>Ausencia</td>
<td>Ausencia</td>
</tr>
</tbody>
</table>

Tabla 3.11: Resultados del recuento de *Salmonella*

<table>
<thead>
<tr>
<th>0 DIAS</th>
<th>7 DIAS (1 mes)</th>
<th>14 DIAS (2 meses)</th>
<th>21 DIAS (3 meses)</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td><1,0x10¹</td>
<td>1,3x10²</td>
<td><1,0x10¹</td>
<td>1,2x10²</td>
<td>1,0x10³</td>
</tr>
<tr>
<td><1,0x10¹</td>
<td>1,9x10²</td>
<td><1,0x10¹</td>
<td>1,5x10²</td>
<td>1,0x10³</td>
</tr>
<tr>
<td><1,0x10¹</td>
<td>1,5x10²</td>
<td><1,0x10¹</td>
<td>1,0x10³</td>
<td>1,0x10³</td>
</tr>
<tr>
<td><1,0x10¹</td>
<td>1,3x10²</td>
<td><1,0x10¹</td>
<td>1,0x10³</td>
<td>1,0x10³</td>
</tr>
</tbody>
</table>

Tabla 3.12: Resultados del recuento de Levaduras
3.5 Características físico-químicas

Tabla 3.13: Resultados de análisis físico-químicos de la barra de residuos de frutas y vegetales

<table>
<thead>
<tr>
<th>Requisito</th>
<th>Valor Obtenido</th>
<th>Valor Máximo Aceptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteína</td>
<td>13,70%</td>
<td>15%</td>
</tr>
<tr>
<td>Humedad</td>
<td>7,20%</td>
<td>12%</td>
</tr>
<tr>
<td>Fibra</td>
<td>2,10%</td>
<td>5%</td>
</tr>
<tr>
<td>Sodio</td>
<td>3.057,60mg/kg</td>
<td>4.000,00 mg/kg</td>
</tr>
<tr>
<td>Azúcares Totales</td>
<td>24,53%</td>
<td>30%</td>
</tr>
<tr>
<td>Grasa</td>
<td>25,80%</td>
<td>35%</td>
</tr>
<tr>
<td>Carbohidratos Totales</td>
<td>50,91%</td>
<td>55%</td>
</tr>
</tbody>
</table>

3.6 Resultados de la aceptabilidad del producto final

Se realizaron pruebas de aceptabilidad a 75 personas, de las cuales 67 personas aceptaron el producto y 8 lo rechazaron, concluyendo así que el producto tiene una aceptabilidad del 89,33% (Tabla 3.14).

Tabla 3.14: Resultados de aceptabilidad de producto final

<table>
<thead>
<tr>
<th>RESPUESTA</th>
<th>NÚMERO PERSONAS</th>
<th>PORCENTAJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>67</td>
<td>89,33</td>
</tr>
<tr>
<td>No</td>
<td>8</td>
<td>10,67</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
<td>100</td>
</tr>
</tbody>
</table>

3.7 Ingeniería del proceso productivo

A continuación, se describen los principales equipos y materiales que son necesarios para procesar el producto, los mismos que no deberán tener efectos tóxicos para el uso al que están destinados. Estos equipos son en base a la capacidad establecida (25kg/día) (Tabla 3.15).
Tabla 3.15: Equipos y materiales

<table>
<thead>
<tr>
<th>Equipo y materiales</th>
<th>Cantidad</th>
<th>Especificaciones</th>
<th>Imagen</th>
</tr>
</thead>
</table>
| Empacadora 1 | 1 | Voltaje: 110V.
 | | Dimensiones:
 | | 200x180x100mm. Tiempo
 | | de ciclo: 15-40 minutos | ![Imagen de Empacadora 1] |
| Desecador 1 | 1 | Voltaje: 120V.
 | | Rango temperatura: 35-70°C.
 | | Contiene mínimo 5
 | | bandejas de secado | ![Imagen de Desecador 1] |
| Cortadora 1 | 1 | Dimensiones:
 | | 250x190x120mm. 100%
<pre><code> | | acero inoxidable. 120V | ![Imagen de Cortadora 1] |
</code></pre>
<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cocina Industrial</td>
<td>1</td>
<td>De material, acero inoxidable, 4 quemadores</td>
</tr>
<tr>
<td>Olla Industrial</td>
<td>2</td>
<td>Acero inoxidable, medidor interno. Capacidad: 15litros</td>
</tr>
<tr>
<td>Mesa de acero inoxidable</td>
<td>4</td>
<td>Presenta un soporte principal de tubo de acero de 25mm de diámetro.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Con una perilla ajustable de acero en la parte superior.</td>
</tr>
<tr>
<td>Bandejas de acero inoxidable</td>
<td>10</td>
<td>100% fabricadas en acero inoxidable, de espesor 1.5mm</td>
</tr>
<tr>
<td>Balanza digital</td>
<td>1</td>
<td>Plato con dimensiones de 230x330 mm; báscula: 310x330x100mm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>Licuadora</td>
<td>1</td>
<td>Capacidad: 10kg. Voltaje: 110V. Vaso de acero inoxidable.</td>
</tr>
<tr>
<td>Cuchillo</td>
<td>5</td>
<td>15 x 20 cm, hoja de aluminio, mango de madera.</td>
</tr>
<tr>
<td>Gavetas</td>
<td>15</td>
<td>Material: Plásticas</td>
</tr>
<tr>
<td>Tanque de gas</td>
<td>1</td>
<td>Tanque de 40kg</td>
</tr>
</tbody>
</table>
3.7.1 Instalaciones

Para el diseño de las instalaciones de procesamiento se consideraron áreas grises y blancas, con el propósito de evitar la contaminación cruzada (Tabla 3.16 y Figura 3.3):

Tabla 3.16: Área de Instalaciones

<table>
<thead>
<tr>
<th>Área</th>
<th>Procesos a llevarse a cabo en el área</th>
<th>Tipo de área</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recepción</td>
<td>Recepción, pesado, control sanitario</td>
<td>Gris</td>
</tr>
<tr>
<td>Proceso</td>
<td>Desinfectado, Deshidratado, Lavado, Empacado, Etiquetado</td>
<td>Blanca</td>
</tr>
<tr>
<td>Otras</td>
<td>Bodega de insumos y empaques, bodega de materiales</td>
<td>Blanca</td>
</tr>
<tr>
<td>Administración</td>
<td>Departamentos administrativos</td>
<td>Ninguna</td>
</tr>
<tr>
<td>Distribución y Venta</td>
<td>Almacenamiento y Distribución</td>
<td>Blanca</td>
</tr>
</tbody>
</table>
1. Área de recepción
2. Área de lavado de residuos
3. Baños y vestidores del personal
4. Área de proceso
5. Bodega de insumos
6. Bodega de empaques
7. Almacenamiento producto
8. Salida de producto final
9. Administración
10. Baños de administración
11. Oficina
12. Ingreso a la planta de proceso
13. Ingreso de vehículos en general

Figura 3.3: Layout de planta procesadora de barras de cereal
3.8 Análisis Costo-Beneficio

Para la evaluación del costo-beneficio se estableció el costo de producción del producto, el precio por unidad y la inversión necesaria. Todos los costos fueron calculados en base a una producción de 25kg diarios. De esta manera, se determinó un costo de producción de $8,68 por cada Kg de producto y un precio de venta al público de $0,56 por cada unidad, tomando en cuenta que existe un porcentaje de rentabilidad del 30% (Tabla 3.17).

Tabla 3.17: Costo de producto

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Costo Total por Año</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+) Materia prima</td>
<td>$22,920,00</td>
</tr>
<tr>
<td>(+) Mano de obra directa e indirecta</td>
<td>$15,777,60</td>
</tr>
<tr>
<td>(+) Suministros</td>
<td>$621,60</td>
</tr>
<tr>
<td>(+) Otros gastos</td>
<td>$979,20</td>
</tr>
<tr>
<td>(+) Depreciación</td>
<td>$624,00</td>
</tr>
<tr>
<td>(=) Total de gastos de fabricación</td>
<td>$40,922,40</td>
</tr>
<tr>
<td>(+) Gastos operacionales</td>
<td>$9,048,00</td>
</tr>
<tr>
<td>(=) Costo de lote por producción</td>
<td>$49,970,40</td>
</tr>
<tr>
<td>(+) Margen de utilidad (30%)</td>
<td>$14,991,12</td>
</tr>
<tr>
<td>(=) Costo total</td>
<td>$64,961,52</td>
</tr>
</tbody>
</table>

Total de producción en Kg 6,000,00
Costo por Kg $8,33
Margen de utilidad $2,50
PVP por Kg $10,83
PVP por producto unitario $0,54

La inversión aproximada para la elaboración de producto es de $41,616,31 considering el activo fijo, activo diferido, equipo de producción, terreno, obra civil y un 5% para imprevistos (Tabla 3.18).
Tabla 3.18: Inversión Total en Activo Fijo y Diferido

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipo de producción</td>
<td>$5.472,00</td>
</tr>
<tr>
<td>Equipo de oficina y ventas</td>
<td>$15.890,00</td>
</tr>
<tr>
<td>Terreno y obra civil</td>
<td>$15.000,00</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$36.362,00</td>
</tr>
<tr>
<td>Activo Diferido</td>
<td>$3.272,58</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$39.634,58</td>
</tr>
<tr>
<td>5% de imprevistos</td>
<td>$1.981,73</td>
</tr>
<tr>
<td>Total</td>
<td>$41.616,31</td>
</tr>
</tbody>
</table>

En cuanto a la evaluación financiera, con un horizonte de planeación de cinco años, se obtuvo un Valor Actual Neto (VAN) de $63.999,90, una Tasa Interna de Retorno (TIR) de 23%, una tasa mínima aceptable de retorno (TMAR) de 18%. Si bien la planta se diseñó para procesar 25kg diarios, en el análisis financiero se determinó que para el punto de equilibrio se debe procesar mínimo 43kg diarios (Anexo 6).
El presente estudio se desarrolló con el objetivo de formular un producto nuevo con alto valor nutricional y poder brindar a la población una opción de alimentación sana y aceptada por sus características organolépticas, permitiéndoles cubrir parte de sus requerimientos nutricionales. Según Rosado, et al. (1999), describen que entre los factores más importantes que se deben tomar en cuenta al momento de una formulación de alimentos, están los asociados con la calidad nutricional y composición del alimento.

Para lo cual se aprovecho los residuos de frutas y vegetales generados por la industria alimentaria. Según Cassellis, (2014), existe una gran ventaja del aprovechamiento de los residuos agroindustriales, ya que aportan con nutrientes como antioxidantes y fibra que están presentes en la cáscara de las frutas y vegetales. En el caso del producto propuesto, el aporte de fibra y proteínas fue importante, ya que se obtuvo porcentajes de 2,10% y 13,7%, respectivamente. Estos valores se deben en parte al aporte de fibra del mango y de las cáscaras de cacao, ya que según Madhukara et al. (1993), la cáscara o piel en frutas como el mango, contiene componentes fibrosos con un valor promedio del 28% en base seca, y, por otro lado, estudios realizados en la cáscara de cacao, han determinado que se puede utilizar la misma, por el contenido alto de fibra (27,3%) y proteína (6,25%).

Al analizar sensorialmente el producto desarrollado en lo que tiene que ver con el aspecto, sabor, textura y cantidad de residuos, se demostró que el mejor tratamiento es aquel que contiene mayor cantidad de cobertura de cacao y menor de agente ligante y residuos de frutas y vegetales, influyendo principalmente en la textura y el sabor.

En el producto final, la interacción residuos de frutas y vegetales-agente ligante influyó negativamente, por lo que no se recomienda usar gran cantidad de agente ligante y residuos al mismo tiempo, ya que alteraría la textura del producto. Según Dutcosky et al. (2006), en su estudio sobre elaboración de barras alimenticias, comprobaron que,
al enriquecer el alimento con fibra, se permite la disminución de calorías del agente aglutinante, ayudando a mantener la viscosidad, característica correlacionada con la textura final del producto.

En el estudio realizado por Wilkinson, *et al.* (2000), se dice que uno de los factores más importantes en la aceptabilidad del producto es su textura, la misma que está directamente relacionada con sus componentes; y es por eso que si se utiliza un porcentaje superior al 20% de aglutinante se obtendría un producto con corteza dura y sería rechazado. Por otro lado, de acuerdo con Bower *et al.* (2000) se menciona que el sabor también es un factor importante en la selección de barras alimenticias y los consumidores siempre tienen presente este atributo. En nuestro caso, se obtuvo una aceptabilidad del 81% en sabor y 83% en textura, siendo estos valores mayores a los propuestos por Balarezo (2001), que en su estudio asegura que un producto es el adecuado siempre que supere el 45% de aceptabilidad por parte del consumidor.

Según el análisis de vida útil, se determinó que el producto presentado tiene un tiempo de duración de 3 meses, y esto concuerda con Escobar (2000), que menciona en su estudio de barras de cereal que mientras se mantenga al producto bajo buenas condiciones de humedad, empaque adecuado, la aceptabilidad sensorial sería de 90 días.

En el mercado existen un sinnúmero de marcas de barras nutricionales, cuyos precios varían entre $1,50 a $3,00 por unidad. En el caso del producto propuesto, el P.V.P sería de $0,56/unidad, es decir, alrededor, del 25% menos y esto se debe a que se está aprovechando los residuos de frutas y vegetales que generalmente son desechados.

Finalmente, se analizó la rentabilidad del proyecto, determinándose un VAN (Valor Actual Neto) de 63.999,90 y una TIR (Tasa Interna de Retorno) de 23%. Mokate, (2004), señala que un proyecto puede ser aceptado solamente si el (VAN) es mayor o igual a cero y la (TIR) mayor a la tasa mínima aceptable de rendimiento (TMAR), que es mayor al TMAR. En este caso el VAN fue positivo y el TIR mayor a la TMAR que fue el 18%.
CONCLUSIONES

Al analizar las posibilidades de procesamiento de los residuos orgánicos (frutas y vegetales) que no son debidamente aprovechados por la industria alimentaria, se determinó que la manera más factible para agregarlos en un producto alimenticio de consumo humano es a través de una barra nutritiva.

En cuanto a la mejor formulación establecida a través del diseño experimental se determinó que el mejor es aquel que en cuanto a los residuos contiene 20% de cáscara de zanahoria, 30% de cáscara de maracuyá, 15% de cáscara de mango, 2% de pasta de cacao 70% dark, 3% de cascarilla de cacao, 10% de avena, 15% de jarabe de glucosa y 5% de miel de abeja. Con dicha formulación se logró obtener el producto deseado.

Al evaluar las características organolépticas de la mejor formulación, como son aspecto, olor, sabor y textura se obtuvo una aceptabilidad global del 88,57%, una aceptabilidad del 81% en cuanto al sabor y 83% en textura. Además, se realizó la prueba de aceptación del producto final a 75 consumidores habituales de este tipo de productos, observándose un porcentaje de aceptación del 89,33%.

En lo que tiene que ver con los análisis físico-químico se determinó que el producto contiene 7,20% de humedad, 13,70% de proteínas, 2,10% de fibra, 3057,6mg/kg de sodio, 24,53% de azúcares totales, 25,80% de grasa y 50,91% de carbohidratos totales.

Se evaluaron las características microbiológicas en el producto final como Aerobios mesófilos, Staphylococcus aureus, Salmonella, Escherichia coli, mohos y levaduras, determinándose que el producto propuesto cumple con los valores establecidos en la Norma NTE INEN 3084 (2015) “Mezclas alimenticias”, Norma NTE INEN 2983 (2015)” Suplementos Alimenticios

En lo referente al tiempo de vida útil, tanto sensorial como microbiológicamente se determinó que el producto tiene una duración de 3 meses, siempre y cuando se conserve en su envase original, herméticamente sellado y en condiciones adecuadas de conservación.
Finalmente, al evaluar el costo del producto, se determinó que sería de $10,83 por kilogramo del mismo, lo que significa que una barra de 50g costaría $0,54, siendo mucho más bajo que el costo en el mercado y brindando grandes beneficios nutricionales.
BIBLIOGRAFIA

Cóccaro, G. (2010). *Alternativas para el diseño de Alimentos*. Santiago, Chile. 3ra edición.
Galindo Romo 43

FAO. Ficha técnica de características generales de maracuyá. Machala, Ecuador. Recuperado de: repositorio.utmachala.edu.ec

ANEXOS

Anexo 1.- Fórmulas para los tratamientos base

<table>
<thead>
<tr>
<th>TB1</th>
<th>INGREDIENTES</th>
<th>PORCENTAJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cáscara Zanahoria</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cáscara Maracuyá</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Cáscara Mango</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Pasta de cacao 70% dark</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Cascarilla</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Avena</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Jarabe de glucosa</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Miel de abeja</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TB2</th>
<th>INGREDIENTES</th>
<th>PORCENTAJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cáscara Zanahoria</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Cáscara Maracuyá</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Cáscara Mango</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Pasta de cacao 70% dark</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cascarilla</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Avena</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Jarabe de glucosa</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Miel de abeja</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TB3</th>
<th>INGREDIENTES</th>
<th>PORCENTAJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cáscara Zanahoria</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Cáscara Maracuyá</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Cáscara Mango</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Pasta de cacao 70% dark</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Cascarilla</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Avena</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Jarabe de glucosa</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Miel de abeja</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TB4</th>
<th>INGREDIENTES</th>
<th>PORCENTAJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cáscara Zanahoria</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Cáscara Maracuyá</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Cáscara Mango</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Pasta de cacao 70% dark</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cascarilla</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Avena</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Jarabe de glucosa</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Miel de abeja</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TB5</th>
<th>INGREDIENTES</th>
<th>PORCENTAJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cáscara Zanahoria</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Cáscara Maracuyá</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Cáscara Mango</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Pasta de cacao 70% dark</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Cascarilla</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Avena</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Jarabe de glucosa</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Miel de abeja</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TB6</th>
<th>INGREDIENTES</th>
<th>PORCENTAJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cáscara Zanahoria</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Cáscara Maracuyá</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Cáscara Mango</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Pasta de cacao 70% dark</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Cascarilla</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Avena</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Jarabe de glucosa</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Miel de abeja</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TB7</th>
<th>INGREDIENTES</th>
<th>PORCENTAJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cáscara Zanahoria</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Cáscara Maracuyá</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Cáscara Mango</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Pasta de cacao 70% dark</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Cascarilla</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Avena</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Jarabe de glucosa</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Miel de abeja</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TB8</th>
<th>INGREDIENTES</th>
<th>PORCENTAJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cáscara Zanahoria</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Cáscara Maracuyá</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Cáscara Mango</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Pasta de cacao 70% dark</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cascarilla</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Avena</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Jarabe de glucosa</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Miel de abeja</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
FICHA DE CATA

INDICACIONES: Se pide degustar las diferentes muestras presentadas a continuación, marque con una X la respuesta que representa la característica a evaluar.

FECHA: __________________________

CATADOR: __________________________

<table>
<thead>
<tr>
<th>CARACTERÍSTICA A EVALUAR:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASPECTO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SABOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEXTURA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARACTERÍSTICA A EVALUAR:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUY AMARGO</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMARGO</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUY DULCE</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POCO DULCE</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ACEPTABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>SABOR A CACAO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARACTERÍSTICA A EVALUAR:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESENTA MUCHAS CASCARAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASI NO SE SIENTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO SE SIENTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POCA CANTIDAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANTIDAD ACEPTABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANTIDAD CASCARA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARACTERÍSTICA A EVALUAR:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXTREMADAMENTE DULCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUY DULCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DULCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POCO DULCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DULZOR ACEPTABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DULZOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARACTERÍSTICA A EVALUAR:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUY DESAGRADABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESAGRADABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGRADA POCO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGRADA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUY AGRADABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACEPTABILIDAD GLOBAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anexo 3.- Ficha de cata utilizada para el diseño de mezclas

<table>
<thead>
<tr>
<th>MEZCLA DE RESIDUOS</th>
<th>PORCENTAJE DE RESIDUOS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zanahoria</td>
<td>100%</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mango</td>
<td>100%</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Maracuyá</td>
<td>100%</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mango y Zanahoria</td>
<td>50% 50%</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Zanahoria y Maracuyá</td>
<td>50% 50%</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mango y Maracuyá</td>
<td>50% 50%</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Zanahoria, Mango y Maracuyá</td>
<td>33,33% 33,33% 33,33%</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Zanahoria, Mango y Maracuyá</td>
<td>16,67% 16,67% 66,67%</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Zanahoria, Mango y Maracuyá</td>
<td>16,66% 66,67% 16,66%</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Zanahoria, Mango y Maracuyá</td>
<td>66,67% 16,66% 16,66%</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Anexo 4.- Resultados de Evaluación Sensorial

Resultados evaluados sobre 5 puntos

<table>
<thead>
<tr>
<th>T</th>
<th>ASPECTO</th>
<th>COLOR</th>
<th>SABOR</th>
<th>OLOR</th>
<th>TEXTURA</th>
<th>SABOR A CACAO</th>
<th>CANTIDAD RESIDUOS</th>
<th>DULZOR</th>
<th>ACEPTABILIDAD GLOBAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3,5</td>
<td>4</td>
<td>3,8</td>
<td>3,6</td>
<td>3,9</td>
<td>3,7</td>
<td>3,8</td>
<td>4</td>
<td>3,4</td>
</tr>
<tr>
<td>2</td>
<td>4,2</td>
<td>4,2</td>
<td>4,7</td>
<td>4,6</td>
<td>4,3</td>
<td>4,3</td>
<td>4,4</td>
<td>4,3</td>
<td>4,2</td>
</tr>
<tr>
<td>3</td>
<td>4,2</td>
<td>4,3</td>
<td>4,2</td>
<td>4,3</td>
<td>4,3</td>
<td>4,2</td>
<td>4,6</td>
<td>4,2</td>
<td>4,3</td>
</tr>
<tr>
<td>4</td>
<td>4,4</td>
<td>4,5</td>
<td>4,5</td>
<td>4,2</td>
<td>4,6</td>
<td>4,5</td>
<td>4,7</td>
<td>4,6</td>
<td>4,2</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4,1</td>
<td>4,3</td>
<td>4,4</td>
<td>4,4</td>
<td>4,1</td>
<td>4,3</td>
<td>4,3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>4,2</td>
<td>4,3</td>
<td>4</td>
<td>4,5</td>
<td>4,6</td>
<td>4,3</td>
<td>4,2</td>
<td>4,7</td>
<td>4,1</td>
</tr>
<tr>
<td>7</td>
<td>4,3</td>
<td>4,2</td>
<td>4,6</td>
<td>4,5</td>
<td>4,3</td>
<td>4,2</td>
<td>4,5</td>
<td>4,1</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>4,6</td>
<td>4,7</td>
<td>4,9</td>
<td>4,5</td>
<td>4,8</td>
<td>4,2</td>
<td>4,8</td>
<td>4,5</td>
<td>4,4</td>
</tr>
</tbody>
</table>
Anexo 5.- Matriz de interacciones y significancia

<table>
<thead>
<tr>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X1X2</th>
<th>X1X3</th>
<th>X2X3</th>
<th>X1X2X3</th>
<th>RESPUESTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0,721</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0,856</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>0,727</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>0,798</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>0,813</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>0,780</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>0,773</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0,829</td>
</tr>
<tr>
<td>0,229</td>
<td>-0,043</td>
<td>0,093</td>
<td>0,025</td>
<td>-0,183</td>
<td>0,061</td>
<td>0,153</td>
<td>0,622</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>INTERACCIONES</th>
<th>SIGNIFICANCIA</th>
<th>PROBABILIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residuos-Agente ligante</td>
<td>X1X3</td>
<td>-0,183</td>
<td>0,14</td>
</tr>
<tr>
<td>Cobertura</td>
<td>X2</td>
<td>-0,043</td>
<td>0,28</td>
</tr>
<tr>
<td>Residuos-Cobertura</td>
<td>X1X2</td>
<td>0,025</td>
<td>0,42</td>
</tr>
<tr>
<td>Agente ligante</td>
<td>X3</td>
<td>0,093</td>
<td>0,56</td>
</tr>
<tr>
<td>Cobertura-Agente ligante</td>
<td>X2X3</td>
<td>0,061</td>
<td>0,70</td>
</tr>
<tr>
<td>Residuos-Cobertura-Agente ligante</td>
<td>X1X2X3</td>
<td>0,153</td>
<td>0,84</td>
</tr>
<tr>
<td>Residuos</td>
<td>X1</td>
<td>0,229</td>
<td>1</td>
</tr>
</tbody>
</table>
Anexo 6.- Análisis Costo-Beneficio

Determinación del costo del producto

Todos los análisis se realizaron asumiendo que se procesarían 25Kg/día. Se determinó el costo del producto en base a los costos directos (materia prima, mano de obra, empaque y etiqueta), indirectos (suministros: agua, energía eléctrica, gas, jefe de producción) y costos operacionales (administración y ventas), asignando un porcentaje de rentabilidad del 30%.

Costos de materia prima

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Unidad Medida</th>
<th>Costo Unitario</th>
<th>Costo Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maracuyá</td>
<td>8</td>
<td>Kg</td>
<td>$2,00</td>
<td>$16,00</td>
</tr>
<tr>
<td>Mango</td>
<td>4</td>
<td>Kg</td>
<td>$3,00</td>
<td>$12,00</td>
</tr>
<tr>
<td>Zanahoria</td>
<td>5</td>
<td>Kg</td>
<td>$1,50</td>
<td>$7,50</td>
</tr>
<tr>
<td>Jarabe de glucosa</td>
<td>5</td>
<td>Kg</td>
<td>$3,00</td>
<td>$15,00</td>
</tr>
<tr>
<td>Miel de Abeja</td>
<td>2</td>
<td>Kg</td>
<td>$6,00</td>
<td>$1200</td>
</tr>
<tr>
<td>Cascarilla</td>
<td>1.5</td>
<td>Kg</td>
<td>$2,00</td>
<td>$3,00</td>
</tr>
<tr>
<td>Pasta de Cacao 70% dark</td>
<td>2</td>
<td>Kg</td>
<td>$7,00</td>
<td>$14,00</td>
</tr>
<tr>
<td>Avena</td>
<td>4</td>
<td>Kg</td>
<td>$4,00</td>
<td>$16,00</td>
</tr>
<tr>
<td>TOTAL COSTO</td>
<td></td>
<td></td>
<td></td>
<td>$95,50</td>
</tr>
</tbody>
</table>

Costos de envases y etiquetas

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Unidad Medida</th>
<th>Costo Unitario</th>
<th>Costo Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundas empaques</td>
<td>25</td>
<td>Unidades</td>
<td>$0,20</td>
<td>$5,00</td>
</tr>
<tr>
<td>Etiquetas</td>
<td>25</td>
<td>Unidades</td>
<td>$0,15</td>
<td>$3,75</td>
</tr>
<tr>
<td>TOTAL COSTO</td>
<td></td>
<td></td>
<td></td>
<td>$8,75</td>
</tr>
</tbody>
</table>

Costos de otros materiales por año

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Unidad Medida</th>
<th>Costo Unitario</th>
<th>Costo Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botas</td>
<td>25</td>
<td>Pares</td>
<td>$8,00</td>
<td>$200,00</td>
</tr>
<tr>
<td>Mascarillas</td>
<td>100</td>
<td>unidades</td>
<td>$0,12</td>
<td>$12,00</td>
</tr>
<tr>
<td>Descripción</td>
<td>Cantidad</td>
<td>Unidad Medida</td>
<td>Costo Unitario</td>
<td>Costo Total</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
<td>---------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Cofías</td>
<td>100</td>
<td>unidades</td>
<td>$0,12</td>
<td>$12,00</td>
</tr>
<tr>
<td>Guantes</td>
<td>200</td>
<td>unidades</td>
<td>$0,45</td>
<td>$90,00</td>
</tr>
<tr>
<td>Mandil</td>
<td>10</td>
<td>unidades</td>
<td>$18,00</td>
<td>$180,00</td>
</tr>
<tr>
<td>Escobas</td>
<td>6</td>
<td>unidades</td>
<td>$4,00</td>
<td>$24,00</td>
</tr>
<tr>
<td>Material de Limpieza</td>
<td>Varios</td>
<td>unidades</td>
<td>$200,00</td>
<td>$200,00</td>
</tr>
<tr>
<td>Total Costo</td>
<td></td>
<td></td>
<td></td>
<td>$718,00</td>
</tr>
<tr>
<td>Costo Por Producción</td>
<td></td>
<td></td>
<td></td>
<td>$2,99</td>
</tr>
</tbody>
</table>

Costos de suministros

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Unidad Medida</th>
<th>Costo Unitario</th>
<th>Costo Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía Eléctrica</td>
<td>15</td>
<td>Kw/h</td>
<td>$0,12</td>
<td>$1,80</td>
</tr>
<tr>
<td>Agua</td>
<td>0.5</td>
<td>m³</td>
<td>$1,00</td>
<td>$0,50</td>
</tr>
<tr>
<td>Gas</td>
<td>1.8</td>
<td>Kg</td>
<td>$0,16</td>
<td>$0,29</td>
</tr>
<tr>
<td>Total Costo</td>
<td></td>
<td></td>
<td></td>
<td>$2,59</td>
</tr>
</tbody>
</table>

Costos de mantenimiento

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Unidad Medida</th>
<th>Costo Unitario</th>
<th>Costo Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empacadora</td>
<td>1</td>
<td>4% año</td>
<td>$3,50</td>
<td>$87,50</td>
</tr>
<tr>
<td>Desecador</td>
<td>1</td>
<td>4% año</td>
<td>$3,50</td>
<td>$87,50</td>
</tr>
<tr>
<td>Cortadora</td>
<td>1</td>
<td>4% año</td>
<td>$3,50</td>
<td>$87,50</td>
</tr>
<tr>
<td>Total Costo</td>
<td></td>
<td></td>
<td></td>
<td>$262,50</td>
</tr>
<tr>
<td>Costo Por Producción</td>
<td></td>
<td></td>
<td></td>
<td>$1,09</td>
</tr>
</tbody>
</table>

Costos de mano de obra directa e indirecta

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Unidad Medida</th>
<th>Costo Unitario</th>
<th>Costo Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directa</td>
<td>8</td>
<td>Horas</td>
<td>$2,20</td>
<td>$18,69</td>
</tr>
<tr>
<td>Indirecta</td>
<td>4</td>
<td>Horas</td>
<td>$2,20</td>
<td>$9,35</td>
</tr>
<tr>
<td>Total Costo</td>
<td></td>
<td></td>
<td></td>
<td>$28,04</td>
</tr>
</tbody>
</table>
Descripción de Costos

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Unidad Medida</th>
<th>Costo Unitario</th>
<th>Costo Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerente</td>
<td>6</td>
<td>Horas</td>
<td>$5,20</td>
<td>$31,20</td>
</tr>
<tr>
<td>Operación Vehículo</td>
<td></td>
<td>Por Producción</td>
<td>$6,50</td>
<td>$6,50</td>
</tr>
<tr>
<td>Total Costo</td>
<td></td>
<td></td>
<td></td>
<td>$37,70</td>
</tr>
</tbody>
</table>

Depreciación

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Costo Unitario</th>
<th>Costo Total</th>
<th>Vida Útil (años)</th>
<th>% Deprec.</th>
<th>Depreciación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuchillo</td>
<td>5</td>
<td>4,00</td>
<td>20,00</td>
<td>1</td>
<td>1</td>
<td>0,0069</td>
</tr>
<tr>
<td>Cocina Industrial</td>
<td>1</td>
<td>175,00</td>
<td>175,00</td>
<td>5</td>
<td>0,2</td>
<td>0,0122</td>
</tr>
<tr>
<td>Olla Industrial</td>
<td>2</td>
<td>100,00</td>
<td>200,00</td>
<td>5</td>
<td>0,2</td>
<td>0,0138</td>
</tr>
<tr>
<td>Tanque de gas</td>
<td>1</td>
<td>100,00</td>
<td>100,00</td>
<td>5</td>
<td>0,2</td>
<td>0,0069</td>
</tr>
<tr>
<td>Mesa de acero inoxidable</td>
<td>4</td>
<td>300,00</td>
<td>1.200,00</td>
<td>5</td>
<td>0,2</td>
<td>0,0833</td>
</tr>
<tr>
<td>Bandejas de acero inoxidable</td>
<td>10</td>
<td>50,00</td>
<td>500,00</td>
<td>5</td>
<td>0,2</td>
<td>0,0416</td>
</tr>
<tr>
<td>Balanza digital</td>
<td>1</td>
<td>256,00</td>
<td>256,00</td>
<td>10</td>
<td>0,1</td>
<td>0,0089</td>
</tr>
<tr>
<td>Licuadora</td>
<td>1</td>
<td>300,00</td>
<td>300,00</td>
<td>10</td>
<td>0,1</td>
<td>0,0493</td>
</tr>
<tr>
<td>Empacadora</td>
<td>1</td>
<td>1.421,00</td>
<td>1.421,00</td>
<td>10</td>
<td>0,1</td>
<td>0,0493</td>
</tr>
<tr>
<td>Gavetas</td>
<td>15</td>
<td>20,00</td>
<td>300,00</td>
<td>5</td>
<td>0,2</td>
<td>0,0035</td>
</tr>
<tr>
<td>Desecador</td>
<td>1</td>
<td>1.000,00</td>
<td>1.000,00</td>
<td>10</td>
<td>0,1</td>
<td>0,0493</td>
</tr>
<tr>
<td>Total Depreciación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,325</td>
</tr>
</tbody>
</table>

Resumen de Costos

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Costo Total Diario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materia prima</td>
<td>$95,50</td>
</tr>
<tr>
<td>Empaque y etiqueta</td>
<td>$8,75</td>
</tr>
<tr>
<td>Otros materiales</td>
<td>$2,99</td>
</tr>
<tr>
<td>Suministros</td>
<td>$2,59</td>
</tr>
<tr>
<td>Mantenimiento</td>
<td>$1,09</td>
</tr>
<tr>
<td>Mano de Obra</td>
<td>$65,74</td>
</tr>
<tr>
<td>Depreciaciones</td>
<td>$2,60</td>
</tr>
<tr>
<td>Presupuesto de Producción</td>
<td>$179,26</td>
</tr>
</tbody>
</table>
Cálculo del PVP

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo de producción</td>
<td>$179,26</td>
</tr>
<tr>
<td>Costo de Administración y Ventas</td>
<td>$37,70</td>
</tr>
<tr>
<td>Total</td>
<td>$216,96</td>
</tr>
<tr>
<td>Costo por Kg de producto</td>
<td>$8,68</td>
</tr>
<tr>
<td>Margen de Utilidad (30%)</td>
<td>$11,28</td>
</tr>
</tbody>
</table>

Inversión

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Costo Unitario</th>
<th>Costo Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuchillo</td>
<td>5</td>
<td>4,00</td>
<td>20,00</td>
</tr>
<tr>
<td>Cocina Industrial</td>
<td>1</td>
<td>175,00</td>
<td>175,00</td>
</tr>
<tr>
<td>Olla Industrial</td>
<td>2</td>
<td>100,00</td>
<td>200,00</td>
</tr>
<tr>
<td>Tanque de gas</td>
<td>1</td>
<td>100,00</td>
<td>100,00</td>
</tr>
<tr>
<td>Mesa de acero inoxidable</td>
<td>4</td>
<td>300,00</td>
<td>1.200,00</td>
</tr>
<tr>
<td>Bandejas de acero inoxidable</td>
<td>10</td>
<td>50,00</td>
<td>500,00</td>
</tr>
<tr>
<td>Balanza digital</td>
<td>1</td>
<td>256,00</td>
<td>256,00</td>
</tr>
<tr>
<td>Licuadora</td>
<td>1</td>
<td>300,00</td>
<td>300,00</td>
</tr>
<tr>
<td>Empacadora</td>
<td>1</td>
<td>1.421,00</td>
<td>1.421,00</td>
</tr>
<tr>
<td>Gavetas</td>
<td>15</td>
<td>20,00</td>
<td>300,00</td>
</tr>
<tr>
<td>Desecador</td>
<td>1</td>
<td>1.000,00</td>
<td>1.000,00</td>
</tr>
<tr>
<td>Total Inversión</td>
<td></td>
<td></td>
<td>$5.472,00</td>
</tr>
</tbody>
</table>

Activos fijos de oficina y ventas

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Costo Unitario</th>
<th>Costo Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computadora</td>
<td>2</td>
<td>600,00</td>
<td>1.200,00</td>
</tr>
<tr>
<td>Impresora</td>
<td>2</td>
<td>200,00</td>
<td>400,00</td>
</tr>
<tr>
<td>Escritorio</td>
<td>2</td>
<td>100,00</td>
<td>200,00</td>
</tr>
<tr>
<td>Silla</td>
<td>2</td>
<td>20,00</td>
<td>40,00</td>
</tr>
<tr>
<td>Teléfono</td>
<td>1</td>
<td>50,00</td>
<td>50,00</td>
</tr>
<tr>
<td>Carro</td>
<td>1</td>
<td>13.000,00</td>
<td>13.000,00</td>
</tr>
<tr>
<td>Suministros oficina</td>
<td>1</td>
<td>1.000,00</td>
<td>1.000,00</td>
</tr>
<tr>
<td>Total Activos fijos</td>
<td></td>
<td></td>
<td>$15.890,00</td>
</tr>
</tbody>
</table>
Inversión Total en Activo Fijo

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipo de producción</td>
<td>$5,472,00</td>
</tr>
<tr>
<td>Equipo de oficina y ventas</td>
<td>$15,890,00</td>
</tr>
<tr>
<td>Terreno y obra civil</td>
<td>$15,000,00</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$36,362,00</td>
</tr>
<tr>
<td>5% de imprevistos</td>
<td>$1,818,10</td>
</tr>
<tr>
<td>Total</td>
<td>$38,180,10</td>
</tr>
</tbody>
</table>

Inversión Total en Activos Fijos

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipo de producción</td>
<td>$5,472,00</td>
</tr>
<tr>
<td>Equipo de oficina y ventas</td>
<td>$15,890,00</td>
</tr>
<tr>
<td>Terreno y obra civil</td>
<td>$15,000,00</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$36,362,00</td>
</tr>
<tr>
<td>Activo Diferido</td>
<td>$3,272,58</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$39,634,58</td>
</tr>
<tr>
<td>5% de imprevistos</td>
<td>$1,981,73</td>
</tr>
<tr>
<td>Total</td>
<td>$41,616,31</td>
</tr>
</tbody>
</table>

Presupuesto para el primer mes

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materia prima</td>
<td>$1,910,00</td>
</tr>
<tr>
<td>Sueldos primer mes</td>
<td>$1,600,00</td>
</tr>
<tr>
<td>Suministros</td>
<td>$51,80</td>
</tr>
<tr>
<td>Caja</td>
<td>$600,00</td>
</tr>
<tr>
<td>Total</td>
<td>$4,161,80</td>
</tr>
</tbody>
</table>

Capital Total Inicial

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversión Fija y Diferida</td>
<td>$41,616,31</td>
</tr>
<tr>
<td>Presupuesto Primer Mes</td>
<td>$4,161,80</td>
</tr>
<tr>
<td>Total</td>
<td>$45,778,11</td>
</tr>
</tbody>
</table>

Descripción Costo Total por Año

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Costo Total por Año</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+) Materia prima</td>
<td>$22,920,00</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>(+) Mano de obra directa e indirecta</td>
<td>$15.777,60</td>
</tr>
<tr>
<td>(+) Suministros</td>
<td>$621,60</td>
</tr>
<tr>
<td>(+) Otros gastos</td>
<td>$979,20</td>
</tr>
<tr>
<td>(+) Depreciación</td>
<td>$624,00</td>
</tr>
<tr>
<td>(=) Total de gastos de fabricación</td>
<td>$40.922,40</td>
</tr>
<tr>
<td>(+) Gastos operacionales</td>
<td>$9.048,00</td>
</tr>
<tr>
<td>(=) Costo de lote por producción</td>
<td>$49.970,40</td>
</tr>
<tr>
<td>(+) Margen de utilidad (30%)</td>
<td>$14.991,12</td>
</tr>
<tr>
<td>(=) Costo total</td>
<td>$64.961,52</td>
</tr>
<tr>
<td>Total de producción en Kg</td>
<td>$6.000,00</td>
</tr>
<tr>
<td>Costo por Kg</td>
<td>$8,33</td>
</tr>
<tr>
<td>Margen de utilidad</td>
<td>$2,50</td>
</tr>
<tr>
<td>PVP por Kg</td>
<td>$10,83</td>
</tr>
</tbody>
</table>

Clasificación de Costos

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Costo/Año</th>
<th>Costo/Día</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingresos</td>
<td>$64.961,52</td>
<td>$270,67</td>
</tr>
<tr>
<td>Costos Totales</td>
<td>$49.970,40</td>
<td>$208,21</td>
</tr>
<tr>
<td>Costos Variables</td>
<td>$22.920</td>
<td>$95,50</td>
</tr>
<tr>
<td>Costos Fijos</td>
<td>$27.050,40</td>
<td>$112,71</td>
</tr>
</tbody>
</table>

Cálculo del punto de Equilibrio

<table>
<thead>
<tr>
<th>Punto de Equilibrio (Kg)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>QP Diario</td>
<td>43</td>
</tr>
<tr>
<td>QP Mensual</td>
<td>860</td>
</tr>
<tr>
<td>QP Anual</td>
<td>10320</td>
</tr>
</tbody>
</table>

Cálculo del TMAR

<table>
<thead>
<tr>
<th>% Participación</th>
<th>Interés</th>
<th>Capital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participación Propia</td>
<td>30%</td>
<td>0,4</td>
</tr>
<tr>
<td>Participación Terceros</td>
<td>70%</td>
<td>0,105</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TMAR</th>
<th>0,18</th>
</tr>
</thead>
</table>
Ingresos y Egresos por Año

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Año 0</th>
<th>Año 1</th>
<th>Año 2</th>
<th>Año 3</th>
<th>Año 4</th>
<th>Año 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventas</td>
<td>$64,961,52</td>
<td>$68,209,59</td>
<td>$71,620,08</td>
<td>$75,201,08</td>
<td>$78,961,13</td>
<td>$78,961,13</td>
</tr>
<tr>
<td>Ingresos</td>
<td>$64,961,52</td>
<td>$68,209,59</td>
<td>$71,620,08</td>
<td>$75,201,08</td>
<td>$78,961,13</td>
<td>$78,961,13</td>
</tr>
<tr>
<td>Costos Variables</td>
<td>$22,920,00</td>
<td>$24,066,00</td>
<td>$25,269,30</td>
<td>$26,532,77</td>
<td>$27,859,40</td>
<td>$27,859,40</td>
</tr>
<tr>
<td>Costos Fijos</td>
<td>$27,050,40</td>
<td>$28,402,92</td>
<td>$29,823,07</td>
<td>$31,314,22</td>
<td>$32,879,93</td>
<td>$32,879,93</td>
</tr>
<tr>
<td>Costos Totales</td>
<td>$49,970,4</td>
<td>$52,468,92</td>
<td>$55,092,37</td>
<td>$57,846,98</td>
<td>$60,739,33</td>
<td>$60,739,33</td>
</tr>
<tr>
<td>Inversión Total</td>
<td>$45778,11</td>
<td>$0,00</td>
<td>$0,00</td>
<td>$0,00</td>
<td>$0,00</td>
<td>$0,00</td>
</tr>
</tbody>
</table>

Cálculo de TIR y VAN

<table>
<thead>
<tr>
<th>Año</th>
<th>Ingresos</th>
<th>Costos</th>
<th>Flujo Efectivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$0,00</td>
<td>$45,778,11</td>
<td>-$45,778,11</td>
</tr>
<tr>
<td>1</td>
<td>$64,961,52</td>
<td>$49,970,4</td>
<td>$14,991,12</td>
</tr>
<tr>
<td>2</td>
<td>$68,209,59</td>
<td>$52,468,92</td>
<td>$15,740,67</td>
</tr>
<tr>
<td>3</td>
<td>$71,620,08</td>
<td>$55,092,37</td>
<td>$16,527,70</td>
</tr>
<tr>
<td>4</td>
<td>$75,201,08</td>
<td>$57,846,98</td>
<td>$17,354,09</td>
</tr>
<tr>
<td>5</td>
<td>$78,961,13</td>
<td>$60,739,33</td>
<td>$18,221,79</td>
</tr>
</tbody>
</table>

TIR: $63,999,90
VAN: 23%

Anexo 7: Procedimiento para determinación de análisis microbiológicos

Determinación de aerobios mesófilos

El recuento en placa es el método más utilizado para la determinación del número de células viables o unidades formadoras de colonias (ufc.) en un alimento. Este método se basa en la siembra en profundidad en un medio de cultivo definido, vertido en dos placas de Petri, con una cantidad determinada de muestra si el producto a examinar es líquido, o con una cantidad determinada de suspensión madre en el caso de otros productos.

En las mismas condiciones, siembra de las diluciones decimales obtenidas de la muestra o de la suspensión madre. Incubación a 30º C, en aerobiosis durante 72 horas. A partir del número de colonias obtenidas en las placas de Petri, calcular el número de microorganismos por mililitro o por gramo de muestra (Calle, 2008).
Determinación de *Escherichia coli*

Con Compact Dry EC se pueden detectar E. Coli. El medio contiene dos sustratos enzimáticos cromógenos: Magenta-GAL y X-Gluc. De esta manera los microorganismos de E. Coli se desarrollan en color azul.

Procedimiento:

- Preparar agua de peptona, la cantidad depende del número de muestras y numero de diluciones a realizar. Para cada muestra se requiere un frasco y unos 3 o 4 tubos dependiendo del número de diluciones a realizar.
- Transferir 90ml de agua de peptona a los frascos y 9ml a los tubos
- Esterilizar los frascos, los tubos y las puntas envueltas en papel aluminio en autoclave a 121°C por 15 minutos.
- Terminado el tiempo de esterilización se debe retirar del autoclave y dejar enfriar.
- Pesar aproximadamente 10g de muestra en una funda estéril
- Transferir 90ml de agua de peptona 2% previamente esterilizada, a la funda estéril que contiene la muestra, esta sería la dilución 10-1
- Homogenizar la muestra y de esta tomar 1ml y trasferir al tubo de 9ml, esta correspondería a la dilución 10-2, tomar 1ml de la dilución 10-2 y transferirlo a un tubo de 9ml (10-3) y así sucesivamente hasta lograr las diluciones que sean necesarias para el análisis.
- Con una pipeta colocar alícuotas de 1ml en la placa compact Dry EC, para lo cual se levanta la tapa y se coloca el alícuota en el centro, esperar que se difunda en toda la placa y tapar la misma.
- Invertir la placa e incubar por 24 horas a 35±2°C
- Contar las colonias azules que indicarían la presencia de *Escherichia coli*

Cálculo:

Para determinar el número de microorganismos se debe multiplicar el número de colonias por el factor de dilución respectivo. $coliformes \ g \ o \ cm3 = n.f \ (UFC)$
Donde:

- UFC: Unidades formadoras de colonias
- n: número de colonias contadas
- f: factor de dilución

Determinación de Mohos y Levaduras

Para la determinación de mohos y levaduras en alimentos se debe seguir un procedimiento adecuado, indicado a continuación:

- Pesar 10 g de muestra en condiciones adecuadas
- Añadir 90 ml de una solución amortiguadora de fosfatos de pH 7.2 o agua de peptona al 0,1%
- Homogenizar la mezcla a velocidad mínima durante 10 segundos, para obtener la solución primaria
- Tomar 10 ml de la solución anterior y transferirlo a un tubo de ensayo que contiene 9 ml de solución amortiguadora de fosfatos de pH 7.2
- Agitar y repetir el proceso por 5 veces, tomando en cuenta que para cada dilución se debe tomar una pipeta diferente esterilizada
- Colocar por duplicado en cajas Petri estériles, 1.0 mL de cada una de las diluciones de la muestra, utilizando una pipeta estéril.
- Fundir el medio contenido en los tubos de 22 x 175 mm con 20.0 mL de agar papa dextrosa y/o de agar extracto de malta estériles.
- Enfriarlos y mantenerlos a ±45°C. 6.
- En cada caja de Petri con inóculo, verter de 15.0 a 20.0 mL de agar papa dextrosa acidificado y/o agar extracto de malta acidificado, fundidos y mantenidos a ±45°C. El tiempo transcurrido entre la preparación de las diluciones y el momento en que es vertido el medio de cultivo no debe de exceder de 20 minutos.
- Mezclar cuidadosamente el medio con seis movimientos de derecha a izquierda, seis en el sentido de las manecillas del reloj, seis en sentido contrario y seis de atrás hacia adelante, sobre una superficie lisa, teniendo cuidado de no
humedecer con el medio la tapa de la caja de Petri.

- Permitir que la mezcla en las cajas Petri solidifiquen, dejándolas reposar sobre una superficie horizontal fría.

- Invertir las cajas y colocarlas en la incubadora a 25±1°C. 12. Contar las colonias de cada placa después de 3, 4 y 5 días de incubación. Después de 5 días, seleccionar aquellas placas que contengan entre 10 y 150 colonias. Si alguna de las cajas muestra crecimiento extendido de mohos o si es difícil contar colonias bien aisladas, considerar la cuantificación de 4 días de incubación o incluso las de 3 días.

- Realizar una tinción húmeda para mohos con colorante de lactofenol azul de algodón, para un examen microscópico y una posible identificación de los mohos que se hayan desarrollado.

- Realizar una tinción de Gram para la observación microscópica de las levaduras obtenidas.

- Contar las colonias de cada placa representativa, después de 3, 4 y 5 días de incubación (a 26 ± 1ºC o a temperatura ambiente). (Camacho 2009)

Determinación de Salmonella

Para la determinación de se utilizó un Kit Reveal 2.0 para *salmonella* y el análisis y se realizó de acuerdo al siguiente procedimiento:

- Se requiere agua estéril así que hay que esterilizar 440 ml de agua en autoclave a 121ºC por 15 minutos y dejar enfriar.

- Pesar 25 gramos de muestra en una funda estéril.

- Rehidratar el medio REVIVETM con 220 ml de agua estéril en un vaso estéril que viene con el kit.

- Transferir el medio rehidratado a la funda que contiene la muestra.

- Incubar a 37ºC durante 4 horas

- Rehidratar el medio Rappaport Vassidialis con 220 ml de agua estéril en un vaso estéril que viene con el kit.

- Transferir este medio a la funda que contiene la muestra con el medio REVIVE.

- Incubar a 43ºC durante 18 horas

- Para la interpretación del resultado tomar 8 gotas del líquido y colocar el
pocillo, luego insertar la tirilla indicadora y dejar reposar 15 minutos a temperatura ambiente. Si aparecen dos líneas de color rojo el resultado es positivo y si aparece solo una línea de color rojo que es la línea control es resultado es negativo, si no aparece ninguna línea es un indicador que se realizó mal el análisis.

Anexo 8: Procedimiento para determinación de análisis físico-químicos

Determinación de Humedad (Método Gravimétrico)

Cuando se realiza un análisis de humedad se cuantifica la cantidad de agua libre presente en la carne. Este método se basa en la medición de la perdida de agua por efecto del calentamiento en estufa (Braña et al., 2011).

Procedimiento:
- Rotular y Pesar los crísoles vacíos.
- Pesar aproximadamente 10g de muestra homogenizada en crísoles previamente desecados.
- Pesar los crísoles con muestra.
- Colocar en una estufa a una temperatura de 105°C por 15-18 horas.
- Retirar de la estufa y colocar en un desecador durante 30 minutos a hasta que los crísoles alcancen la temperatura ambiente.
- Pesar los crísoles con muestra seca hasta obtener peso constante y
- Realizar el siguiente cálculo:

\[
\%H = \frac{m_1 - m_2}{m_1 - m} \times 100
\]

Donde:
- M1: peso del crísol con muestra
- M2: peso del crísol con muestra seca
- M: peso del crísol vacío
- \(\%H\): porcentaje de humedad
Determinación de Grasa (Método Soxhlet)

Para el método de grasa se realiza el siguiente procedimiento:

- Pesar el dedal vacío previamente desecado
- Pesar en el mismo aproximadamente 3g de muestra
- Pesar el dedal más la muestra
- Dejar en estufa 1 hora a 125°C.
- Pesar el vaso de extracción previamente desecado.
- Colocar en el vaso de extracción 40ml de éter de petróleo.
- Ensamblar el dedal en la unidad de extracción.
- Colocar en vaso de extracción con éter en la unidad de extracción
- Programar en la unidad de extracción, en inmersión 30 minutos y 60 minutos para el lavado.
- Retirar el vaso de extracción de la unidad de extracción y colocar en estufa a 125°C durante 30 minutos para eliminar el éter residual.
- Expresse los resultados en % de grasa.

\[
\% \text{ grasa} = \frac{m_1 - m_2}{m_3 - m_4} \times 100
\]

Donde:
- M1: peso de vaso con grasa después de la extracción.
- M2: peso de vaso de extracción vacío.
- M3: peso de dedal con muestra.
- M4: peso de dedal vacío.

Determinación de Proteínas (Método Kjendalh)

Este método se sustenta en la cuantificación de nitrógeno en una muestra y en el cual se acepta que no necesariamente todo el nitrógeno determinado se refiere al nitrógeno \(\alpha \) del grupo amino de los aminoácidos o nitrógeno proteico, ya que la determinación puede incluir el nitrógeno no proteico de amidas, ácidos nucleicos y aminoácidos libres (Braña et al., 2011), por ello con este método se obtiene un aproximación del contenido de proteína cruda ya que el nitrógeno también proviene de elementos no proteico (J.P Selecta, 2016)
El método Kjeldahl se basa en la destrucción de la materia orgánica con ácido sulfúrico concentrado en presencia de catalizadores, formándose sulfato de amonio, que en exceso de hidróxido de sodio libera amoníaco, el cual se destila recibiendo este en ácido bórico, formándose borato de amonio, que se valora con ácido clorhidrico para cuantificar la cantidad de nitrógeno (Braña et al., 2011).

El procedimiento es el siguiente:

- Triturar, homogenizar y mezclar la muestra
- Pesar entre 0,5-1g de muestra en papel de aluminio
- Transferir a los tubos Kjendalh
- Añadir 10-15ml de ácido sulfúrico concentrado (96-98%) y los catalizadores (Sulfato de cobre 0,5g y Sulfato de Potasio5g)
- Colocar en el digestor debajo de la cabina de extracción de humos, y empezar a digestión en tres pasos: 1: a 150°C por 30 minutos, 2: a 270°C por 30 minutos, 3: a 400°C por 90 minutos.
- Sacar los tubos del bloque digestor y dejar enfriar a temperatura ambiente.
- Añadir unos 25ml de agua destilada a cada tubo, despacio y moviéndolo continuamente.
- Dejar enfriar de nuevo hasta temperatura ambiente.
- Situar un Erlenmeyer a la salida del refrigerante con 50ml de ácido bórico y unas gotas de indicador.
- Programar una dosificación de 50-75ml de hidróxido de sodio.
- Introducir el tubo con la muestra en el destilador
- Destilar hasta recoger 250ml en el Erlenmeyer (200 de destilado y 50 de ácido bórico).
- Valorar el destilado con HCL o H2SO4 hasta el cambio de color.
- Para el calcular el contenido de nitrógeno aplicar la siguiente formula:

\[
\%N = V \times N \times 0,014 \times 100/ \text{peso de la muestra}
\]

\[
\% \text{proteína} = \%N \times 6,25
\]

El factor de conversión para proteína en muestras de carne es de 6,25 y 0,014 corresponde al miliquivalente químico del nitrógeno.
Donde:
- Vt: volumen de titulante, es decir, la cantidad de HCL consumido para la valoración.
- Nt: Normalidad del titulante (normalidad del HCL (0,15N))
- %N: Porcentaje de nitrógeno

Determinación de Fibra

En el laboratorio, se la obtiene como un residuo insoluble después del tratamiento de la muestra. Existen dos métodos para determinación de fibra:

Método por ácidos

REACTIVOS:
- Ácido acético glacial (45 cc)
- Ácido nítrico concentrado (4.5 cc)

PROCEDIMIENTO:
- Pesar 5 g de muestra seca y desengrasada, y adicionar la mezcla de ácidos, acoplar el balón a un condensador de refluo y dejar hervir por 25 minutos.
- Aparte pesar el papel filtro que será utilizado en la filtración al vacío en embudo de Buchner.
- Filtrar y lavar el filtrado con agua destilada caliente; luego colocar el papel filtro con muestra en estufa hasta desecación.

CÁLCULOS:

\[
\% \text{ Fibra} = \frac{P}{P_m} \times 100 - \% C
\]

Donde:
- P = peso de la celulosa (peso papel más muestra – peso papel)
- Pm = peso de la muestra.

Método por ácido y base

REACTIVOS:
- Solución al 1.25% de Ácido sulfúrico
- Solución al 1.25% de Hidróxido de sodio
PROCEDIMIENTO:

- Pesar 3g de muestra seca y desengrasada y colocarla en un matraz o balón, agregar 200 cc de la solución de ácido y mezclar, adaptarlo a un condensador de reflujo y calentar el contenido a ebullición durante 30 minutos.
- Apagar y dejarlo enfriar. Filtrar al vacío sobre papel filtro y luego lavar con abundante agua destilada caliente hasta reacción neutra.
- Pasar completamente el contenido del papel filtro a un balón y agregar 200 cc de la solución de sosa, repetir el calentamiento a reflujo por 30 minutos. Luego filtrar al vacío sobre papel filtro previamente pesado, y lavar el residuo con agua caliente hasta reacción neutra.
- Desprender con cuidado el papel filtro y colocarla sobre una cápsula de porcelana, desecar en estufa a 100 - 110°C, enfriar y pesar.

CÁLCULOS: Se realiza de igual manera que en el método anterior.

Determinación de Sodio

La utilización de este método de análisis involucra que las muestras de alimentos tuvieran una adecuada preparación, a continuación, se describe el procedimiento.

- Pesaje de muestras. Se procedió a pesar en balanza analítica aproximadamente 2 g de muestra en crisoles de porcelana, estos últimos previamente secados. Es necesario mencionar que la muestra fue previamente colocada a temperatura ambiente para evitar la condensación de agua durante el pesaje.
- Mineralización de las muestras. Se realizó con el fin de eliminar la parte orgánica de las muestras para obtener solo la parte mineral (cenizas de color blanco) que permitiera posteriormente la obtención de una solución que pueda ser analizada. Las muestras fueron secadas previamente en estufa a 105±2°C hasta peso constante.
- Las muestras secas se llevaron a un horno mufla a 550°C, hasta llegar a cenizas blancas. Si después de este procedimiento se observaban manchas negras, la muestra era ingresada nuevamente a la mufla.
- Disolución. A las muestras completamente mineralizadas (cenizas blancas) se les adicionó 10 ml de ácido clorhídrico (HCl) al 50% v/v, con el fin de diluir la muestra, se agitó suavemente, cuidando de remover los restos de muestra
adheridos a las paredes de los crisoles. Posteriormente se esperó hasta que la muestra estuviera disuelta.

- **Filtración.** Las muestras disueltas fueron filtradas sobre matraces aforados de 50 ml utilizando papel Whatman N° 1, con el fin de traspasar la muestra en forma cuantitativa se adicionó repetidas veces 5 ml de HCl 50% v/v al crisol, como una forma de lavado del mismo. El producto de este lavado fue adicionado al matraz hasta llegar al aforo.

- Finalmente, los 50 ml de muestra fueron almacenados en tubos plásticos de 50 ml, refrigerándolos hasta el momento de su lectura.

Determinación de azúcares totales

Los pasos principales de este método para determinar azúcares totales son los siguientes:

- **Hidrólisis de la muestra en disolución** para transformar azúcares no reductores en azúcares reductores.
- **Eliminación de todas las materias reductoras** distintas de los azúcares que podrían interferir en el análisis.
- **Alcalinización.** - Reacción entre la disolución de azúcares totales con una disolución de sal cúprica a alta temperatura, formándose óxido cuproso.
- **Reacción entre el óxido cuproso y sulfato férrico en disolución ácida,** con formación de la sal ferrosa equivalente.
- **Valoración de la sal ferrosa formada con permanganato potásico de normalidad conocida.

Procedimiento:

Se desea conocer el contenido en azúcares totales expresados en glucosa de una muestra. Para ello se llevan a cabo los siguientes pasos:

- **Se pesan 1,5 g de la muestra y se hace una hidrólisis ácida con 100 mL de agua y 7 mL de HCl concentrado en caliente.**
- **Añadir 5 mL de crema de alúmina y se alcaliniza con 11 mL de una disolución de NaOH 6 N. La disolución obtenida se pone en un aforado de 250 ml, se afora con agua destilada y se filtra.**
• Tomar 5 ml del filtrado y se ponen con el licor de Fehling en exceso (10 ml de Fehling A y 10 ml de Fehling B) en un Erlenmeyer.
• Llevar a ebullición y se mantiene durante 3 minutos. De esta forma se da la reducción de parte del cobre que precipita como óxido cuproso.
• El precipitado de óxido cuproso se lava con agua y se disuelve en sulfato férrico en caliente. El sulfato ferroso formado se valora con KMnO₄ 0,01 N, del cual se gastan 20,8 ml para la valoración (Camacho, 2011).

Anexo 9: Diseño de empaque

Empaque de 6 unidades de 50g cada una

Empaque individual
Anexo 10: Resultados de análisis físico-químico y microbiológicos

<table>
<thead>
<tr>
<th>PARAMETRO</th>
<th>MÉTODO</th>
<th>UNIDAD</th>
<th>RESULTADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROTEINA (F: 6.25)</td>
<td>AOAC 2001.11</td>
<td>%</td>
<td>13.70</td>
</tr>
<tr>
<td>GRASA</td>
<td>AOAC 2003.06</td>
<td>%</td>
<td>25.60</td>
</tr>
<tr>
<td>FIBRA BRUTA</td>
<td>INEN 0522</td>
<td>%</td>
<td>0.45</td>
</tr>
<tr>
<td>SODIO</td>
<td>APHA 3111 B-Na</td>
<td>mg/Kg</td>
<td>3057.64</td>
</tr>
<tr>
<td>CARBOHIDRATOS TOTALES</td>
<td>CALCULO</td>
<td>%</td>
<td>50.91</td>
</tr>
<tr>
<td>AZUCARES TOTALES</td>
<td>HPLC</td>
<td>%</td>
<td>24.53</td>
</tr>
</tbody>
</table>

Resultado proporcionado por laboratorio Subcontratado.

Dra. Sandra Guaita Maldonado
GERENTE DE LABORATORIO

Los resultados expresados en este informe tienen validez solo para la muestra recibida en el laboratorio, no siendo extensivo a cualquier lote. Este informe no será reproducido sin la aprobación del Gerente Técnico. Los valores de incertidumbre se encuentran disponibles en el laboratorio MSV.
CONCLUSION: El producto BARRA DE CEREALES mantiene la calidad fisicoquímica aceptable bajo condiciones (temperatura y humedad controladas) aceleradas, por lo tanto el tiempo verificado y apropiado para el consumo humano equivalente a 3 meses, mantenido en su envase original, FUNDA DE POLIETILENO, e inalterable su sistema de cierre.

NOTA: Los análisis en condiciones aceleradas son válidos en el ARCSA siempre y cuando se realice el control correspondiente a condiciones ambientales para su verificación.

1 Opiniones e interpretaciones están fuera del alcance de acreditación SAE.

Los resultados expresados en este informe tienen validez solo para la muestra recibida en el laboratorio, no siendo extensivo a cualquier otro. Este informe no será reproducido sin la aprobación del Gerente Técnico.

Los valores de incertidumbre se encuentran disponibles en el laboratorio MSV.

Dirección: Avda. Las Américas y Turuhuaco (Redondel Miraflores 3er Piso)
Telf: 4045127 Cel: 0995 354 172 e-mail: sandraegm@hotmail.com