

UNIVERSIDAD DEL AZUAY

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA CIVIL Y GERENCIA DE CONSTRUCCIONES

Análisis, Comportamiento y Comparación de Varillas Corrugadas en Fibra de Vidrio, con Relación a las Varillas Convencionales; Conjuntamente en Elementos Estructurales de Hormigón

> Trabajo de grado previo la obtención del título de: Ingeniero Civil con énfasis en Gerencia de Construcciones

> > Autor:

BYRON HERNAN LALVAY LLIVIGAÑAY

Director:

ROBERTO GAMÓN TORRES

CUENCA, ECUADOR

2017

DEDICATORIA

Esta tesis va dedicada para todas las personas que me apoyaron durante toda la vida universitaria, en especial a Dios que siempre estuvo a mi lado protegiéndome y ayudándome a salir adelante cada ciclo. A mis padres y hermanas que siempre estuvieron allí dándome su amor, dedicación y ánimos para lograr triunfar y cumplir esta meta en mi vida que es un sueño cumplido.

Además, dedico esta tesis a mis queridos profesores y directores de tesis ya que han sido una guía muy importante en este camino, compartiendo experiencias y conocimientos para lograr triunfar en la vida real que se viene. Para todo ellos por su ayuda y apoyo incondicional.

AGRADECIMIENTOS

A mis padres que siempre estuvieron ahí brindándome su apoyo, que supieron comprender lo duro que era el camino para llegar a donde estoy ahora. A mis hermanas que me daban ánimos y cada día me decían que no tire la toalla, que es difícil pero no imposible. A ustedes mis ángeles de la guarda que fueron mi inspiración para culminar una meta en mi vida, plasmada hoy en este trabajo de titulación.

Además, expreso mi más sincero agradecimiento a todos los ingenieros que colaboraron con su granito de arena en este trabajo de titulación. En especial al Ing. Julio Piedra que supo transmitirme sus conocimientos y estuvo iluminándome en este trabajo, también al Ing. Roberto Gamón director del presente proyecto por estar ahí en las buenas y malas; igualmente al Ing. José Vázquez y Ing. Paúl Cordero miembros del tribunal designado; a todos ellos por brindarme su tiempo para realizar el seguimiento, supervisión y varias correcciones respectivas.

Agradezco a mis amigos y amigas que me apoyaron y me hicieron parte de sus vidas en estos años de estudio, debido a que juntos hemos compartido experiencias inolvidables que quedaran en el recuerdo.

Gracias a todos ustedes.

DEDICAT	TORIA	.ii
AGRADE	CIMIENTOS	iii
ÍNDICE D	DE CONTENIDO	iv
ÍNDICE D	DE FIGURAS	vi
ÍNDICE D	DE TABLAS	ix
ÍNDICE D	DE ANEXOS	xv
RESUME	Nx	vi
ABSTRA	CTx	vii
INTRODU	JCCIÓN	. 1
GENERA	LIDADES	. 3
Alcance		. 3
Antecede	entes	. 3
Justificad	ción	. 5
Objetivo	s	. 5
CAPÍTUL	O I	.6
CARACT	ERÍSTICAS Y PROPIEDADES DE LAS VARILLAS CORRUGADAS	.6
1.1. Car	acterísticas y propiedades de las varillas corrugadas en acero	.6
1.1.1.	Varilla corrugada	. 6
1.1.2.	Proceso de producción de la varilla corrugada	. 7
1.1.3.	Colada continua	. 8
1.1.4.	Proceso de laminación	. 9
1.1.5.	Propiedades de las varillas corrugadas en acero	10
1.2. Ver	ntajas y desventajas de las varillas corrugadas en acero	14
1.3. Car	racterísticas y propiedades de las varillas corrugadas en fibra de vidrio	15
1.3.1.	Fibra de vidrio	15
1.3.2.	Matriz Polimérica	15
1.3.3.	Resinas	16
1.3.4.	Tipos de Fibras de Vidrio	16
1.3.5.	Proceso de producción de la varilla corrugada de fibra de vidrio	17
1.3.6.	Propiedades de las varillas corrugadas en fibra de vidrio	18
1.4. Ver	ntajas y desventajas de las varillas corrugadas en fibra de vidrio	20

ÍNDICE DE CONTENIDO

CAPÍTUI	O II
DETERM CORRUC	IINACIÓN DE LAS PROPIEDADES MECÁNICAS DE LAS VARILLAS GADAS EN FIBRA DE VIDRIO21
2.1. Ca	racterísticas geométricas
2.2. De	terminación de las características mecánicas
2.3. An 30	álisis y comparación de estas varillas en relación a las de acero corrugado
2.3.1.	Resultados de los ensayos
2.3.1.	1. Ensayo a tracción
2.3.1.	2. Comparación entre las varillas de fibra de vidrio y las de acero 32
2.3.1.	3. Ensayo a Compresión
2.3.1.	4. Comparación entre las varillas de fibra de vidrio y las de acero 39
CAPÍTUI	LO III
CÁLCUL	O Y DISEÑO DE ELEMENTOS ESTRUCTURALES
3.1. Par	rámetros de cálculo y diseño
3.1.1.	Diseño por Esfuerzos Admisibles 43
3.1.2.	Diseño por Capacidad Resistente 43
3.1.3.	Factores de reducción de la capacidad resistente
3.1.4.	Fundamentos del diseño a flexión para vigas en hormigón armado 44
3.1.5.	Fundamentos del diseño a cortante para vigas en hormigón armado 48
3.1.6.	Fundamentos del diseño a compresión axial en hormigón armado 50
3.2. Din fibra de vi	nensionamiento y cálculo de una viga con varillas corrugadas en acero y en idrio
3.2.1.	Consideraciones previas y datos para el diseño
3.2.2.	Cálculo
3.3. Din y en fibra	nensionamiento y cálculo de una columna con varillas corrugadas en acero de vidrio
3.3.1.	Consideraciones previas y datos para el diseño
3.3.2.	Cálculo
CAPÍTUI	LO IV
RESULT	ADOS DEFINITIVOS DE LOS ENSAYOS
4.1. Ressonetidas	sultados de los ensayos de las vigas sometidas a flexión y de las columnas a compresión con las respectivas varillas corrugadas de refuerzo 103
4.1.1.	Compresión en columnas 103
4.1.2.	Flexión en vigas 106

4.2. Co	mparación de resultados obtenidos en los ensayos de flexión	en vigas y
compresió	ón en columnas de hormigón realizadas con las varillas corruga	adas en los
dos tipos	de materiales utilizados	
4.2.1.	Ensayos a compresión axial en columnas	108
4.2.2.	Ensayos a flexión en vigas	111
CONCLU	JSIONES Y RECOMENDACIONES	117
BIBLIOG	JRAFÍA	
ANEXOS	5	

ÍNDICE DE FIGURAS

Figura 1. Varillas de refuerzo disponibles	. 4
Figura 1.1. Diagrama de alto horno	.7
Figura 1.2. Horno de arco eléctrico	. 8
Figura 1.3. Proceso de colada continua	.9
Figura 1.4. Flujograma del proceso de laminación	10
Figura 1.5. Varillas con resaltes transversales perpendiculares	11
Figura 1.6. Varillas con resaltes transversales perpendiculares	12
Figura 1.7. Varillas con resaltes transversales perpendiculares	12
Figura 1.8. Proceso de Pultrusión	17
Figura 2.1. Varillas corrugadas de fibra de vidrio	21
Figura 2.2. Varillas a ensayar	22
Figura 2.3. Especificaciones de la prensa de tracción	23
Figura 2.4. Especímenes para ensayos a tracción	23
Figura 2.5. Características de la longitud de las varillas – Ensayo a tracción	24
Figura 2.6. Prensa para ensayos a tracción	25
Figura 2.7. Software Universal WinSoft Testing	25
Figura 2.8. Curva Esfuerzo – Deformación	25
Figura 2.9. Prensa para ensayos a compresión	26
Figura 2.10. Especificaciones de la prensa de compresión	26
Figura 2.11. Probetas de fibra de vidrio para el ensayo a compresión	27
Figura 2.12. Ensayo a compresión	28
Figura 2.13. Deformimetro	29

Figura 2.14. Probeta ensayada a compresión	. 29
Figura 2.15. Probetas ensayadas a tracción	. 31
Figura 2.16. Mínimos Cuadrados de la varilla de FRP de 6mm de diámetro	. 33
Figura 2.17. Mínimos Cuadrados de la varilla de FRP de 8mm de diámetro	. 33
Figura 2.18. Mínimos Cuadrados de la varilla de FRP de 12mm de diámetro	. 33
Figura 2.19. Módulo de Elasticidad	. 34
Figura 2.20. Gráfica comparativa de varilla de 6mm de diámetro	. 35
Figura 2.21. Gráfica comparativa de varilla de 8mm de diámetro	. 35
Figura 2.22. Gráfica comparativa de varilla de 12mm de diámetro	. 35
Figura 2.23. Curva esfuerzo - deformación	. 36
Figura 2.24. Probetas ensayadas a compresión	. 38
Figura 2.25. Gráfica comparativa de varilla de 6mm de diámetro	. 39
Figura 2.26. Gráfica comparativa de varilla de 8mm de diámetro	. 39
Figura 2.27. Gráfica comparativa de varilla de 12mm de diámetro	. 40
Figura 2.28. Comparación de la compresión	. 40
Figura 2.29. Varilla FRP después del ensayo a compresión	. 41
Figura 3.1. La capacidad resistente debe ser mayor a las solicitaciones	. 42
Figura 3.2. La capacidad resistente dividida para un factor de seguridad	. 43
Figura 3.3. Las solicitaciones mayoradas no debe superar a la capacidad resistente	43
Figura 3.4. Bloque de compresión de Whitney	. 45
Figura 3.5. Valores de β1 según el f°c	. 45
Figura 3.6. Diagrama de deformaciones unitarias, de esfuerzos y fuerzas	. 46
Figura 3.7. Esfuerzos bajo el 50% de la cuantía balanceada	. 47
Figura 3.8. Fisuraciones	. 49
Figura 3.9. Acero de refuerzo en las fisuras	. 49
Figura 3.10. Tipos de columnas	. 51
Figura 3.11. Pandeo en columnas	. 53
Figura 3.12. Valores de k	. 54
Figura 3.13. Cargas en la viga	. 55
Figura 3.14. Diagrama de cortante de la viga	. 55
Figura 3.15. Diagrama de momento de la viga	. 56
Figura 3.16. Cargas aplicadas en la viga	. 56
Figura 3.17. Área de momentos	. 56

Figura 3.18. Deformaciones en la viga
Figura 3.19. Inercia elástica e Inercia reducida
Figura 3.20. Sección transformada de una viga con armadura de tracción 58
Figura 3.21. Sección transversal de la viga con un FRP $\phi = 6mm$
Figura 3.22. Sección transversal de la viga con un FRP $\phi = 8mm$
Figura 3.23. Sección transversal de la viga con un FRP $\phi = 12mm$
Figura 3.24. Sección transversal de la viga con un ACERO $\phi = 8mm$
Figura 3.25. Sección transversal de la viga con un ACERO $\phi = 12$ mm
Figura 3.26. Viga de FRP
Figura 3.27. Hormigonado de la viga
Figura 3.28. Varilla FRP después de realizar la doblez para el estribo
Figura 3.29. Sección transversal de la columna con un FRP $\phi = 6$ mm
Figura 3.30. Sección transversal de la columna con cuatro FRP $\phi = 6$ mm
Figura 3.31. Sección transversal de la columna con un FRP $\phi = 8$ mm
Figura 3.32. Sección transversal de la columna con cuatro FRP $\phi = 8$ mm
Figura 3.33. Sección transversal de la columna con un FRP $\phi = 12$ mm
Figura 3.34. Sección transversal de la columna con cuatro FRP $\phi = 12$ mm
Figura 3.35. Sección transversal de la columna con un ACERO $\phi = 8mm$
Figura 3.36. Sección transversal de la columna con cuatro ACEROS $\phi = 8$ mm 99
Figura 3.37. Sección transversal de la columna con un ACERO $\phi = 12$ mm 100
Figura 3.38. Sección transversal de la columna con cuatro ACEROS $\phi = 12$ mm 101
Figura 3.39. Columnas con un FRP de 6mm, 8mm y 12mm respectivamente 102
Figura 3.40. Columnas con cuatro FRP reforzadas con estribos de acero 102
Figura 3.41. Columnas de acero reforzadas con estribos de acero 102
Figura 4.1. Columna ensayada a compresión axial 105
Figura 4.2. Viga ensayada a flexión 107
Figura 4.3. Comparación entre columnas FRP $\phi = 6mm$ y ACERO $\phi = 8mm$ 108
Figura 4.4. Comparación entre columnas FRP $\phi = 8mm$ y ACERO $\phi = 8mm$ 108
Figura 4.5. Comparación entre columnas FRP $\phi = 12mm$ y ACERO $\phi = 12mm 109$
Figura 4.6. Comparación entre columnas FRP $\phi = 6mm$ y ACERO $\phi = 8mm$ 109
Figura 4.7. Comparación entre columnas FRP ϕ = 6mm y ACERO ϕ = 8mm 110
Figura 4.8. Comparación entre columnas FRP $\phi = 12$ mm y ACERO $\phi = 12$ mm 110
Figura 4.9. Columna reforzada con cuatro FRP y estribos de acero 111

Figura 4.10. Carga – Deformación FRP ϕ = 6mm-ACERO ϕ = 8mm 1	11
Figura 4.11. Carga – Deformación FRP $\phi = 8$ mm-ACERO $\phi = 8$ mm 1	12
Figura 4.12. Carga – Deformación FRP $\phi = 12$ mm-ACERO $\phi = 12$ mm 1	12
Figura 4.13. Carga – Deformación calculadas 1	13
Figura 4.14. Carga – Deformación medidas 1	13
Figura 4.15. Fisuras en la viga reforzada con FRP1	14
Figura 4.16. Fisuras en la viga reforzada con ACERO 1	14
Figura 4.17. Falla por flexión1	15
Figura 4.18. Falla por cortante 1	15
Figura 4.19. Viga reforzada con FRP – Fallo por cortante 1	15
Figura 4.20. Adherencia	16
Figura 4.21. Viga reforzada con FRP ensaya a flexión1	16

ÍNDICE DE TABLAS

Tabla 1.1. Características físicas de las varillas corrugadas11
Tabla 1.2. Composición química de las varillas corrugadas 12
Tabla 1.3. Especificaciones mecánicas de las varillas corrugadas13
Tabla 1.4. Propiedades físicas y mecánicas de los tipos de fibras de vidrio17
Tabla 2.1. Diámetro de las varillas de fibra de vidrio para ensayos
Tabla 2.2. Características de las varillas a ensayar 22
Tabla 2.3. Características de la longitud de las varillas – Ensayo a tracción 24
Tabla 2.4. Características de la longitud de las varillas – Ensayo a compresión 28
Tabla 2.5. Resultados ensayos a tracción $\phi = 6$ mm de fibra de vidrio
Tabla 2.6. Resultados ensayos a tracción $\phi = 8$ mm de fibra de vidrio
Tabla 2.7. Resultados ensayos a tracción $\phi = 12mm$ de fibra de vidrio
Tabla 2.8. Resultados ensayos a tracción $\phi = 8mm$ de acero
Tabla 2.9. Resultados ensayos a tracción $\phi = 12mm$ de acero
Tabla 2.10. Coeficientes de minoración según el ACI
Tabla 2.11. Valores de fy 37
Tabla 2.12. Resultados ensayos a compresión $\phi = 6$ mm de fibra de vidrio37
Tabla 2.13. Resultados ensayos a compresión $\phi = 8$ mm de fibra de vidrio37
Tabla 2.14. Resultados ensayos a compresión $\phi = 12$ mm de fibra de vidrio
Tabla 2.15. Resultados ensayos a compresión $\phi = 8$ mm de acero

Tabla 2.16. Resultados ensayos a compresión $\phi = 12$ mm de acero
Tabla 3.1. Factores de reducción para distinto tipo de solicitación
Tabla 3.2. Resistencia al cortante de los hormigones 49
Tabla 3.3. Datos para la viga reforzada con FRP $\phi = 6$ mm
Tabla 3.4. Cálculo inicial la viga reforzada con FRP 59
Tabla 3.5. Cálculo final para la viga reforzada con un FRP $\phi = 6mm$
Tabla 3.6. Datos para la deformación de la viga reforzada con un FRP $\phi = 6$ mm 60
Tabla 3.7. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP $\phi = 6$ mm con la carga al 25%
Tabla 3.8. Inercia Reducida de la viga reforzada con un FRP $\phi = 6mm$ con la carga al 25%
Tabla 3.9. Deformación de la viga reforzada con un FRP $\phi = 6mm$ con la carga al 25%
Tabla 3.10. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP $\phi = 6$ mm con la carga al 50%
Tabla 3.11. Inercia reducida de la viga reforzada con un FRP $\phi = 6$ mm con la carga al 50%
Tabla 3.12. Deformación de la viga reforzada con un FRP $\phi = 6$ mm con la carga al 50%
Tabla 3.13. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP $\phi = 6$ mm con la carga al 75%
Tabla 3.14. Inercia reducida de la viga reforzada con un FRP $\phi = 6$ mm con la carga al 75%
Tabla 3.15. Deformación de la viga reforzada con un FRP $\phi = 6$ mm con la carga al 75%
Tabla 3.16. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP $\phi = 6$ mm con la carga al 100%
Tabla 3.17. Inercia reducida de la viga reforzada con un FRP $\phi = 6mm$ con la carga al 100%
Tabla 3.18. Deformación de la viga reforzada con un FRP $\phi = 6$ mm con la carga al 100%
Tabla 3.19. Datos para la viga reforzada con FRP $\phi = 8$ mm
Tabla 3.20. Cálculo inicial la viga reforzada con FRP 65
Tabla 3.21. Cálculo final para la viga reforzada con un FRP $\phi = 8$ mm
Tabla 3.22. Datos para la deformación de la viga reforzada con un FRP $\phi = 8$ mm 66

Tabla 3.23. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP $\phi = 8$ mm con la carga al 25%
Tabla 3.24. Inercia reducida de la viga reforzada con un FRP $\phi = 8$ mm con la cargaal 25%67
Tabla 3.25. Deformación de la viga reforzada con un FRP $\phi = 8$ mm con la carga al25%67
Tabla 3.26. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP $\phi = 8$ mm con la carga al 50%
Tabla 3.27. Inercia reducida de la viga reforzada con un FRP $\phi = 8$ mm con la cargaal 50%
Tabla 3.28. Deformación de la viga reforzada con un FRP $\phi = 8$ mm con la carga al50%
Tabla 3.29. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP $\phi = 8$ mm con la carga al 75%
Tabla 3.30. Inercia reducida de la viga reforzada con un FRP $\phi = 8$ mm con la cargaal 75%
Tabla 3.31. Deformación de la viga reforzada con un FRP $\phi = 8$ mm con la carga al75%69
Tabla 3.32. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP $\phi = 8$ mm con la carga al 100%
Tabla 3.33. Inercia reducida de la viga reforzada con un FRP $\phi = 8$ mm con la cargaal 100%
Tabla 3.34. Deformación de la viga reforzada con un FRP $\phi = 8$ mm con la carga al100%
Tabla 3.35. Datos para la viga reforzada con FRP $\phi = 12$ mm
Tabla 3.36. Cálculo inicial la viga reforzada con FRP
Tabla 3.37. Cálculo final para la viga reforzada con un FRP $\phi = 12mm71$
Tabla 3.38. Datos para la deformación de la viga reforzada con un FRP $\phi = 12mm 72$
Tabla 3.39. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP $\phi = 12$ mm con la carga al 25%
Tabla 3.40. Inercia reducida de la viga reforzada con un FRP $\phi = 12$ mm con la cargaal 25%
Tabla 3.41. Deformación de la viga reforzada con un FRP $\phi = 12$ mm con la carga al25%<
Tabla 3.42. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP $\phi = 12$ mm con la carga al 50%

Tabla 3.43. Inercia reducida de la viga reforzada con un FRP $\phi = 12mm$ con la cargaal 50%74
Tabla 3.44. Deformación de la viga reforzada con un FRP $\phi = 12$ mm con la carga al50%
Tabla 3.45. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP $\phi = 12$ mm con la carga al 75%
Tabla 3.46. Inercia reducida de la viga reforzada con un FRP $\phi = 12mm$ con la cargaal 75%75
Tabla 3.47. Deformación de la viga reforzada con un FRP $\phi = 12$ mm con la carga al75%
Tabla 3.48. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP $\phi = 12$ mm con la carga al 100%
Tabla 3.49. Inercia reducida de la viga reforzada con un FRP $\phi = 12$ mm con la carga al 100%
Tabla 3.50. Deformación de la viga reforzada con un FRP $\phi = 12$ mm con la carga al100%
Tabla 3.51. Datos para la viga reforzada con ACERO $\phi = 8$ mm
Tabla 3.52. Cálculo inicial la viga reforzada con ACERO 77
Tabla 3.53. Cálculo final para la viga reforzada con un ACERO $\phi = 8$ mm
Tabla 3.54. Datos para la deformación de la viga reforzada con un ACERO $\phi = 8$ mm
Tabla 3.55. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un ACERO $\phi = 8$ mm con la carga al 25%
Tabla 3.56. Inercia reducida de la viga reforzada con un ACERO $\phi = 8$ mm con lacarga al 25%
Tabla 3.57. Deformación de la viga reforzada con un ACERO $\phi = 8mm$ con la cargaal 25%
Tabla 3.58. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un ACERO $\phi = 8$ mm con la carga al 50%
Tabla 3.59. Inercia reducida de la viga reforzada con un ACERO $\phi = 8mm$ con la carga al 50%
Tabla 3.60. Deformación de la viga reforzada con un ACERO $\phi = 8mm$ con la cargaal 50%80
Tabla 3.61. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un ACERO $\phi = 8$ mm con la carga al 75%
Tabla 3.62. Inercia reducida de la viga reforzada con un ACERO $\phi = 8$ mm con la carga al 75%

Tabla 3.63. Deformación de la viga reforzada con un ACERO $\phi = 8mm$ con la carga al 75%
Tabla 3.64. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un ACERO $\phi = 8$ mm con la carga al 100%
Tabla 3.65. Inercia reducida de la viga reforzada con un ACERO $\phi = 8mm$ con la carga al 100%
Tabla 3.66. Deformación de la viga reforzada con un ACERO $\phi = 8mm$ con la carga al 100%
Tabla 3.67. Datos para la viga reforzada con ACERO $\phi = 12$ mm
Tabla 3.68. Cálculo inicial la viga reforzada con ACERO
Tabla 3.69. Cálculo final para la viga reforzada con un ACERO $\phi = 12$ mm
Tabla 3.70. Datos para la deformación de la viga reforzada con un ACERO $\phi = 8$ mm
Tabla 3.71. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un ACERO $\phi = 12$ mm con la carga al 25%
Tabla 3.72. Inercia reducida de la viga reforzada con un ACERO ϕ = 12mm con la carga al 25%
Tabla 3.73. Deformación de la viga reforzada con un ACERO $\phi = 12mm$ con la carga al 25%
Tabla 3.74. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un ACERO $\phi = 12$ mm con la carga al 50%
Tabla 3.75. Inercia reducida de la viga reforzada con un ACERO $\phi = 12$ mm con la carga al 50%
Tabla 3.76. Deformación de la viga reforzada con un ACERO $\phi = 12$ mm con la carga al 50%
Tabla 3.77. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un ACERO $\phi = 12$ mm con la carga al 75%
Tabla 3.78. Inercia reducida de la viga reforzada con un ACERO $\phi = 12$ mm con la carga al 75%
Tabla 3.79. Deformación de la viga reforzada con un ACERO $\phi = 12$ mm con la carga al 75%
Tabla 3.80. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un ACERO $\phi = 12$ mm con la carga al 100%
Tabla 3.81. Inercia reducida de la viga reforzada con un ACERO $\phi = 12$ mm con la carga al 100%
Tabla 3.82. Deformación de la viga reforzada con un ACERO $\phi = 12$ mm con lacarga al 100%

Tabla 3.83. Datos para la columna reforzada con un FRP $\phi=6mm$
Tabla 3.84. Cálculo final para la columna reforzada con un FRP $\phi = 6mm90$
Tabla 3.85. Datos para la columna reforzada con cuatro FRP $\phi = 6mm$
Tabla 3.86. Cálculo final para la columna reforzada con cuatro FRP $\phi = 6$ mm91
Tabla 3.87. Esbeltez. 92
Tabla 3.88. Separación de estribos de acero para la columna reforzada con cuatro FRP $\phi = 6$ mm
Tabla 3.89. Datos para la columna reforzada con un FRP $\phi=8mm$
Tabla 3.90. Cálculo final para la columna reforzada con un FRP $\phi=8mm93$
Tabla 3.91. Datos para la columna reforzada con cuatro FRP $\phi = 8mm$
Tabla 3.92. Cálculo final para la columna reforzada con cuatro FRP $\phi = 8mm94$
Tabla 3.93. Esbeltez 94
Tabla 3.94. Separación de estribos de acero para la columna reforzada con cuatro FRP $\phi = 8$ mm
Tabla 3.95. Datos para la columna reforzada con un FRP $\phi = 12$ mm
Tabla 3.96. Cálculo final para la columna reforzada con un FRP $\phi = 12mm95$
Tabla 3.97. Datos para la columna reforzada con cuatro FRP $\phi=12mm$
Tabla 3.98. Cálculo final para la columna reforzada con cuatro FRP $\phi=12mm96$
Tabla 3.99. Esbeltez 96
Tabla 3.100. Separación de estribos de acero para la columna reforzada con cuatro FRP $\phi = 12$ mm
Tabla 3.101. Datos para la columna reforzada con un ACERO $\phi = 8$ mm
Tabla 3.102. Cálculo final para la columna reforzada con un ACERO $\phi = 8 mm$ 97
Tabla 3.103. Datos para la columna reforzada con cuatro ACEROS $\phi = 8mm$
Tabla 3.104. Cálculo final para la columna reforzada con cuatro ACEROS $\phi = 8mm$
Tabla 3.105. Esbeltez 99
Tabla 3.106. Separación de estribos de acero para la columna reforzada con cuatro ACEROS $\phi = 8$ mm
Tabla 3.107. Datos para la columna reforzada con un ACERO $\phi = 12$ mm
Tabla 3.108. Cálculo final para la columna reforzada con un ACERO $\phi = 12 mm$. 100
Tabla 3.109. Datos para la columna reforzada con cuatro ACEROS $\phi = 12$ mm 100
Tabla 3.110. Cálculo final para la columna reforzada con cuatro ACEROS $\phi = 12$ mm
Tabla 3 111 Esbeltez 101

ÍNDICE DE ANEXOS

Anexo #1. Ensayos a tracción de varillas.Anexo #2. Ensayos a compresión de varillas.Anexo #3. Ensayos de compresión axial de columnas reforzadas.Anexo #4. Ensayos de flexión en vigas reforzadas.

Análisis, Comportamiento y Comparación de Varillas Corrugadas en Fibra de Vidrio, con Relación a las Varillas Convencionales; Conjuntamente en Elementos Estructurales de Hormigón

RESUMEN

El presente trabajo de investigación plantea la comparación de dos tipos de varillas corrugadas para refuerzo en elementos estructurales; la primera de acero y la segunda de fibra de vidrio. De esta forma, se realizó los ensayos de tracción y compresión de cada varilla; luego se analizó y dimensionó con las normas del ACI 318S-08 y de la NEC 15 tanto vigas y columnas de hormigón usando ambos materiales como refuerzo, para así poder realizar los respectivos ensayos; todo esto con el fin de obtener las características físicas y mecánicas de las varillas de fibra de vidrio y acero, como también el comportamiento de cada una de ellas.

Palabras claves: elementos estructurales, varilla de acero, varilla de fibra de vidrio, tracción, compresión, vigas y columnas.

Salle

Ing. José Fernando Vázquez Calero Coordinar de Escuela

Ing. Roberto Gamón Torres Director de Tesis

Byron Hernán Lalvay Llivigañay Autor

Lalvay Llivigañay, xvii

ANALYSIS, BEHAVIOR AND COMPARISON OF FIBERGLASS CORRUGATED RODS VERSUS CONVENTIONAL RODS IN CONCRETE STRUCTURAL ELEMENTS

ABSTRACT

This research proposed the comparison of two types of corrugated rods for reinforcement in structural elements; the first of steel and the second of fiberglass. Therefore, tensile and compression tests were performed on each rod. Then, beams and columns of concrete using both materials as reinforcement were analyzed and sized with ACI 318S-08 and NEC 15 standards, so as to be able to conduct the respective tests. All this was carried out in order to obtain the physical and mechanical characteristics of fiberglass and steel rods, as well as the behavior of each one of them.

Keywords: structural elements, steel rod, fiberglass rod, traction, compression, beams and columns.

Jose Rout

Ing. José Fernando Vázquez Calero School Coordinator

min

Ing. Roberto Gamón Torres Thesis Director

Byron Hernán Lalvay Llivigañay Author

Lic. Lourdes Crespo

"Análisis, Comportamiento y Comparación de Varillas Corrugadas en Fibra de Vidrio, con Relación a las Varillas Convencionales; Conjuntamente en Elementos Estructurales de Hormigón."

INTRODUCCIÓN

Desde épocas muy antiguas, las estructuras han sido realizadas de diferentes maneras que con el paso del tiempo y con el avance de la tecnología han ido evolucionando; a partir de la utilización de madera hasta el uso del hormigón armado, para la construcción de edificaciones han ayudado al trabajo del hombre solucionando así varios problemas que día a día se presentan en el ámbito de la construcción.

Debido al avance tecnológico los componentes de las estructuras han ido modificándose; llegando así a presentarse en el mercado varios productos especiales, para la sustitución de distintos materiales con mejores características y nuevas propiedades para mejorar la construcción.

Según (Escamilla Hernández & Loza Vega, 2004) nos dicen, que en los últimos años la ingeniería civil, ha ido evolucionando día tras día de acuerdo con las exigencias que se plantea en el mundo moderno de la construcción. Un avance principal es la creación de nuevos materiales de refuerzo para el concreto; ya que en los últimos años el único material de refuerzo que se ha utilizado es el acero, pero éste material en cierta medida resulta un poco ineficiente en algunos casos, es ahí donde entran estos nuevos materiales los cuales están compuestos por dos o más componentes.

"Dentro de estos nuevos materiales, cabe destacar uno de ellos que ha estado en uso desde la década de los 40 en el medio de la construcción, pero debido a la falta de conocimiento e investigación se ha ido quedando atrás; por lo que recientemente ha llamado la atención de los ingenieros civiles que se dedican a la construcción de estructuras" (Almerich Chulia, 2010).

Tal es el caso de un nuevo material como el compuesto de polímeros reforzados con fibras de vidrio, lo cual presentan grandes ventajas como lo es principalmente en su peso y también ayuda a mejorar el comportamiento frente a la corrosión de las estructuras de hormigón armado.

Las varillas de fibra de vidrio están elaboradas a base de dos componentes principales como son:

- "La fibra de vidrio la cual es la que proveen resistencia la tensión" (Escamilla Hernández & Loza Vega, 2004).
- "Matriz de tipo polimérica la cual le da rigidez a la varilla, mantiene junta y compacta la fibra, protege de agentes externos y previene la abrasión y corrosión, transmite los esfuerzos hacia las fibras ya que esta resina recibe primero los esfuerzos provenientes del concreto y por medio de su adherencia e éste y gracias a sus corrugaciones se transmiten los esfuerzos de una manera mecánica" (Escamilla Hernández & Loza Vega, 2004).

Según (Escamilla Hernández & Loza Vega, 2004) (Guerra Montealegre, 2015) nos dicen, que las varillas de acero en comparación a las de fibra de vidrio, se diferencia debido a que están compuestas por un solo material y son isotrópicas; es decir que tiene las mismas características en todas las direcciones, mientras que las varillas de fibra de vidrio son anisotrópicas, debido a que las fibras solo están orientadas en una sola dirección siendo su eje longitudinal el eje fuerte, es decir no tiene las mismas características en todas las direcciones.

Como es sabido, el acero, posee una etapa plástica donde se reacomodan sus partículas y después de un proceso de cedencia el material llega a su falla; mientras que las varillas de fibra de vidrio carecen de esta etapa plástica, sino que poseen un comportamiento elástico lineal hasta su fractura.

Es así que hoy en día se busca determinar todas las posibles comparaciones entre las varillas de acero y las de fibra de vidrio, para obtener un conocimiento más amplio sobre éste nuevo material, que últimamente se está utilizando en el ámbito de la construcción; lo cual nos puede brindar muchas ventajas en nuevos proyectos y lograr que éste material sea conocido en todo el país.

GENERALIDADES

Alcance

El análisis, comportamiento y comparación de varillas corrugadas en fibra de vidrio, con relación a las varillas convencionales; conjuntamente en elementos estructurales de hormigón. Se concibe debido a la necesidad de buscar nuevas alternativas de reforzamiento estructural.

Se deberá obtener información sobre las varillas de fibra de vidrio, para generar una fuente investigativa sobre este material; facilitando a los constructores, el conocimiento sobre este producto para facilitar su uso en nuevas construcciones.

Al realizar los respectivos cálculos, se obtendrán los datos necesarios para poder construir las diferentes vigas de hormigón; las cuales son de vital importancia para el estudio y comparación de sus características, estos estudios serán realizados con varillas corrugadas en acero y con fibra de vidrio.

Después de realizar los diferentes ensayos se espera obtener datos comparativos entre las varillas de fibra de vidrio y las de acero; gracias a estos resultados se llegará a la determinación de un mejor conocimiento que presenta éste material con relación al convencional, que es el acero.

Antecedentes

El avance tecnológico en los materiales de construcción ha permitido a los ingenieros contratistas obtener ventajas en la seguridad, economía y funcionalidad de las construcciones. El uso de las varillas de fibra de vidrio ha sido principalmente para mejorar el comportamiento ante la corrosión de las estructuras de hormigón armado convencional.

Las varillas de fibra de vidrio están compuestas por varios materiales uno de ellos es la fibra de vidrio de la cual el uso más conocido que se tiene es en la fabricación del fuselaje de los aviones y también dentro de las carrocerías de los automóviles, dentro de la industria de la construcción los primeros usos han sido como un elemento decorativo de fachadas o de jardines. Debido a sus características físicas y mecánicas se ha comenzado a utilizar en reparación de estructuras, y últimamente debido a varias investigaciones se lo puede utilizar como refuerzo para el concreto. "La matriz de las varillas de fibra de vidrio está elaborada a base de resinas poliméricas, específicamente están hechas a base de resinas termorígidas, estas se vuelven duras y rígidas al ser calentadas. Las más utilizadas para su fabricación son el viniléster y el poliéster por su alta resistencia a la tensión" (Escamilla Hernández & Loza Vega, 2004).

El proceso de fabricación de las varillas de fibra de vidrio es conocido como pultrusión, este proceso ha sido utilizado con anterioridad para la fabricación de perfiles con medidas estándares como por ejemplo las vigas I, vigas cajón y en las varillas para refuerzo. Gracias a la maleabilidad de la resina se puede obtener el tipo de corrugación que se desee dar a la varilla como se lo puede observar en la Figura 1.

Figura 1. Varillas de refuerzo disponibles Fuente. (Escamilla Hernández & Loza Vega, 2004)

El proceso de pultrusión consta de las siguientes etapas:

- 1. Se distribuye el material de refuerzo en este caso la fibra de vidrio.
- 2. Se impregna las fibras mediante un baño con resina.
- 3. Envolverles helicoidalmente las corrugaciones dependiendo el acabado que se le desee dar a la varilla.
- 4. Este paso es optativo en el cual consiste en darle un baño de arena a las varillas.
- 5. Pasar la varilla a través de un túnel de curado en donde la resina se polimeriza.
- 6. Pasar las varillas por una máquina de pulido y cortarlas a la medida deseada

La utilización de las varillas de fibra de vidrio como material de refuerzo ha estado en desarrollo desde 1960 en Estados Unidos y desde 1970 en Europa, aunque el nivel de investigación, demostración y comercialización ha aumentado a partir de 1980, en utilizar éstas varillas en estructuras de hormigón que requieren una alta resistencia a la corrosión o una absoluta transparencia electromagnética.

Justificación

En la actualidad, muchas edificaciones son construidas de una forma convencional y tradicional, por lo que implementar un nuevo producto dentro del mercado de la construcción es complejo; más aún en nuestro país donde la inseguridad y la informalidad para la ejecución de infraestructuras es alta.

Por este motivo existen varios productos innovadores dentro del mercado, los cuales por falta de información no son empleados en las construcciones; éstos productos incluso pueden bajar el costo de la construcción, como es el caso de las varillas de fibras de vidrio que, en relación a las varillas de acero, su costo podría ser menor teniendo en cuenta mayores beneficios cuando son expuestas a agentes nocivos.

Objetivos

1. Objetivo General

Evaluar las propiedades físicas y mecánicas de las varillas de fibra de vidrio, para obtener información de sus características y así tener un más amplio conocimiento sobre este nuevo material de la construcción.

- 2. Objetivos Específicos
 - Determinar las propiedades físicas y mecánicas de las varillas de fibra de vidrio.
 - Evaluar de forma comparativa las varillas de acero con relación a las de fibra de vidrio, para obtener una idea clara de sus ventajas y desventajas.
 - Analizar si las fórmulas del acero pueden ser usadas para este tipo de varillas.

CAPÍTULO I

CARACTERÍSTICAS Y PROPIEDADES DE LAS VARILLAS CORRUGADAS

En este capítulo se procederá a exponer las características de los dos tipos de materiales de refuerzo, el primero será el de uso convencional en nuestro país que son las varillas de acero, el segundo será las varillas de fibra de vidrio; donde se obtendrá información que aportara para definir ciertas propiedades y características que se han analizado en diferentes partes del país y del mundo, para así lograr tener una visión más clara y concisa sobre el proyecto que se está analizando para optar por nuevos materiales de refuerzo para la construcción en nuestro país.

1.1. Características y propiedades de las varillas corrugadas en acero

"El acero es una aleación de hierro y carbono, donde el carbono no supera el 2.1% en peso de la composición de la aleación" (Allauca, 2011). El acero es muy usado en muchas ramas como para la construcción de máquinas, herramientas, obras civiles, perfiles estructurales, etc. Contribuyendo a un alto nivel de desarrollo tecnológico en países industrializados.

1.1.1. Varilla corrugada

La varilla corrugada también conocida como varilla de acero de refuerzo, consiste en una barra común en el ámbito de la construcción de estructuras que es de acero al carbón laminado y es una barra sólida redonda con resaltes en toda su longitud, logrando con esto una adherencia mecánica con el hormigón. "Las varillas corrugadas poseen un porcentaje de carbono en el rango de 0.30% a 0.33% de acuerdo a la norma NTE INEN 2 167:2003" (Allauca, 2011). Porcentajes que estén fuera de este rango sean inferiores o superiores cambiarán las propiedades de la varilla.

Las varillas corrugadas de acero es el refuerzo ideal para la construcción de obras civiles en nuestro medio, debido a sus propiedades sismo resistentes, ya que el Ecuador es un país que se encuentra ubicado dentro de la zona del cinturón del fuego del pacífico, y constantemente se ve expuesto a eventos telúricos.

1.1.2. Proceso de producción de la varilla corrugada

La producción de acero para la fabricación de la varilla corrugada consiste en transformar la materia prima en elementos adecuados para la construcción. El acero se lo puedo obtener a partir de dos materias primas fundamentales en nuestro medio: los minerales de hierro y la chatarra o fundiciones reciclables, que podemos encontrar en maquinarias, equipos, etc., en forma de desechos metálicos. Ambas materias primas producen una óptima calidad de acero, pero todo depende de la precisión y calidad tecnológica que se emplee para la fabricación de estas varillas.

• Obtención del acero a través de los minerales de hierro

"El hierro generalmente es encontrado en forma de óxido de hierro, magnetita, hematita, limonita, u óxidos hidratados. Se extrae del mineral por medio de los altos hornos tal como puede volverse a fundir y colar para darle cualquier forma, o bien refinarse para transformarlo en acero o hierro forjado" (Allauca, 2011).

Debido a la cantidad alta de carbono que contiene el acero, al salir del horno se lo transporta en vagonetas llamadas torpedos hasta el convertidor donde se procede a bajar el contenido de carbono mediante ferroaleaciones, fundentes o chatarra.

• Obtención del acero a través de la chatarra o fundiciones reciclables

Según (Allauca, 2011), nos dice que la chatarra reciclada se funde y se convierte en acero de alta calidad a través de hornos de arco eléctrico de alta potencia, lo cual la principal tarea de estos hornos es convertir las materias primas sólidas en acero líquido crudo lo más rápido y luego afinarlas aún más en los procesos sucesivos de la metalurgia secundaria.

Figura 1.2. Horno de arco eléctrico. Fuente. (Allauca, 2011)

1.1.3. Colada continua

La colada continua es "el acero líquido que sale de los hornos y es vaciada en la bandeja, en la cual se abre la compuerta y a velocidad controlada pasa a un molde de sección cuadrada para formar la palanquilla; el acero mientras se desliza a través de los rodillos es enfriado con chorros de agua fría, formándose una costra sólida que se extiende en toda la palanquilla, la cual ayuda a que se mantenga la forma y no se deforme por la presión ferro-estática del acero" (Allauca, 2011).

Las palanquillas son marcadas con colores o con números para ser identificadas de acuerdo a la composición química que pertenecen, finalmente son almacenadas para seguir al proceso de laminación; las palanquillas son la materia prima para producir las varillas corrugadas de acero empleadas en la construcción.

Figura 1.3. Proceso de colada continua. Fuente. (Allauca, 2011)

1.1.4. Proceso de laminación

Según (Alomaiza & Granizo, 2012) nos dicen, que el proceso de laminación debe seguir una secuencia:

- 1. Calentamiento de la palanquilla en el horno
- 2. Estación de desbaste D1 y D2
- 3. Tren continuo o intermedio
- 4. Tren acabador hasta conseguir el producto final

Figura 1.4. Flujograma del proceso de laminación. Fuente. (Alomaiza & Granizo, 2012)

1.1.5. Propiedades de las varillas corrugadas en acero

"Las normas ecuatorianas NTE INEN 0102:2003-3R y NTE INEN 2167:2003-1R establecen que las varillas se clasifican de acuerdo a la calidad del acero, en dos grados correspondientes con su límite de fluencia mínimo" (Allauca, 2011):

- a) Varillas de acero grado A28, fluencia mínima 27,5 daN/mm² (28 kg/mm²)
- b) Varillas de acero grado A42, fluencia mínima 41,2 daN/mm² (42 kg/mm²)

A continuación, en las tablas se puede observar algunas propiedades físicas, químicas y las formas de resaltes que presentan las varillas corrugadas que se fabrican en el Ecuador de acuerdo a la norma INEN.

• Características físicas

Diámetro	Dimensiones de los resaltes		Masa			
Nominal		<u>(mm)</u>			(kg/m)	
(mm)	Máximo	Mínimo	Máximo	Nominal	Máximo	Mínimo
	а	b	C	d	е	е
8	5,60	0,32	3,10	0,395	0,418	0,371
10	7,00	0,40	3,90	0,617	0,654	0,580
12	8,40	0,48	4,70	0,888	0,941	0,835
14	9,80	0,67	5,50	1,208	1,281	1,136
16	11,20	0,72	6,20	1,578	1,673	1,484
18	12,60	0,88	7,00	1,998	2,117	1,878
20	14,00	1,01	7,80	2,466	2,614	2,318
22	15,40	1,11	8,60	2,984	3,163	2,805
25	17,50	1,26	9,80	3,853	4,085	3,622
28	19,60	1,39	11,00	4,834	5,124	4,544
32	22,40	1,64	12,00	6,313	6,692	5,935
36	25,20	1,84	14,00	7,990	8,470	7,511
40	28,00	1,96	15,70	9,865	10,456	9,273

Tabla 1.1. Características físicas de las varillas corrugadas.

Fuente. (INEN, 2011)

Donde:

- a. Espaciamiento promedio de los resaltes transversales.
- b. Altura promedio de los resaltes transversales.
- c. Ancho en la base de los resaltes longitudinales o ancho de la ranura.
- d. Valor calculado a partir del diámetro nominal, considerando una densidad del acero de 7.85 kg/d m³.
- e. Límites en la masa por metro para cada una de las unidades de muestreo.

Los resaltes que presentan las varillas de acero tienen la función de que el hormigón tenga una buena adherencia con ésta e impedir el movimiento relativo longitudinal. En nuestro país existen tres tipos de resaltes como se puede observar en las siguientes figuras:

Figura 1.5. Varillas con resaltes transversales perpendiculares. Fuente. (INEN, 2011)

Figura 1.6. Varillas con resaltes transversales perpendiculares. Fuente. (INEN, 2011)

Figura 1.7. Varillas con resaltes transversales perpendiculares. Autor: (INEN, 2011)

• Composición química

Tabla 1.2. Composición química de las varillas corrugadas.

Elemento	Análisis de cuchara Máximo	Análisis de comprobación Máximo	ENSAYO
Carbono	0,30%	0,33%	NTE INEN 120
Manganeso	1,50%	1,56%	NTE INEN 118
Fósforo	0,035%	0,043%	NTE INEN 107
Azufre	0,045%	0,053%	NTE INEN 108
Silicio	0,50%	0,55%	NTE INEN 119

Fuente. (INEN, 2011)

Se deberá garantizar para el análisis de colada que el carbono equivalente máximo sea de 0.55%, cuando se determine de acuerdo con la siguiente fórmula:

% C. E. = % C + %
$$\left(\frac{Mn}{6}\right)$$
 + % $\left(\frac{Cu}{40}\right)$ + % $\left(\frac{Ni}{20}\right)$ + % $\left(\frac{Cr}{10}\right)$ - % $\left(\frac{Mo}{50}\right)$ - % $\left(\frac{V}{10}\right)$ (1.1)

• Resistencia mecánica

Es la capacidad de los cuerpos a resistir fuerzas que son aplicadas sin romperse, dependiendo del material y de la geometría. Estas fuerzas pueden ser de tracción, compresión y torsión.

i dola 1.5. Espectiticaciónes incountous de las valinas contagadas.

ENSAYO		UNIDAD	GRADO DE ACERO				
			A 28	A 42			
Tracción	Límite de fluencia, mínima	daN/mm ²	27,5(28)	41,2(42)			
(a)	Resistencia máximo, mínimo	daN/mm ²	43,2(44)	61,8(63)			
	Alargamiento, mínimo (b)	%	22	15			
Doblado a	$d \leq 14$	mm	D = 3d	D = 3,5d			
180 ⁰ (c)	$16 \le d \le 22$	mm	D = 3,5d	D = 5d			
	$25 \leq d \leq 32$	mm	D = 5d	D = 7d			
 (a) entre paréntesis: valor aproximado en kgf/mm² (b) ensayo con probeta de Lo = 5,65 √So (ver nota 1) (c) d = diámetro de la varilla en mm D = diámetro del mandril en mm 							

Fuente. (Allauca, 2011)

Generalmente, a las varillas se la realiza un ensayo de tracción ya que éste es el más usado para determinar las propiedades mecánicas de la varilla corrugada de acero. Según la (INEN, 2011), nos dice que la resistencia a tracción debe ser igual o mayor a 1.25 veces el punto de fluencia.

• Maleabilidad

Es la propiedad que presenta un material en estado sólido de presentar una deformación mediante una compresión sin que el material presente fracturas.

• Ductilidad

Es una propiedad mecánica muy importante en las varillas de acero, "La ductilidad es la propiedad que tiene un material para soportar grandes deformaciones sin fallar bajo esfuerzos de tensión altos" (McCormac, 2012). Cuando se realiza un ensayo de tensión de una varilla corrugada con bajo contenido de carbono, en la sección transversal se presenta una reducción considerable y un gran alargamiento en el punto de falla; una varilla que no presente esta propiedad probablemente será dura y frágil, que al momento de someterla a una tensión pequeña se romperá.

• Elasticidad

Esta propiedad se representa a través de la ley de Hooke, es decir los materiales se deforman proporcionalmente a las cargas y que cuando éstas son dejadas de aplicar la varilla vuelve a su estado natural sin presentar deformaciones. Sin embargo, la etapa elástica de la varilla corrugada se da hasta un cierto punto que al ser aplicada una tensión alta y al rato de que esta tensión deja de ser aplicada la varilla ya no vuelve a su estado natural y presenta deformaciones; y aún más, al ser superada la etapa plástica puede llegar a un límite de ruptura.

• Tenacidad

Es la propiedad que presenta la varilla corrugada para absorber energía en grandes cantidades antes de la ruptura y viene representada por el área bajo la curva tensión – deformación del material expresada en Julios. "El valor de la tenacidad de un material no es único ya que depende, al igual que otras características de los materiales, de la velocidad de aplicación de la carga y de la temperatura" (Alomaiza & Granizo, 2012).

1.2. Ventajas y desventajas de las varillas corrugadas en acero

Las varillas corrugadas en acero presentan ventajas y desventajas en su uso en la construcción; algunas de ellas serán mencionadas en este capítulo y posteriormente concluidos los ensayos lograremos determinar más ventajas y desventajas.

- Ventajas
 - Permite soldarse sin debilitarse.
 - Uniformidad en las propiedades del acero.
 - Maleable y adaptable.
 - Alta conductividad térmica y eléctrica.
 - Son usadas en varios tipos de estructuras.
 - Son encontradas fácilmente en el mercado de la construcción.
- Desventajas
 - Son muy pesadas.
 - No son buenas ante el fuego.
 - Presentan corrosión.

1.3. Características y propiedades de las varillas corrugadas en fibra de vidrio

Las varillas corrugadas en fibra de vidrio es un elemento compuesto de fibra de vidrio la cual es la que posee la resistencia, y una matriz polimérica que le da rigidez a la varilla, mantiene junta y compacta a la fibra. Es un material sumamente novedoso que en los últimos años muchos profesionales están utilizando éste material como refuerzo en las construcciones; todo esto debido a que el costo del acero cada día aumenta.

1.3.1. Fibra de vidrio

Como su nombre lo dice es un material que consiste de numerosas fibras de vidrio que son sumamente finas. Esta fibra comúnmente es utilizada como un material aislante y como un agente de refuerzo de producto poliméricos. Las fibras son impregnadas dentro de una matriz. Según (Bravo, 2003) nos dice, que el vidrio se lo utiliza como un material de refuerzo debido a las siguientes características:

- Es fácilmente hilable en fibras de alta resistencia.
- Es fácilmente disponible y se puede aplicar económicamente para producir plástico reforzado con vidrio utilizando una gran variedad de técnicas de fabricación de materiales compuestos.
- Cuando está embebida en una matriz plástica produce un compuesto con muy alta resistencia específica.
- Cuando está unido a varios plásticos se obtienen materiales compuestos químicamente inertes muy útiles en una gran variedad de ambientes corrosivos.

1.3.2. Matriz Polimérica

Esta matriz es la encargada de unir las fibras de vidrio y mantenerlas compactas, también es la encargada de transmitir a las fibras los esfuerzos que se producen alrededor de ella, el esfuerzo que resiste esta matriz es sumamente pequeña. Así mismo, esta matriz debe ser dúctil y poseer un módulo de elasticidad inferior a la de la fibra. "La matriz protege las fibras del deterioro superficial que puede resultar de la abrasión mecánica o de reacciones químicas con el medio ambiente" (Bravo, 2003).

Según (Bravo, 2003) nos indica, que la matriz polimérica actúa como una barrera que evita la propagación de grietas gracias a su relativa blandura y plasticidad. La rotura

total de la varilla ocurrirá cuando se hayan roto una gran cantidad de fibras que forman un agregado de tamaño crítico, debe existir una buena adherencia entre fibra y la matriz para así evitar el arrancamiento de fibras de vidrio ya que la tracción final depende gran parte de esta adherencia; una unión adecuada es esencial para la optimizar los esfuerzos que se transmiten desde la matriz hacia las fibras.

1.3.3. Resinas

La matriz polimérica de las varillas de fibra de vidrio está elaborada a base de resinas poliméricas, generalmente a base de resinas termorígidas. Esta matriz puede adquirir diferentes propiedades como: resistencia al fuego, a la humedad, a los ácidos y álcalis, la cual éstas dependen de la mezcla de los ingredientes, pero tienen una desventaja como lo son los disolventes clorados ya que degradan esta matriz.

Según (Almerich Chulia, 2010) nos dice, que trabajar con resinas de poliéster es sumamente ventajoso debido a su baja viscosidad, un tiempo de curado rápido, su estabilidad dimensional, buena resistencia química y un costo moderado, pero su desventaja es su alta contracción volumétrica durante el proceso de curado.

1.3.4. Tipos de Fibras de Vidrio

Según (Almerich Chulia, 2010) nos señala, que existen dos tipos de fibras de vidrio más usadas; la primera la fibra E (eléctrica) que es la de menor costo entre todas las fibras disponibles en el mercado que se utilizan como refuerzo y son utilizadas en donde la fuerza, la resistencia eléctrica, la resistencia frente al ataque ácido y el bajo costo sean de características importantes. La segunda es la fibra S o R (Strong = Fuerte o Reinforced = Reforzado) que es la que posee mayor resistencia, rigidez y menor deformación que la fibra antes hablada, pero su costo es más elevado. Otros tipos de fibra son la C que son usadas en entornos ácidos debido a su estabilidad química y las AR resistentes a los álcalis, que son usadas para minimizar la perdida de sección y son resistentes en ambientes alcalinos. En la siguiente tabla se puede apreciar las propiedades físicas y mecánicas de las fibras mencionadas.

	E-glass	S-glass	C-glass	AR-glass
Resistencia a tracción, GPa	3.45	4.3	3.03	2.5
Módulo de Elasticidad, GPa	72.4	86.9	69.0	70.0
Deformación de ruptura %	4.8	5.0	4.8	3.6
Coeficiente de Poisson	0.2	0.22		
Densidad (g/cm³)	2.54	2.49	2.49	2.78
Diámetro (µm)	10.0	10.0	4.5	
CTE longitudinal (10 ⁻⁶ /°C)	5.0	2.9	7.2	
Constante dieléctrica	6.3	5.1		

Tabla 1.4. Propiedades físicas y mecánicas de los tipos de fibras de vidrio.

Fuente. (Almerich Chulia, 2010)

1.3.5. Proceso de producción de la varilla corrugada de fibra de vidrio

El proceso de producción de varillas de fibra de vidrio se lo realiza por un proceso de pultrusión como se lo mencionó anteriormente, éste es un proceso primario para obtener los perfiles de plástico reforzados con la fibra de vidrio con secciones constantes con una distribución homogénea de las fibras alrededor de toda la varilla.

(Almerich Chulia, 2010) menciona, que para mejorar la adherencia con el hormigón a la varilla se le aplica tratamientos superficiales antes de que la misma adquiera su endurecimiento por completo, como los siguientes:

- Una envoltura de fibras enrollados a lo largo de la varilla.
- Unos salientes a modo de cordones transversales al eje longitudinal de la barra.
- Una envoltura por medio de un tejido a lo largo de la longitud de la barra.
- Mejorar la adherencia por medio de resinas de un grano fino alrededor de la varilla.

Figura 1.8. Proceso de Pultrusión. Fuente. (Quintana, 2014)

- 1. Materia Prima para el reforzamiento.
- 2. Placa guía.
- 3. Saturación de Resina.
- 4. Recubrimiento Superficial.
- 5. Moldeado y curado.
- 6. Sistema de tensado.
- 7. Sierra de corte.
- 8. Estante con esteras.
- 9. Alimentador de resina.
- 10. Sistema de conformación.
- 11. Sistema de control automático.

1.3.6. Propiedades de las varillas corrugadas en fibra de vidrio

Las varillas corrugadas en fibra de vidrio son fabricadas siguiendo los mismos parámetros que las varillas de acero corrugado para el refuerzo de elementos estructurales, es decir, mantienen los mismos detalles en cuanto a corrugación y los diámetros nominales. Sin embargo, todo depende del proceso de producción ya que desde ahí se obtienen las propiedades y características de la varilla.

• Densidad

Es una propiedad sumamente importante debido a que la varilla en fibra de vidrio es sumamente ligera. (Escamilla Hernández & Loza Vega, 2004) nos indican, que las varillas de fibra de vidrio poseen una densidad específica de 1250 kg/m³ - 2100 kg/m³, mientras que la del acero tiene una densidad de 7850 kg/m³, lo que esto nos lleva a decir que la varilla de fibra de vidrio es aproximadamente cuatro veces más ligera que la varilla corrugada de acero.

• Dilatación Térmica

Debido a que la varilla es anisotrópica esta no mantiene un solo coeficiente de dilatación, es decir, el coeficiente de dilatación lineal está dominado por las propiedades de la fibra y el coeficiente de dilatación transversal es dominado por las propiedades de la resina que se utilizó. (Escamilla Hernández & Loza Vega, 2004) nos dan a conocer que según sus investigaciones el coeficiente de dilatación longitudinal estará aproximadamente entre 6 – 10 x10-6/°C, y el coeficiente de

dilatación transversal entre 21-23 x 10-6/°C, a diferencia del acero que es un material isótropo y su coeficiente de dilatación en todas sus direcciones es de 11.7 x 10-6/°C.

• Resistencia a la tracción

La resistencia a tracción de las varillas de fibra de vidrio está en función del diámetro de las mismas, todo esto a que la resistencia a tracción disminuye conforme se vaya aumentando el diámetro. Según (GangaRao, 2007) nos dice, que éste efecto se da a que las fibras situadas cerca del centro de la sección transversal y no están sometidas a tanta tensión como las fibras que están cerca de la superficie externa; aunque todo depende de la matriz que se emplee en la varilla. Debido a su anitropisidad esta varilla presenta una grande resistencia a la tracción según el eje longitudinal ya que las fibras se encuentran distribuidas en ese sentido.

• Resistencia a la compresión

La varilla de fibra de vidrio no presenta una buena resistencia a la compresión por lo que ésta puede llegar a una resistencia del 40% al 60% de la resistencia a tracción; lo que nos lleva a descartar su aportación a la compresión dentro de un elemento estructural; sin embargo, estudios han revelado que el hormigón presenta una buena resistencia a la compresión lo que no sería problema alguno el uso de esta varilla dentro de un elemento estructural. "A diferencia del esfuerzo a tensión, el esfuerzo a compresión es muy bajo, en estudios éste ha llegado a ser del 55% del esfuerzo a tensión por lo que no se recomienda su utilización como refuerzo a compresión" (Escamilla Hernández & Loza Vega, 2004).

• Resistencia a la fatiga

"La fatiga dinámica es cuando el esfuerzo aplicado no es mayor del 50% de su resistencia a rotura, y se encuentra actuando en el mismo sentido que la matriz, el comportamiento bajo carga dinámica es óptimo" (Escamilla Hernández & Loza Vega, 2004).

• Módulo de elasticidad

La varilla de fibra de vidrio según estudios realizados presenta un comportamiento elástico lineal hasta su falla o rotura y que su módulo de elasticidad es mucho menor a la del acero, lo que significa que no hay aviso momentos antes de que falle el
elemento estructural. Según (Escamilla Hernández & Loza Vega, 2004) nos indican, que es aproximadamente el 20%, y que el rango del valor del módulo de elasticidad de la varilla de fibra de vidrio a tracción oscila entre 35 a 55GPa, y que la compresión es mucho menor al de tracción aproximadamente entre el 83% al 89% de la tracción.

1.4. Ventajas y desventajas de las varillas corrugadas en fibra de vidrio

Las varillas corrugadas en fibra vidrio al ser un material nuevo y novedoso para la construcción, también presenta sus ventajas y desventajas con respecto a las varillas corrugadas en acero; como se mencionó anteriormente en este tema investigativo lograremos determinar más ventajas y desventajas concluidos los ensayos respectivos.

- Ventajas
 - Resistente a la corrosión.
 - Resistente a ataques químicos.
 - Transparencia a las ondas electromagnéticas.
 - Material sumamente liviano.
 - Baja conductividad térmica y eléctrica.
 - Resistencia a los rayos ultravioletas.
- Desventajas
 - No es muy conocida en el mercado de construcción del Ecuador.
 - No existe una planta de producción del material en el país.
 - Muy poca investigación e importancia en el tema.

CAPÍTULO II

DETERMINACIÓN DE LAS PROPIEDADES MECÁNICAS DE LAS VARILLAS CORRUGADAS EN FIBRA DE VIDRIO

En este capítulo se procederá a exponer sobre las propiedades de las varillas de fibra de vidrio aplicando distintos tipos de ensayos, para así obtener nuevos conocimientos de este material novedoso que se encuentra en muchos países del mundo, en el cual cada uno de ellos ha realizado sus respectivos ensayos con sus normas y ha publicado sus resultados, logrando así unir a los países y combinar ideas para lograr que este material sea una nueva alternativa de refuerzo en el ámbito de la construcción de obras civiles.

Los comportamientos mecánicos de las varillas de fibra de vidrio no son parecidos a las del acero, pues las propiedades mecánicas de las varillas de fibra de vidrio dependen de varios factores; por ejemplo: calidad de la fibra de vidrio, tipo de resina a utilizar en la matriz polimérica, orientación de las fibras, proceso de fabricación y otros más. Como se mencionó anteriormente, estas varillas son anisotrópicas por lo que carecen de la etapa de plastificación. Generalmente, "están formadas por fibra de vidrio y resina vinil éster, con un volumen aproximado de fibra en su contenido del 75%" (Almerich Chulia, 2010).

Figura 2.1. Varillas corrugadas de fibra de vidrio. Fuente. Autor

Para la investigación de esta tesis se realizarán estudios de las propiedades mecánicas de las varillas de fibra de vidrio y su comportamiento en ensayos de tracción y compresión, que serán realizados en distintas etapas alcanzando los objetivos planteados inicialmente y lograr tener un claro comportamiento de este material. Para la realización de los ensayos, se utilizará el Laboratorio de Geotécnica y Materiales de la Facultad de Ingeniería de la Universidad de Cuenca.

2.1. Características geométricas

Para los estudios se utilizó varillas de fibra de vidrio, que se ajustan a los diámetros nominales que se muestran a continuación:

VARILLAS DE FIBRA DE VIDRIO			
	Diámetro de la varilla $\Phi(mm)$		
Ensayos de tracción	6	8	12
Ensayos de compresión	6	8	12

Tabla 2.1. Diámetro de las varillas de fibra de vidrio para ensayos.

Fuente. Autor

Tabla 2.2. Características de las varillas a ensayar.

Φ Nominal (mm)	Diámetro medido (mm)	Área Nominal (mm ²)	Área Calculada (mm²)	Color
6	6.79	28.27	36.21	
8	8.98	50.27	63.33	
12	11.39	113.10	101.89	

Fuente. Autor

Figura 2.2. Varillas a ensayar. Fuente. Autor

2.2. Determinación de las características mecánicas

• Ensayos a Tracción

Para el ensayo a tracción de la varilla se utilizó una prensa con las siguientes características:

	CON www.contro	Isgroup.net	CE
Testing machine Machine d'essais	ModelC0820/CZ	Year of production Annee de fabrication	2015
Serial Serie	No.15007151	Machine weight Poids de la machine	Kg 3000
Capacity Force max	kN 2000	Hydraulic oil Huile hydraulique	ISO VG 32 + 68
Ram area Surface du piston	mm ² 31415-9	Power Puissance électrique	5000 //
Ram stroke Course du piston	mm 600	Voltage Voltage	220 /

Figura 2.3. Especificaciones de la prensa de tracción. Fuente. Autor

Este ensayo consiste en someter una varilla a una fuerza axial en una prensa como la descrita anteriormente. Esta fuerza debe aplicarse a lo largo de su eje longitudinal a una velocidad constante hasta que la varilla falle. En este análisis se puede medir la carga que ha soportado la varilla y la deformación o alargamiento que se haya producido, al ser aplicado la fuerza axial de tracción. Además, gracias a este ensayo podemos determinar propiedades mecánicas a tracción de las varillas como su resistencia y su módulo de elasticidad.

• Definición de las probetas

De acuerdo a las normas (ACI440.3R-04, 2004) y a la (ASTM-A370), se procedió a determinar los especímenes o probetas con sus diámetros correspondientes y con una longitud de 50cm como lo indica la norma para este ensayo. Esta longitud se encuentra distribuida entre las dos mordazas y la parte libre de la varilla (*Lo*).

Figura 2.4. Especímenes para ensayos a tracción. Fuente. Autor

La norma (ASTM-A370) distribuye la longitud total de la siguiente manera:

$$LT = Lm_1 + Lo + Lm_2 \qquad (2.1)$$

Donde:

- $Lm_1 \rightarrow longitud en la mordaza inferior.$
- Lo → longitud libre entre las mordazas; la norma indica que ésta debe ser por lo menos 12 veces el diámetro nominal de la varilla.
- $Lm_2 \rightarrow longitud en la mordaza superior.$

La figura 2.5 y la tabla 2.3, que se presentan a continuación se puede observar claramente cómo se realizó el ensayo, y la manera que se distribuyó la varilla en la prensa para la tracción.

Figura 2.5. Características de la longitud de las varillas – Ensayo a tracción. Fuente. Autor

Tabla 2.3. Características de la longitud de las varillas - Ensayo a tracción.

Diámetro (mm)	Lm1 (mm)	Lo (mm)	Lm2 (mm)
6	125	246	129
6	125	152	223
6	125	157	218
8	125	240	135
8	125	147	228
8	125	140	235
12	125	240	135
12	125	234	141
12	125	162	213

Fuente. Autor

• Procedimiento del ensayo

Para la realización del ensayo primeramente se obtuvo las probetas de **500 mm** con su respectivo **peso**, luego se llevó la varilla a la prensa donde se determinó el **Lo** de la probeta. La prensa mencionada anteriormente con sus respectivas características, viene con unas mordazas que sujetan a la probeta con el fin de hacer coincidir el eje principal con la dirección de la línea central de prensa para aplicar la fuerza.

Figura 2.6. Prensa para ensayos a tracción. Fuente. Autor

La prensa utiliza un software UWT8 - Shortcut (Figura 2.7) que es el encargado de ir obteniendo los valores como la fuerza, deslizamiento, etc., de todo el ensayo; también, es el encargado de realizar la curva esfuerzo – deformación (Figura 2.8) del ensayo a tracción de la probeta.

TENSILE TEST - ASTM A370 / EN 10002 22.			
ELONGATION MEAS. APPARATUS	SPECIMEN DESCRIPTION		
• Encoder	Client FOPECA S.A.		
Extensometer A1 -	Test Organisat. Controls Testing Equipment		
SPECIMEN DATA	Test location CUENCA		
Type of specimen ROUND	Test date 12/07/2016 Date/time received 24/06/2015 01	9.00	
Weigth 0.043 Kg Lt 500.0 mm	Label Label 001A	_	
Mass 0.09 Kg/m Area 11.0 mm ⁴	Steel type Type 002B	_	
Diameter 3.74 mm	Sample Sample003C	-	
Proportional specimen	Position direction of sample		
Lo 246.00 mm Le 60.00 mm	Plain V Deformed Machined: Yes V He		
Rt Ae Rp 0.00 E At.Ag.Agt Su.Z	NOTES AND TECHNICAL RESPONSIBILITY	=	
Automatic PAUSE 0.00 %	Name Operator 001 Position Position 001 Signature		
0.0 KN Zero	CERTIFICATE IDENTIFICATION	Ħ	
Setting Graph MultiGraph Table Open Save Prot Help Exc			

Figura 2.7. Software Universal WinSoft Testing. Fuente. Autor

Figura 2.8. Curva Esfuerzo – Deformación. Fuente. Autor

Los valores que se obtuvieron del ensayo de cada probeta fueron hasta que la misma ya no soporte más fuerza o hasta la rotura del mismo.

Los datos obtenidos gracias al ensayo de tracción fueron:

- La carga unitaria de rotura. Fu (KN)
- La deformación correspondiente a la rotura. ΔL (mm)
- El módulo de elasticidad. E (MPa)

Gracias a la curva esfuerzo – deformación y otros datos como el diámetro de la probeta también se logró obtener datos como los siguientes:

- Esfuerzo de rotura (Kg/ cm²).
- Módulo de elasticidad. E (MPa).
- Deformación última. σ u: ε u (%)= Δ L/L.

En el respectivo ensayo las varillas de acero fallaron por rotura en su longitud libre; mientras tanto que las varillas de fibra de vidrio fallaron en las mordazas, y es que debido a la presión que ejercen las mismas sobre las varillas, el corrugado de las varillas se desprendió lo que provocó una falla por deslizamiento.

• Ensayos a Compresión

Para el ensayo a compresión de la varilla se utilizó una prensa con las siguientes características:

Figura 2.9. Prensa para ensayos a compresión. Fuente. Autor

GENERAL CELECTRIC	HOHKE, HP	1.	3
208-220/440	12.9/1.	45	6
40 class A	1/35	CONT	C
B. FRAME 180Y	K	L	4

Figura 2.10. Especificaciones de la prensa de compresión. Fuente. Autor

Este ensayo es muy similar a la de tracción con la diferencia de que se le aplica una carga de compresión a lo largo de su eje longitudinal con una velocidad constante hasta su rotura o colapso; midiendo la carga soportada y la deformación que presenta la probeta analizada. Generalmente, la aplicación de este ensayo nos ayuda a determinar ciertas características mecánicas a compresión y en el caso de las varillas como su resistencia a la compresión y su deformación.

• Definición de las probetas

De acuerdo a las normas (ACI440.3R-04, 2004) y el (ACI318S-08, 2008), se procedió a determinar los especímenes o probetas con sus diámetros y longitudes correspondientes. El (ACI440.3R-04, 2004), nos da como la longitud libre de la probeta la cual se va a ensayar *Lo* que sea de 16 veces el diámetro nominal de la varilla.

Figura 2.11. Probetas de fibra de vidrio para el ensayo a compresión. Fuente. Autor

A continuación, en la tabla 2.4 se presentan las longitudes de las probetas para el respectivo ensayo de compresión, las longitudes de las probetas fueron el resultado de la norma que se mencionó anteriormente; en nuestro país no hay una norma respectiva para este material como lo es la fibra de vidrio debido a que es muy desapercibida en el mercado.

Diámetro (mm)	Lo (mm)
6	96
6	96
6	96
8	128
8	128
8	128
12	192
12	192
12	192

Tabla 2.4. Características de la longitud de las varillas - Ensayo a compresión.

Fuente. Autor

Para este ensayo se procedió a determinar tres probetas de cada diámetro para tener más confianza de los valores obtenidos en el ensayo, llegando así a determinar sus respectivos valores y excluyendo las probetas que den valores incoherentes o se hayan producido errores al momento de colocarlas en la prensa.

• Procedimiento del ensayo

Para la realización del ensayo primeramente se obtuvo las probetas de 16 veces el diámetro nominal de varilla con su respectivo peso y luego se lo llevo a la prensa donde se la colocó de manera vertical como se puede apreciar en la siguiente figura.

Figura 2.12. Ensayo a compresión. Fuente. Autor

Para determinar la deformación que va presentando según la carga que la prensa va aplicando se utilizó un deformimetro.

Figura 2.13. Deformimetro. Fuente. Autor

Este deformimetro, se utilizó debido a que la prensa únicamente va registrando la fuerza que se aplica a la probeta, por cada cinco milésimas de pulgada; estas medidas fueron utilizadas para la determinación de la fuerza aplicada y su deformación correspondiente del ensayo de compresión.

Los datos obtenidos gracias al ensayo de compresión fueron:

- La carga unitaria de rotura. Fu (KN)
- La deformación correspondiente a la rotura. ΔL (mm)

Figura 2.14. Probeta ensayada a compresión. Fuente. Autor

Con los antecedentes obtenidos se puedo realizar la curva esfuerzo – deformación y otros, como los siguientes:

- Esfuerzo de rotura (Kg/ cm2).
- Deformación última. σ u: ϵ u (%)= Δ L/L.

2.3. Análisis y comparación de estas varillas en relación a las de acero corrugado

2.3.1. Resultados de los ensayos

A lo largo de este tiempo se realizaron los distintos tipos de ensayo con las varillas de fibra de vidrio con los diámetros de 6, 8 y 12 mm, y con varillas de acero con diámetros de 8 y 12mm; la necesidad de realizar los ensayos en las varillas de acero fue para obtener una comparación con relación a las varillas de fibra de vidrio y observar su comportamiento correspondiente. Los ensayos de tracción y compresión se realizaron con ambas varillas con sus respectivos diámetros, con una cantidad de probetas significativas para tener una idea clara sobre el comportamiento de estos materiales.

Concluido los ensayos mencionados anteriormente; a continuación, se podrá observar los resultados obtenidos durante este tiempo; los ensayos fueron realizados en el periodo de febrero y abril de 2017 en los laboratorios de la Universidad de Cuenca.

2.3.1.1. Ensayo a tracción

• Fibra de vidrio $\phi = 6$ mm

Probeta	Carga de Rotura (KN)	Módulo de Elasticidad (kg/cm²)
FRP6(1)	26.30	1228947.295
FRP6(2)	26.70	1309203.226
FRP6(3)	26.37	1194422.089

Tabla 2.5. Resultados ensayos a tracción $\phi = 6$ mm de fibra de vidrio.

Fuente. Autor

• Fibra de vidrio $\phi = 8$ mm

Tabla 2.6. Resultados ensayos a tracción $\phi = 8$ mm de fibra de vidrio.

Probeta	Carga de Rotura (KN)	Módulo de Elasticidad (kg/cm²)
FRP8(1)	41.90	989963.498
FRP8(2)	43.53	964010.161
FRP8(3)	38.24	854803.453

Fuente. Autor

• Fibra de vidrio $\phi = 12$ mm

Probeta	Carga de Rotura (KN)	Módulo de Elasticidad (kg/cm ²)
FRP12(1)	46.40	444512.424
FRP12(2)	46.80	507743.145
FRP12(3)	47.77	549206.998

Tabla 2.7. Resultados ensayos a tracción ϕ = 12mm de fibra de vidrio.

Fuente. Autor

• Acero $\phi = 8$ mm

Tabla 2.8. Resultados ensayos a tracción $\phi = 8$ mm de acero.

Probeta	Carga de Rotura (KN)	Módulo de Elasticidad (kg/cm²)
Acero 8(1)	33.40	307919.55
Acero 8(2)	35.30	411043.161
Acero 8(3)	34.70	320222.354

Fuente. Autor

• Acero $\phi = 12$ mm

Tabla 2.9. Resultados ensayos a tracción $\phi = 12$ mm de acero.

Probeta	Carga de Rotura (KN)	Módulo de Elasticidad (kg/cm ²)
Acero 12(1)	71.70	303973.913
Acero 12(2)	71.40	309010.207
Acero 12(3)	71.33	298767.958

Fuente. Autor

En las probetas de acero el módulo de elasticidad se calculó con la fuerza a la cual colapso ("Punto de Ruptura") y con su deformación correspondiente; mientras, que en la zona elástica su módulo de elasticidad es de 2100000 kg/cm².

Figura 2.15. Probetas ensayadas a tracción. Fuente. Autor

2.3.1.2. Comparación entre las varillas de fibra de vidrio y las de acero

Concluido el ensayo a tracción se pudo dar cuenta de ciertas características que presentan los materiales como lo es conocido del acero sus características son las mismas que se han venido usando este tiempo; mientras que la fibra de vidrio presentó características muy distintas a la del acero. A continuación, se muestra las respectivas características de ambos materiales con su comportamiento ante la tracción:

• Módulo de elasticidad

Para determinar el módulo de elasticidad de la varilla de fibra de vidrio, se procedió a usar la fórmula de mínimos cuadrados; con los respectivos datos obtenidos en las curvas de esfuerzo y deformación, de cada una de las varillas.

De esta manera se determinó una tendencia lineal, para a través de este método poder obtener su módulo de elasticidad.

Con las siguientes formulas se procedió al cálculo correspondiente:

$$m = \frac{\Sigma(\mathbf{x}*\mathbf{y}) - \frac{\Sigma \mathbf{x}*\Sigma \mathbf{y}}{n}}{\Sigma \mathbf{x}^2 - \frac{(\Sigma \mathbf{x})^2}{n}}$$
(2.2)

$$b = \frac{\Sigma y}{n} - m * \frac{\Sigma x}{n}$$
(2.3)

$$y = mx + b \tag{2.4}$$

$$m = tag \ \alpha = E \ b \tag{2.5}$$

Figura 2.16. Mínimos Cuadrados de la varilla de FRP de 6mm de diámetro. Fuente. Autor

Figura 2.17. Mínimos Cuadrados de la varilla de FRP de 8mm de diámetro. Fuente. Autor

Figura 2.18. Mínimos Cuadrados de la varilla de FRP de 12mm de diámetro. Fuente. Autor

Figura 2.19. Módulo de Elasticidad. Fuente. Autor

- El módulo de elasticidad en la varilla de fibra de vidrio varía dependiendo el diámetro, es decir a mayor diámetro menor módulo de elasticidad; mientras que en acero el módulo de elasticidad sigue siendo el mismo para cualquier diámetro.
- El módulo de elasticidad del acero es de E=2100000 kg/cm².
- El módulo de elasticidad de la fibra de vidrio de 6mm de diámetro según cálculo se obtuvo de E=1251670 kg/cm².
- El módulo de elasticidad de la fibra de vidrio de 8mm de diámetro según cálculo se obtuvo de E=943550 kg/ cm².
- El módulo de elasticidad de la fibra de vidrio de 12mm de diámetro según cálculo se obtuvo de E=494209 kg/ cm².
- Resistencia a la tracción

La resistencia y gráfica del acero no presentó ninguna variación se mantuvo tal cual se presentan las normas vigentes de la construcción; sin embargo, en las varillas de fibra de vidrio la resistencia depende mucho de su diámetro es decir que a mayor diámetro menor resistencia, así mismo ésta varilla no tiene zona elástica y mucho menos plástica como la del acero, sino que tiene una tendencia lineal hasta su falla es decir una falla frágil del material como se presentan en las gráficas a continuación:

Figura 2.20. Gráfica comparativa de varilla de 6mm de diámetro. Fuente. Autor

Figura 2.21. Gráfica comparativa de varilla de 8mm de diámetro. Fuente. Autor

Figura 2.22. Gráfica comparativa de varilla de 12mm de diámetro. Fuente. Autor

- La varilla de fibra de vidrio de 6mm de diámetro se comparó con la varilla de acero de 8mm de diámetro debido a que en el mercado no se tiene una varilla corrugada de acero con un nivel de fluencia igual a la de diámetros superiores.
- Así mismo se puede apreciar que las varillas de 6mm y 8mm de diámetro son más resistentes que el acero; sin embargo, no se puede decir lo mismo de la varilla de 12mm de diámetro de fibra ya que es mucho menos resistente al acero.
- También se puede dar cuenta que la varilla de fibra de vidrio presenta una mayor deformación que el acero.

Como se puede ver en la figura 2.23, notamos la respectiva curva esfuerzo – deformación de cada varilla en su pertinente diámetro que se logró a partir de mínimos cuadrados con los datos obtenidos en el ensayo de tracción.

Figura 2.23. Curva esfuerzo - deformación. Fuente. Autor

- El límite de fluencia en las varillas de fibra de vidrio a dependiendo del diámetro de la varilla; por lo que a menor diámetro mayor esfuerzo.
- El límite de fluencia para una varilla de fibra de vidrio de 6mm de diámetro es de fy=9875.00 kg/cm².
- El límite de fluencia para una varilla de fibra de vidrio de 8mm de diámetro es de fy=8675.00 kg/cm².
- El límite de fluencia para una varilla de fibra de vidrio de 12mm de diámetro es de fy=4250.00 kg/cm².

El límite de fluencia para una varilla de acero es de fy=4200.00 kg/cm², tal cual como lo hemos venido trabajando en el país.

Debido a que la varilla de fibra de vidrio tiene una falla frágil el (ACI440.3R-04, 2004), nos proporcionan una tabla con unos coeficientes de minoración dependiendo la exposición de la varilla.

Tabla 2.10. Coeficientes de minoración según el ACI.

	COEFICIENTE
EXPUESTO	0.70
NO EXPUESTO	0.80

Fuente. (ACI440.3R-04, 2004)

Con lo que los valores de límite de fluencia anteriores de la varilla de fibra de vidrio quedarían de la siguiente manera:

Tabla 2.11. Valores de fy.

φFRP		EXPUESTO	NO EXPUESTO	
6mm		6913.00	7900.00	
8mm	fy	6073.00	6940.00	kg/cm²
12mm		2975.00	3400.00	

Fuente. Autor

2.3.1.3. Ensayo a Compresión

• Fibra de vidrio $\phi = 6$ mm

Tabla 2.12. Resultados ensayos a compresión $\phi = 6mm$ de fibra de vidrio.

Probeta	Carga de Rotura (KN)	$\Delta L (mm)$
FRP6(1)	11.57	0.60
FRP6(2)	10.00	0.66
FRP6(3)	10.70	0.56

Fuente. Autor

• Fibra de vidrio $\phi = 8$ mm

Tabla 2.13. Resultados ensayos a compresión $\phi = 8$ mm de fibra de vidrio.

Probeta	Carga de Rotura (KN)	$\Delta L (mm)$
FRP8(1)	18.23	0.84
FRP8(2)	16.47	0.76
FRP8(3)	17.27	0.79

Fuente. Autor

• Fibra de vidrio $\phi = 12$ mm

Probeta	Carga de Rotura (KN)	$\Delta L (mm)$
FRP12(1)	15.47	1.32
FRP12(2)	22.33	0.99
FRP12(3)	20.83	0.97

Tabla 2.14. Resultados ensayos a compresión $\phi = 12$ mm de fibra de vidrio.

Fuente. Autor

• Acero $\phi = 8$ mm

Tabla 2.15. Resultados ensayos a compresión $\phi = 8$ mm de acero.

Probeta	Carga de Rotura (KN)	$\Delta L (mm)$
Acero 8(1)	16.44	0.46
Acero 8(2)	16.53	0.46
Acero 8(3)	15.56	0.43

Fuente. Autor

• Acero $\phi = 12$ mm

Tabla 2.16. Resultados ensayos a compresión $\phi = 12$ mm de acero.

Probeta	Carga de Rotura (KN)	$\Delta L (mm)$
Acero 12(1)	41.67	0.69
Acero 12(2)	39.53	0.67
Acero 12(3)	35.90	0.51

Fuente. Autor

Figura 2.24. Probetas ensayadas a compresión. Fuente. Autor

2.3.1.4. Comparación entre las varillas de fibra de vidrio y las de acero

Cumplido con el ensayo correspondiente en cada una de las varillas; notamos ciertas características que presenta cada material; sin embargo, llegamos a determinar que poseen distintas particularidades; en los resultados se pudo notar que la curva esfuerzo – deformación tenía un comportamiento en curva, por lo que realizamos una tendencia polinómica de segundo grado con los resultados de cada una de las varillas con el fin de obtener una curva para cada diámetro de varilla.

Figura 2.25. Gráfica comparativa de varilla de 6mm de diámetro. Fuente. Autor

Figura 2.26. Gráfica comparativa de varilla de 8mm de diámetro. Fuente. Autor

Figura 2.27. Gráfica comparativa de varilla de 12mm de diámetro. Fuente. Autor

- La varilla de fibra de vidrio de 6mm de diámetro se comparó con la varilla de acero de 8mm de diámetro debido a que en el mercado no se tiene una varilla corrugada de acero con un nivel de fluencia igual a la de diámetros superiores.
- La varilla de fibra de vidrio de 6mm y 8mm resiste más esfuerzo que la del acero, caso contrario con la de 12mm, se puede apreciar que es sumamente bajo el esfuerzo con relación a la del acero.
- El esfuerzo del acero se mantiene en un rango moderado sin mucha variación en la curva esfuerzo – deformación, mientras que en la fibra de vidrio no se puede apreciar esta característica según se va incrementando el esfuerzo va aumentando su deformación

Figura 2.28. Comparación de la compresión. Fuente. Autor

- El esfuerzo a comprensión en las varillas de fibra de vidrio va disminuyendo según va aumentando el diámetro como se puede ver en la figura 2.28.
- El esfuerzo a compresión para una varilla de fibra de vidrio de 6mm de diámetro es de 37.00 kg/cm².
- El esfuerzo a compresión para una varilla de fibra de vidrio de 8mm de diámetro es de 33.00 kg/cm².
- El esfuerzo a compresión para una varilla de fibra de vidrio de 12mm de diámetro es de 16.00 kg/cm².
- El esfuerzo a compresión para una varilla de acero es de **33.00kg/cm²**.
- La varilla de fibra de vidrio presento una característica nueva, y es que al quitar la fuerza de compresión esta volvió a su posición inicial, pero a la vez presento fisuras.

Figura 2.29. Varilla FRP después del ensayo a compresión. Fuente. Autor

CAPÍTULO III

CÁLCULO Y DISEÑO DE ELEMENTOS ESTRUCTURALES

En el presente capítulo procederemos a dimensionar probetas de hormigón con varillas de fibra de vidrio y corrugadas de acero; con el fin de llegar a determinar el comportamiento de las mismas dentro de elementos estructurales. Procediendo así a fijar ciertos parámetros para su diseño.

Para el diseño de los diferentes elementos estructurales, se basará en las respectivas normas vigentes en el Ecuador.

3.1. Parámetros de cálculo y diseño

Al momento de diseñar una estructura se debe tener muy en cuenta la seguridad en el diseño estableciendo una comparación entre la magnitud de las solicitaciones y la capacidad resistente. Según (Romo, 2008) nos indica, que la capacidad resistente debe ser mayor en un porcentaje a la magnitud de las solicitaciones, todo esto con el fin de que el trabajo de la estructura tenga un nivel apropiado de confiabilidad en cuanto al comportamiento ante las cargas reales a las cuales se diseñó; ya que esta diferencia es la que proporciona los distintos niveles de seguridad en una estructura.

Figura 3.1. La capacidad resistente debe ser mayor a las solicitaciones. Fuente. (Romo, 2008)

Para diseñar una estructura en donde se maneje esta diferencia cumpliendo las respectivas normas de construcción existen dos maneras de diseño:

3.1.1. Diseño por Esfuerzos Admisibles

También conocido como diseño para cargas de servicio, "la capacidad resistente de la estructura, del elemento estructural o de la sección específica de un elemento estructural (propiamente el esfuerzo máximo del material que provoca la rotura o que genera grandes deformaciones) se divide para un factor de seguridad aceptable para volverla comparable con la magnitud de las solicitaciones (comparable con los esfuerzos generados por las cargas de servicio)" (Romo, 2008). Se dice que se logra un diseño apropiado cuando la magnitud de las solicitaciones no supera a la capacidad resistente dividida para el factor de seguridad.

Figura 3.2. La capacidad resistente dividida para un factor de seguridad. Fuente. (Romo, 2008)

3.1.2. Diseño por Capacidad Resistente

En este método "las solicitaciones que actúan sobre la estructura se mayoran mediante factores apropiados para que las acciones exteriores sean comparables con la capacidad resistente de la estructura" (Romo, 2008); así mismo, se logra un diseño apropiado cuando la magnitud de las solicitaciones mayoradas no supera a la capacidad resistente. Estructuras de hormigón armado, puentes y estructuras de acero laminado en caliente se suelen diseñar bajo este método.

Figura 3.3. Las solicitaciones mayoradas no debe superar a la capacidad resistente. Fuente. (Romo, 2008)

3.1.3. Factores de reducción de la capacidad resistente

Las respectivas normas de la construcción tanto como la NEC y el ACI, establecen el uso de unos factores de reducción de la capacidad resistente del elemento estructural; estos factores van variando dependiendo a la solicitación a la cual son requeridas. Los valores de la capacidad nominal se deben multiplicar por estos factores para así llegar a la capacidad última de los elementos estructurales.

Tabla 3.1. Fa	ctores de reduc	cción para	distinto tipo	o de solicitació	n.
1 4014 5.1.14	letores de redu	cion puiu	unsumo upo	de somentaero	

Tipo de Solicitación	Factor de Reducción de Capacidad
	(φ)
Flexión sin carga axial	0.90
Tensión axial y tensión axial con flexión:	0.90
Compresión axial y compresión axial con	
flexión:	
• Elementos con refuerzo en espiral	0.75
Otros elementos reforzados	0.70
Cortante y Torsión	0.85
Aplastamiento en el hormigón	0.70

Fuente. (NEC, 2015)

3.1.4. Fundamentos del diseño a flexión para vigas en hormigón armado

Cuando se analiza una viga sometida a flexión hay que tomar en cuenta que ésta estará trabajando a dos solicitaciones al mismo tiempo, es decir una parte se encuentra sometida a esfuerzos y deformaciones de compresión y la otra parte se encuentra sometida a esfuerzos de tracción. Cabe recalcar que la resistencia a tracción del hormigón es nula y para soportar estos esfuerzos se colocara acero de refuerzo.

- Hipótesis de diseño
 - a) Ley de Navier-Bernoulli, que plantea que las secciones planas siguen siendo planas hasta el agotamiento de las piezas, lo que implica que las deformaciones de las fibras de la sección transversal siguen una ley lineal y son proporcionales a la distancia de la fibra al eje neutro.
 - b) La deformación máxima unitaria que se admite en la fibra más comprimida del bloque de compresión del hormigón es igual a 0.003.
 - c) Se desprecia la resistencia a tracción del hormigón.
 - d) Existe una buena adherencia entre el acero y el hormigón.
 - e) El acero de tracción debe superar el esfuerzo de fluencia.

• Bloque de compresión de Whitney

Debido a la complejidad que tiene manejar el área de la curva esfuerzo-deformación del hormigón el Dr. Whitney propuso la utilización de un bloque rectangular cuya área es semejante a la que queda bajo la curva real, y cuyo centro de gravedad coincida con el centro de gravedad de la curva, la investigación fue aceptada por el ACI y luego fue adoptada por la NEC.

Figura 3.4. Bloque de compresión de Whitney. Fuente. (Romo, 2008)

Para calcular la profundidad del bloque rectangular equivalente de esfuerzos

Whitney propone la siguiente ecuación:

$$a = \beta 1^* c \tag{3.1}$$

Figura 3.6. Diagrama de deformaciones unitarias, de esfuerzos y fuerzas. Fuente. (Romo, 2008)

La fuerza de tracción es:

$$\boldsymbol{T} = \boldsymbol{A}\boldsymbol{s} \ast \boldsymbol{F}\boldsymbol{y} \tag{3.2}$$

Se debe mantener el equilibrio de fuerzas horizontales por lo que:

$$Cc = T$$

$$0.85 * f'c * b * a = As * F$$

$$a = \frac{As * F}{0.85 * f'c * b}$$
(3.3)

También a partir del diagrama se puede calcular el Momento Flector Nominal:

$$Mn = T * \left(d - \frac{a}{2}\right)$$

El Momento último se calcula de la siguiente manera:

$$Mu = \varphi * Mn$$

$$Mu = \varphi * T * \left(d - \frac{a}{2}\right)$$

$$As = \frac{Mu}{\varphi * Fy * \left(d - \frac{a}{2}\right)}$$
(3.4)

Reemplazando (3.3) en (3.4) tenemos:

$$As = \frac{Mu}{\varphi * Fy * \left(d - \frac{As * F}{0.85 * f'c * b}\right)}$$

Trabajando la ecuación se llega a obtener el Área de acero:

$$As = \frac{(0.85*f'c*b*d)}{Fy} * \left(1 - \sqrt{1 - \left(\frac{2*Mu}{\phi*0.85*f'c*b*d*d}\right)}\right)$$
(3.5)

• Cuantías de Armado

Es el cociente entre la sección transversal de acero y la sección efectiva de hormigón:

$$\rho = \frac{As}{b*d} \tag{3.5}$$

- As: Área de acero
- b: base de la sección

- d: altura efectiva de la sección

Cuantía Balanceada

"Es la cuantía de armado en una viga que simultáneamente provoca la deformación unitaria máxima permitida en el hormigón de compresión (0.003), y que el acero de tracción empiece a fluir" (Romo, 2008).

$$\rho b = 0.85 * \beta 1 * \left(\frac{f'c}{fy}\right) * \left[\left(\frac{\left(\frac{6300}{E}\right)}{\left(\frac{6300}{E}\right) + \left(\frac{fy}{E}\right)}\right)\right]$$
(3.6)

Cuantía Máxima

El máximo permitido en la NEC es el 50% de la cuantía balanceada, es equivalente a una deformación unitaria mínima del acero de tracción de 0.007. (Romo, 2008) nos dice, que este criterio permitía la formación progresiva de articulaciones plásticas en diferentes sectores de las estructuras aporticadas que se ubicaban en una zona sísmica.

Figura 3.7. Esfuerzos bajo el 50% de la cuantía balanceada. Fuente. (Romo, 2008)

$$\rho max = 0.5 * \rho b \tag{3.7}$$

Cuantía Mínima

Ciertas veces las dimensiones de la sección transversal de la viga superan la capacidad resistente requerida sin rotura por tracción del hormigón, por lo que se deberá proveer un armado mínimo que sea capaz de soportar las cargas de tracción; es por eso que la NEC ha establecido un armado mínimo que deberá ser:

$$Asmin = \frac{14}{Fy} * (bw * d)$$
 (3.8)

- bw = ancho de la viga
- d = altura de la viga

$$\rho min = \frac{14}{Fy} \tag{3.9}$$

Así mismo, el ACI establece un armado mínimo:

$$Asmin = \frac{0.79\sqrt{f'c}}{Fy} * (bw * d)$$
 (3.10)

Donde:

$$\rho min = \frac{0.79\sqrt{f'c}}{Fy} \tag{3.11}$$

Generalmente, la cuantía mínima en hormigones con una resistencia a la compresión inferior a f'c = 300kg/cm², está definida por la ecuación (3.8); mientras que para hormigones superiores a f'c = 300kg/cm² están definidas por la ecuación (3.10).

3.1.5. Fundamentos del diseño a cortante para vigas en hormigón armado

(Romo, 2008) nos dice, que existen varios parámetros que hacen que el comportamiento de los elementos estructurales sometidos a esfuerzos cortantes sea más complejo que su comportamiento a esfuerzos flexionantes como: la orientación del acero de refuerzo, la proximidad de las cargas concentradas, la resistencia a la compresión y tracción, entre otros. Así mismo, los elementos estructurales que se encuentran afectados por los esfuerzos cortantes usualmente también se hallan sometidos a la acción de momentos flectores, solicitaciones axiales y torsionales.

• Resistencia a Cortante en Vigas

En una viga sometida a esfuerzos de cortante y flexión se puede apreciar que las fisuraciones por flexión se ubican en la parte central de la viga y se propagan hacia los extremos, mientras que las fisuraciones que se presentan cerca de los apoyos con una inclinación de 45 grados son del cortante.

Figura 3.8. Fisuraciones. Fuente. (Romo, 2008)

Para controlar estas fisuraciones se utiliza acero de refuerzo; para las fisuraciones por flexión se coloca acero longitudinalmente y para las fisuras por cortante se coloca estribos a lo largo de toda su luz.

Figura 3.9. Acero de refuerzo en las fisuras. Fuente. (Romo, 2008)

El ACI nos indica, que para calcular el esfuerzo mínimo resistente a corte del hormigón simple se utiliza la siguiente expresión, que de cierta forma mantiene una relación directa con la resistencia a tracción.

$$v_c = 0.53\sqrt{f'c} \tag{3.12}$$

Donde:

- vc = Esfuerzo máximo resistente a cortante del hormigón (kg/cm^2)
- f'c = Resistencia a compresión del hormigón (kg/cm²)

f'c	Vc
(Kg/cm^2)	(Kg/cm^2)
210	7.68
240	8.21
280	8.87
350	9.92
420	10.86
490	11.73

Tabla 3.2. Resistencia al cortante de los hormigones.

Fuente. (Romo, 2008)

• Esfuerzo Cortante Último

El esfuerzo ultimo cortante como su nombre lo dice, es el último esfuerzo que puede soportar un elemento estructural; si el valor es sobrepasado se producirá una falla por cortante en el elemento estructural llevándolo a su colapso total. El ACI indica que, para calcular el esfuerzo cortante último se usa la siguiente expresión

$$v_u = \frac{Vu}{\phi * bw * d} \tag{3.13}$$

Donde:

- vu = Esfuerzo cortante último.
- Vu = Solicitación última de cortante.
- bw = Ancho de la viga.
- d = Distancia desde el centroide del acero de refuerzo hasta la fibra extrema en compresión.
- Φ = Factor de reducción de capacidad a cortante.

3.1.6. Fundamentos del diseño a compresión axial en hormigón armado

El hormigón es un material que trabaja muy bien ante solicitaciones de compresión, pero tiene una resistencia limitada a la tracción con apenas un 10% de la resistencia a la compresión. Mientras tanto, el acero es un material muy eficiente debido a que puede alcanzar toda su capacidad ante solicitaciones de tracción y compresión. Es por eso que el hormigón armado aprovecha la resistencia de compresión del hormigón y la de tracción del acero para trabajar de mejor manera.

• Columnas de hormigón armado

Generalmente, las columnas son los elementos estructurales que más trabajan a compresión por lo que en nuestro medio se puede encontrar con columnas con estribos y columnas zunchadas.

Figura 3.10. Tipos de columnas. Fuente. (Romo, 2008)

(Romo, 2008) nos dice, que los estribos y los zunchos cumplen funciones importantes dentro de la columna como:

Funciones de los estribos:

- Definir la geometría de la armadura longitudinal.
- Mantener en su sitio al hierro longitudinal durante la construcción.
- Controlar el pandeo transversal de las varillas cuando están sometidas a compresión.
- Colaborar en la resistencia a las fuerzas cortantes.

Funciones de los zunchos:

- Confinar al hormigón del núcleo de la columna de la columna para mejorar su capacidad resistente.
- Definir la geometría de la armadura longitudinal.
- Mantener en su sitio al hierro longitudinal durante la construcción.
- Controlar el pandeo trasversal de las varillas cuando están sometidas a compresión.
- Colaborar en la resistencia a las fuerzas cortantes.
- Principios básicos para el diseño
 - La deformación última ocurre cuando la falla del hormigón se considera igual a 0.003.
 - Se considera una adherencia perfecta entre el hormigón y el acero, por lo tanto, no existe deslizamiento entre ellos.
 - Existe una distribución uniforme lineal de las deformaciones en la sección transversal de la columna.

• Resistencia a la compresión axial de columnas de hormigón armado

La resistencia a la compresión en columnas se obtiene mediante la suma de la resistencia del hormigón con la capacidad resistente del acero. El ACI expresa las siguientes ecuaciones para determinar la resistencia:

$$Pu = \emptyset * Pn \tag{3.14}$$

$$Pn = 0.85 * f'c * Ac + As * fy$$
(3.15)

Donde:

- Pu = Carga última obtenida del análisis estructural con las cargas mayoradas.
- Pn = Carga última resistente de la columna con el trabajo conjunto del hormigón y del acero.
- f'c = Resistencia a compresión del hormigón (kg/cm²).
- Ac = Área del hormigón descontado el refuerzo longitudinal.
- As = Área del acero de refuerzo longitudinal.
- fy = Límite de fluencia del acero.

Por lo tanto, uniendo la ecuación (3.13) con la ecuación (3.14) se obtiene:

$$Pu = \emptyset * (0.85 * f'c * Ac + As * fy) \quad (3.16)$$

$$\emptyset = 0.7 \rightarrow Para \ columnas \ con \ estribos$$

$$\emptyset = 0.75 \rightarrow Para \ columnas \ con \ zunchos$$

(Romo, 2008) nos indica, que el ACI recomienda realizar una reducción a la carga última, debido a la presencia de excentricidades mínimas no controlables en las solicitaciones.

> $x = 0.8 \rightarrow Para\ columnas\ cuadradas\ o\ rectangulares$ $\phi = 0.85 \rightarrow Para\ columnas\ circulares$

Por lo que la ecuación final sería la siguiente:

$$Pu = x * [\emptyset * (0.85 * f'c * Ac + As * fy)]$$
(3.17)

La NEC y el ACI establecen unas cuantías de armado tanto máximas como mínimas:

$$\rho max = 0.06 \tag{3.18}$$

$$\rho min = 0.01 \tag{3.19}$$

• Separación de estribos de refuerzo

El (ACI318S-08, 2008) establece los siguientes parámetros para determinar la separación de estribos de refuerzo **So** dentro de una columna, el cual será la menor de todos los parámetros:

- Ocho veces el diámetro de la barra longitudinal confinada de menor diámetro.
- Veinte cuatro veces el diámetro de la barra del estribo cerrado de confinamiento.
- La mitad de la menor dimensión de la sección transversal de la columna.
- 300 mm.

Así mismo, el primer estribo cerrado de confinamiento debe estar situado a no más de **So/2** de la cara del nudo.

• Pandeo en elementos sometidos a comprensión axial

El pandeo es una curva o flexión que se produce en la mitad de un elemento estructural debido al esfuerzo de compresión que se aplica en el mismo.

Figura 3.11. Pandeo en columnas. Fuente. (Google, 2017)

El ACI y la NEC establecen las siguientes ecuaciones para determinar los problemas de pandeo:

$$\lambda = \frac{k*L}{r} \le 22 \rightarrow No \text{ existen problemas de inestabilidad}$$
(3.20)
$$\lambda = \frac{k*L}{r} > 22 \rightarrow Existen \text{ problemas de inestabilidad}$$
(3.21)

Donde:

- k = Coeficiente de longitud de pandeo.
- L = Luz libre del elemento.
- r = Radio de giro.

Cuando existen problemas de inestabilidad la carga última se calcula mediante la siguiente expresión:

$$Pu = Pcr = \frac{\pi^{2} * E * I}{(k * L)^{2}} \to Hormig\acute{o}n\,fisurado \qquad (3.22)$$

Donde:

- Pcr = Carga Crítica.
- $E = M \acute{o} du lo de elasticidad.$
- I = Momento de Inercia.

Descripción	Gráfico	Coeficientes de Longitud de Pandeo
Barras apoyadas - apoyadas		k = 1.00
Barras empotradas en un extremo y libres en el otro		k = 2.00
Barras empotradas en los dos extremos		k = 0.50
Barras empotradas en un extremo y apoyadas en el otro		k = 0.70
Figura 3.12. Valores de k.	· /	

Fuente. (Romo, 2008)

3.2. Dimensionamiento y cálculo de una viga con varillas corrugadas en acero y en fibra de vidrio

3.2.1. Consideraciones previas y datos para el diseño

A continuación, se procederá al diseño de vigas con las varillas de fibra de vidrio y con varillas de acero. Las consideraciones a tomarse para este diseño serán los conceptos de flexión y de cortante; ya que, para poder determinar el comportamiento de las varillas dentro del concreto, el diseño debe ser que el elemento estructural falle por flexión y no por cortante.

Para todo lo mencionado anteriormente, partiremos con datos ya conocidos previamente. Se usará la fórmula del acero mínimo y el acero requerido del análisis a flexión, mientras tanto que del análisis del cortante se usará la del esfuerzo máximo resistente a cortante del hormigón y la del esfuerzo cortante último, para así garantizar que el elemento estructural falle ante un análisis de flexión y no falle primero al cortante durante el ensayo.

También, se realizó un cálculo normalmente que sería el inicial para poder tener claro algunas ideas de nuestro diseño; el cual partiremos desde las cargas hasta llegar a determinar el acero requerido para la sección transversal. Concluido el cálculo mencionado se procederá a realizar nuestro diseño partiendo del área mínima de acero a flexión y del área que tiene nuestra respectiva varilla hasta llegar a determinar el momento y las cargas.

Además, el (ACI318S-08, 2008) indica, que para que un elemento estructural sea considerado como viga la luz libre del elemento no debe ser menor que cuatro veces su altura útil, garantizando al 100% con la teoría de la flexión. Además, para este análisis se usó un recubrimiento de la varilla similar a una pulgada es decir 2cm, para así llevar a que la varilla trabaje al máximo ante el esfuerzo de flexión.

Al concluir los cálculos se comprobará que las cargas y el momento son inferiores a los iniciales; debido a que partimos de condiciones mínimas, todo esto con el fin de que en el ensayo se pueda ver un fallo a la flexión y el comportamiento de la varilla.

Las cargas van a ser tal cual se muestra en la figura 3.13, para cada diámetro de varilla con su respectivo diagrama de cortante y de momentos.

Figura 3.13. Cargas en la viga. Fuente. Autor

Figura 3.14. Diagrama de cortante de la viga. Fuente. Autor

Figura 3.15. Diagrama de momento de la viga. Fuente. Autor

También, se logrará calcular la respectiva deformación en la mitad de la viga con la carga al 25%, 50%, 75% y 100% de su valor calculado mediante el método del área de momentos.

Figura 3.16. Cargas aplicadas en la viga. Fuente. Autor

Figura 3.17. Área de momentos. Fuente. Autor

Figura 3.18. Deformaciones en la viga. Fuente. Autor

Sin embargo, para poder determinar la deformación en el punto medio de la viga es necesario determinar el módulo de elasticidad del hormigón y la inercia reducida para la sección fisurada de la viga. Es así que el (ACI318S-08, 2008), nos da las siguientes formulas:

Módulo de elasticidad del hormigón

$$Ec = 15000\sqrt{f'c} \tag{3.23}$$

Esta expresión es aplicada a hormigones con un peso específico de más o menos 2300 kg/m³. Mientras que para hormigones con un peso específico entre 1440 y 2480 Kg/m³, se usa la siguiente expresión:

$$Ec = (W_c)^{1.5} * 0.137\sqrt{f'c}$$
(3.24)

Donde:

- Ec = Módulo de elasticidad del hormigón (Kg/cm²).
- f'c = Resistencia a la compresión del hormigón (Kg/cm²).
- Wc = Peso específico del hormigón (Kg/m³).
- Inercia reducida

En la figura 3.19 se ilustra la flecha idealizada de una viga de hormigón armado; el (ACI318S-08, 2008) da a conocer dos fases en un análisis a flexión; la primera cuando el hormigón no se encuentra fisurado esto sucede cuando el momento aplicado es menor al momento de fisuración (Inercia Elástica) y la segunda cuando el hormigón se encuentra fisurado, es decir que el momento aplicado es mayor que el momento de fisuración (Inercia Reducida).

Figura 3.19. Inercia elástica e Inercia reducida. Fuente. (ACI318S-08, 2008)

Para la inercia elástica se usa la siguiente expresión:

$$I = \frac{(b*h^3)}{12} \tag{3.25}$$

Mientras que para la inercia reducida se aplica las siguientes ecuaciones:

$$b * kd * \frac{kd}{2} = n * As * (d - kd)$$
 (3.26)

Para facilidad de cálculo se usa la siguiente sustitución:

$$X = \frac{b}{n*As} \tag{3.27}$$

$$kd = \frac{\sqrt{2*X*d+1}-1}{X}$$
(3.28)

Por lo que la inercia reducida será la siguiente:

$$I_r = \frac{b*kd^3}{3} + n*As*(d-kd)^2$$
(3.29)

Figura 3.20. Sección transformada de una viga con armadura de tracción. Fuente. (ACI318S-08, 2008)

3.2.2. Cálculo

• Varilla corrugada de fibra de vidrio $\phi = 6$ mm.

Tabla 3.3. Datos para la viga reforzada con FRP $\phi = 6$ mm.

b=	10.000	cm
h=	16.000	cm
Recubrimiento=	2.000	cm
d=	14.000	cm
fy=	7900.000	kg/cm²
E varilla=	1251690.000	kg/cm²
B1=	0.850	
f'c=	240.000	kg/cm²
Lmin=	64.000	cm
L=	90.000	cm

Fuente. Autor

- Formulas aplicadas:

$$As = \frac{(0.85*f'c*b*d)}{Fy} * \left(1 - \sqrt{1 - \left(\frac{2*Mu}{\phi*0.85*f'c*b*d*d}\right)}\right)$$
(3.5)

$$Asmin = \frac{14}{Fy} * (bw * d) \tag{3.8}$$

$$v_c = 0.53\sqrt{f'c} \tag{3.12}$$

$$v_u = \frac{v_u}{\phi * bw * d} \tag{3.13}$$

- Resultado:

Tabla 3.4. Cálculo inicial la viga reforzada con FRP.

Vc=	1149.501 kg			
PA=	1149.501 kg			
PD=	1149.501	Kg		
MA=	0.000	Kg*cm		
MB=	36209.282	kg*cm		
MC=	36209.282	kg*cm		
MD=	0.000	kg*cm		
As=	0.384	cm ²		

	Asmin=	0.248	cm²
1	Ф6mm=	0.283	cm²
	а=	28560.000	
	Mu=	27067.242	Kg*cm
	RA=	859.278	Kg
	Vu=	7.221	Kg
	Vc=	8.211	Kg

Tabla 3.5. Cálculo final para la viga reforzada con un FRP ϕ = 6mm.

Fuente. Autor

Figura 3.21. Sección transversal de la viga con un FRP $\phi=6mm.$ Fuente. Autor

• Deformaciones de la viga con una varilla corrugada de fibra de vidrio $\phi = 6$ mm.

Tabla 3.6. Datos para la deformación de la viga reforzada con un FRP $\phi = 6$ mm.

P=	859.000	kg
b=	100.000	mm
h=	160.000	mm
d=	140.000	mm
Ec=	232379.000	kg/cm ²
Es=	1251690.000	kg/cm²
f'c=	240.000	kg/cm ²
As=	28.300	mm ²

Fuente. Autor

- Formulas aplicadas:

$$Ec = 15000\sqrt{f'c} \tag{3.23}$$

$$X = \frac{b}{n*As} \tag{3.27}$$

$$kd = \frac{\sqrt{2*X*d+1}-1}{X}$$
(3.28)

$$I_r = \frac{b * kd^3}{3} + n * As * (d - kd)^2$$
(3.29)

➢ Con la carga al 25%.

Resultado: -

Tabla 3.7. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP ϕ = 6mm con la carga al 25%.

x=	0.9	m	x=	0.315	m	x=	0.585	m
RD=	214.75	Kg	PA=	214.75	Kg	PB=	214.75	Kg
	ÁREA1			ÁREA2			ÁREA3	
h1=	193.275		h2=	67.646		h3=	125.629	
A1=	86.974	m²	A2=	10.654	m²	A3=	36.746	m²
EI*tD/A=	17.809							
	ÁREA1			ÁREA2			ÁREA3	
h1=	96.638		h2=	67.646		h3=	28.991	
A1=	43.487	m²	A2=	10.654	m²	A3=	13.046	m²
A1.2=	21.743	m²				A3.1=	21.744	m²
EI*tE/A=	3.173							
		_						
E*I*δE=	5.732							

Fuente. Autor

5.732

Tabla 3.8. Inercia Reducida de la viga reforzada con un FRP $\phi = 6$ mm con la carga al 25%.

n=	5.386	
X=	0.656	
kd=	19.192	
lr=	2.46E-06	m^4

Fuente. Autor

Tabla 3.9. Deformación de la viga reforzada con un FRP ϕ = 6mm con la carga al 25%.

E=	23237	kg/m²	
I=	2.4602	m^4	
d=	0.001002628	1.003	mm

➢ Con la carga al 50%:

- Resultado:

Tabla 3.10. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP ϕ = 6mm con la carga al 50%.

X=	0.900	m	х=	0.315	m	х=	0.585	m
RD=	429.500	Kg	PA=	429.500	Kg	PB=	429.500	Kg
	ÁREA1			ÁREA2			ÁREA3	
h1=	386.55		h2=	135.293		h3=	251.258	
A1=	173.948	m²	A2=	21.309	m²	A3=	73.493	m²
EI*tD/A=	35.616							
	ÁREA1			ÁREA2			ÁREA3	
h1=	193.275		h2=	135.293		h3=	57.983	
A1=	86.974	m²	A2=	21.309	m²	A3=	26.092	m²
A1.2=	43.487	m²				A3.1=	43.487	m²
EI*tE/A=	6.347							
Ε*Ι* δΕ=	11.461							

Fuente. Autor

Tabla 3.11. Inercia reducida de la viga reforzada con un FRP ϕ = 6mm con la carga al 50%.

n=	5.386	
X=	0.656	
kd=	19.192	
lr=	2.46E-06	m^4

Fuente. Autor

Tabla 3.12. Deformación de la viga reforzada con un FRP ϕ = 6mm con la carga al 50%.

E=	23237	kg/m²
I=	2.460	m^4
d=	0.002004731	mm

➢ Con la carga al 75%:

- Resultado:

Tabla 3.13. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP ϕ = 6mm con la carga al 75%.

х=	0.900	m	х=	0.315	m	х=	0.585	m
RD=	644.250	Kg	PA=	644.250	Kg	PB=	644.250	Kg
	ÁREA1			ÁREA2			ÁREA3	
h1=	579.825		h2=	202.939		h3=	376.886	
A1=	260.921	m²	A2=	31.963	m²	A3=	110.239	m²
EI*tD/A=	53.424							
	ÁREA1			ÁREA2			ÁREA3	
h1=	289.913		h2=	202.939		h3=	86.974	
A1=	130.461	m²	A2=	31.963	m²	A3=	39.138	m²
A1.2=	65.23	m²				A3.1=	65.23	m²
EI*tE/A=	9.52							
E*I*δE=	17.192							

Fuente. Autor

Tabla 3.14. Inercia reducida de la viga reforzada con un FRP ϕ = 6mm con la carga al 75%.

n=	5.386	
X=	0.656	
kd=	19.192	
lr=	2.46E-06	m^4

Fuente. Autor

Tabla 3.15. Deformación de la viga reforzada con un FRP ϕ = 6mm con la carga al 75%.

E=	23237	kg/m²	
I=	2.460	m^4	
d=	0.003007184 3.007		mm

➢ Con la carga al 100%:

- Resultado:

Tabla 3.16. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP ϕ = 6mm con la carga al 100%.

Х=	0.900	m	x=	0.315	m	х=	0.585	m	
RD=	859.000	Kg	PA=	859.000	Kg	PB=	859.000	Kg	
	ÁREA1			ÁREA2			ÁREA3		
h1=	773.100		h2=	270.585		h3=	502.515		
A1=	347.895	m²	A2=	42.617	m²	A3=	146.986	m²	
EI*tD/A=	71.231								
	ÁREA1			ÁREA2			ÁREA3		
h1=	386.55		h2=	270.585		h3=	115.965		
A1=	173.948	m²	A2=	42.617	m²	A3=	52.184	m²	
A1.2=	86.974	m²				A3.1=	86.974	m²	
EI*tE/A=	12.694								
Ε*Ι* δΕ=	22.922								

Fuente. Autor

Tabla 3.17. Inercia reducida de la viga reforzada con un FRP ϕ = 6mm con la carga al 100%.

n-	5 386	
 	0.500	
X=	0.656	
kd=	19.192	
lr=	2.46E-06	m^4

Fuente. Autor

Tabla 3.18. Deformación de la viga reforzada con un FRP $\phi = 6$ mm con la carga al 100%.

E=	23237	kg/m²	
I=	2.460	m^4	
d=	0.004009462 4.009		mm

• Varilla corrugada de fibra de vidrio $\phi = 8$ mm.

Tabla 3.19. Datos para la viga reforzada con FRP $\phi = 8$ mm.

b=	14.000	cm
h=	16.000	cm
Recubrimiento=	2.000	cm
d=	14.000	cm
fy=	6940.000	kg/cm²
E=	943550.000	kg/cm²
B1=	0.850	
f'c=	240.000	kg/cm²
Lmin=	64.000	cm
L=	90.000	cm

Fuente. Autor

- Formulas aplicadas:

$$As = \frac{(0.85*f'c*b*d)}{Fy} * \left(1 - \sqrt{1 - \left(\frac{2*Mu}{\phi*0.85*f'c*b*d*d}\right)}\right)$$
(3.5)

$$Asmin = \frac{14}{Fy} * (bw * d) \tag{3.8}$$

$$v_c = 0.53\sqrt{f'c} \tag{3.12}$$

$$v_u = \frac{Vu}{\emptyset * bw * d} \tag{3.13}$$

- Resultado:

Tabla 3.20. Cálculo inicial la viga reforzada con FRP.

Vc=	1609.302	kg
PA=	1609.302	kg
PD=	1609.302	Kg
MA=	0.000	Kg*cm
MB=	50693.013	kg*cm
MC=	50693.013	kg*cm
MD=	0.000	kg*cm
As=	0.612	cm²

Fuente. Autor

Tabla 3.21. Cálculo final pa	ara la viga reforzada con un FRP	$\phi = 8 mm$
------------------------------	----------------------------------	---------------

 1 U			
	Asmin=	0.395	cm²
1	Ф8mm=	0.503	cm²
	a=	39984.000	
	Mu=	42064.297	Kg*cm
	RA=	1335.374	Kg
	Vu=	8.015	Kg
	Vc=	8.211	Kg

Figura 3.22. Sección transversal de la viga con un FRP $\phi=8mm.$ Fuente. Autor

• Deformaciones de la viga con una varilla corrugada de fibra de vidrio $\phi = 8$ mm.

Tabla 3.22. Datos para la deformación de la viga reforzada con un FRP $\phi = 8$ mm.

1335.000	kg
140.000	mm
160.000	mm
140.000	mm
232379.000	kg/cm²
943550.000	kg/cm ²
240.000	kg/cm²
50.300	mm²
	1335.000 140.000 160.000 232379.000 943550.000 240.000 50.300

Fuente. Autor

- Formulas aplicadas:

$$Ec = 15000\sqrt{f'c} \tag{3.23}$$

$$X = \frac{b}{n*As} \tag{3.27}$$

$$kd = \frac{\sqrt{2*X*d+1}-1}{X}$$
(3.28)

$$I_r = \frac{b * kd^3}{3} + n * As * (d - kd)^2$$
(3.29)

➢ Con la carga al 25%:

- Resultado:

Tabla 3.23. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP $\phi = 8$ mm con la carga al 25%.

x=	0.900	m	x=	0.315	m	x=	0.585	m
RD=	333.75	Kg	PA=	333.750	Kg	PB=	333.750	Kg
	ÁREA1			ÁREA2			ÁREA3	
h1=	300.375		h2=	105.131		h3=	195.244	
A1=	135.169	m²	A2=	16.558	m²	A3=	57.109	m²
EI*tD/A=	27.676							
	ÁREA1			ÁREA2			ÁREA3	
h1=	150.188		h2=	105.131		h3=	45.056	
A1=	67.585	m²	A2=	16.558	m²	A3=	20.275	m²
A1.2=	33.792	m²		•		A3.1=	33.792	m²
EI*tE/A=	4.932							
		_						
E*I*δE=	8.906							

Fuente. Autor

Tabla 3.24. Inercia reducida de la viga reforzada con un FRP $\phi = 8$ mm con la carga al 25%.

n=	4.06	
X=	0.686	
kd=	18.798	
lr=	3.31E-06	m^4

Fuente. Autor

Tabla 3.25. Deformación de la viga reforzada con un FRP $\phi = 8$ mm con la carga al 25%.

E=	23237	kg/m²	
I=	3.3099	m^4	
d=	0.00115789 1.158		mm

➢ Con la carga al 50%:

- Resultado:

Tabla 3.26. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP $\phi = 8$ mm con la carga al 50%.

Х=	0.900	m	х=	0.315	m	х=	0.585	m
RD=	667.500	Kg	PA=	667.500	Kg	PB=	667.500	Kg
	AREA1			AREA2			AREA3	
h1=	600.75		h2=	210.263		h3=	390.488	
A1=	270.338	m²	A2=	33.116	m²	A3=	114.218	m²
EI*tD/A=	55.352							
	AREA1			AREA2			AREA3	
h1=	300.375		h2=	210.263		h3=	90.113	
A1=	135.169	m²	A2=	33.116	m²	A3=	40.551	m²
A1.2=	67.584	m²				A3.1=	67.584	m²
			-					
EI*tE/A=	9.864							
E*I*δE=	17.812							

Fuente. Autor

Tabla 3.27. Inercia reducida de la viga reforzada con un FRP $\phi = 8$ mm con la carga al 50%.

n=	4.06	
X=	0.686	
kd=	18.798	
lr=	3.31E-06	m ⁴

Fuente. Autor

Tabla 3.28. Deformación de la viga reforzada con un FRP $\phi = 8$ mm con la carga al 50%.

E=	23237	kg/m²	
l=	3.3099	m^4	
d=	0.00231578 2.316		mm

➢ Con la carga al 75%:

- Resultado:

Tabla 3.29. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP $\phi = 8$ mm con la carga al 75%.

Х=	0.900	m	Х=	0.315	m	Х=	0.585	m
RD=	1001.250	Kg	PA=	1001.250	Kg	PB=	1001.250	Kg
	AREA1			AREA2			AREA3	
h1=	901.125		h2=	315.394		h3=	585.731	
A1=	405.506	m²	A2=	49.675	m²	A3=	171.326	m²
El*tD/A=	83.027							
	AREA1			AREA2			AREA3	
h1=	450.563		h2=	315.394		h3=	135.169	
A1=	202.753	m²	A2=	49.675	m²	A3=	60.826	m²
A1.2=	101.376	m²				A3.1=	101.376	m²
EI*tE/A=	14.796							
E*I*δE=	26.718							

Fuente. Autor

Tabla 3.30. Inercia reducida de la viga reforzada con un FRP ϕ = 8mm con la carga al 75%.

n=	4.06	
X=	0.686	
kd=	18.798	
lr=	3.31E-06	m ⁴

Fuente. Autor

Tabla 3.31. Deformación de la viga reforzada con un FRP $\phi = 8$ mm con la carga al 75%.

E=	23237	kg/m²	
I=	3.3099	m^4	
d=	0.00347366 3.474		mm

➢ Con la carga al 100%:

- Resultado:

Tabla 3.32. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP $\phi = 8$ mm con la carga al 100%.

х=	0.900	m	x=	0.315	m	x=	0.585	m
RD=	1335.000	Kg	PA=	1335.000	Kg	PB=	1335.000	Kg
	AREA1			AREA2			AREA3	
h1=	1201.5		h2=	420.525		h3=	780.975	
A1=	540.675	m²	A2=	66.233	m²	A3=	228.435	m²
EI*tD/A=	110.703							
	AREA1			AREA2			AREA3	
h1=	600.75		h2=	420.525		h3=	180.225	
A1=	270.338	m²	A2=	66.233	m²	A3=	81.101	m²
A1.2=	135.169	m²				A3.1=	135.169	m²
EI*tE/A=	19.728							
E*I*δE=	35.624							

Fuente. Autor

Tabla 3.33. Inercia reducida de la viga reforzada con un FRP ϕ = 8mm con la carga al 100%.

n=	4.06	
X=	0.686	
kd=	18.798	
lr=	3.31E-06	m^4

Fuente. Autor

Tabla 3.34. Deformación de la viga reforzada con un FRP $\phi = 8mm$ con la carga al 100%.

E=	23237	kg/m²	
I=	3.3099	m^4	
d=	0.00463155	4.632	mm

• Varilla corrugada de fibra de vidrio $\phi = 12$ mm.

Tabla 3.35. Datos para la viga reforzada con FRP $\phi = 12$ mm.

b=	16.000	cm
h=	16.000	cm
Recubrimiento=	2.000	cm
d=	14.000	cm
fy=	3400.000	kg/cm²
E=	494209.000	kg/cm²
B1=	0.850	
f'c=	240.000	kg/cm²
Lmin=	64.000	cm
L=	90.000	cm

Fuente. Autor

- Formulas aplicadas:

$$As = \frac{(0.85*f'c*b*d)}{Fy} * \left(1 - \sqrt{1 - \left(\frac{2*Mu}{\phi*0.85*f'c*b*d*d}\right)}\right)$$
(3.5)

$$Asmin = \frac{14}{Fy} * (bw * d) \tag{3.8}$$

$$v_c = 0.53\sqrt{f'c} \tag{3.12}$$

$$v_u = \frac{v_u}{\phi * bw * d} \tag{3.13}$$

- Resultado:

Tabla 3.36. Cálculo inicial la viga reforzada con FRP.

Vc=	1839.202	kg
PA=	1839.202	kg
PD=	1839.202	Kg
MA=	0.000	Kg*cm
MB=	57934.863	kg*cm
MC=	57934.863	kg*cm
MD=	0.000	kg*cm
As=	1.428	cm ²

Fuente. Autor

Tabla 3.37. Cálculo final para la viga reforzada con un FRP ϕ = 12mm.

	Asmin=	0.922	cm²
1	Ф12mm=	1.131	cm²
	a=	45696.000	
	Mu=	46413.377	Kg*cm
	RA=	1473.441	Kg
	Vu=	7.739	Kg
	Vc=	8.211	Kg

Figura 3.23. Sección transversal de la viga con un FRP ϕ = 12mm. Fuente. Autor

• Deformaciones de la viga con una varilla corrugada de fibra de vidrio $\phi = 12$ mm.

Tabla 3.38. Datos para la deformación de la viga reforzada con un FRP $\phi = 12$ mm.

P=	1473.000	kg
b=	160.000	mm
h=	160.000	mm
d=	140.000	mm
Ec=	232379.000	kg/cm²
Es=	494209.000	kg/cm ²
f'c=	240.000	kg/cm ²
As=	113.100	mm²

Fuente. Autor

- Formulas aplicadas:

$$Ec = 15000\sqrt{f'c} \tag{3.23}$$

$$X = \frac{b}{n*As} \tag{3.27}$$

$$kd = \frac{\sqrt{2*X*d+1}-1}{X}$$
(3.28)

$$I_r = \frac{b * kd^3}{3} + n * As * (d - kd)^2$$
(3.29)

➢ Con la carga al 25%:

- Resultado:

Tabla 3.39. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP $\phi = 12$ mm con la carga al 25%.

x=	0.900	m	x=	0.315	m	x=	0.585	m
RD=	368.250	Kg	PA=	368.250	Kg	PB=	368.250	Kg
	ÁREA1			ÁREA2			ÁREA3	
h1=	331.425		h2=	115.999		h3=	215.426	
A1=	149.141	m²	A2=	18.27	m²	A3=	63.012	m²
EI*tD/A=	30.536							
	ÁREA1			ÁREA2		ÁREA3		
h1=	165.713		h2=	115.999		h3=	49.714	
A1=	74.571	m²	A2=	18.27	m²	A3=	22.371	m²
A1.2=	37.285	m²				A3.1=	37.285	m²
El*tE/A=	5.442							
E*I*δE=	9.826							

Fuente. Autor

Tabla 3.40. Inercia reducida de la viga reforzada con un FRP $\phi = 12$ mm con la carga al 25%.

n=	2.127	
X=	0.665	
kd=	19.071	
Ir=	3.888E-06	m ⁴

Fuente. Autor

Tabla 3.41. Deformación de la viga reforzada con un FRP $\phi = 12$ mm con la carga al 25%.

E=	23237	kg/m²	
I=	3.8878	m^4	
d=	0.00108759	1.088	mm

➢ Con la carga al 50%:

- Resultado:

Tabla 3.42. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP $\phi = 12$ mm con la carga al 50%.

x=	0.900	m	х=	0.315	m	х=	0.585	m
RD=	736.500	Kg	PA=	736.500	Kg	PB=	736.500	Kg
	ÁREA1			ÁREA2			ÁREA3	
h1=	662.850		h2=	231.998		h3=	430.853	
A1=	298.283	m²	A2=	36.54	m²	A3=	126.025	m²
EI*tD/A=	61.073							
	ÁREA1			ÁREA2			ÁREA3	
h1=	331.425		h2=	231.998		h3=	99.428	
A1=	149.141	m²	A2=	36.54	m²	A3=	44.743	m²
A1.2=	74.571	m²				A3.1=	74.571	m²
EI*tE/A=	10.883							
E*I*δE=	19.654							

Fuente. Autor

Tabla 3.43. Inercia reducida de la viga reforzada con un FRP $\phi = 12$ mm con la carga al 50%.

n=	2.127	
X=	0.665	
kd=	19.071	
lr=	3.888E-06	m^4

Fuente. Autor

Tabla 3.44. Deformación de la viga reforzada con un FRP $\phi = 12mm$ con la carga al 50%.

E=	23237	kg/m²	
I=	3.8878	m^4	
d=	0.0021754	2.175	mm

➢ Con la carga al 75%:

- Resultado:

Tabla 3.45. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP $\phi = 12$ mm con la carga al 75%.

X=	0.900	m	х=	0.315	m	х=	0.585	m
RD=	1104.750	Kg	PA=	1104.750	Kg	PB=	1104.750	Kg
	ÁREA1			ÁREA2			ÁREA3	
h1=	994.275		h2=	347.996		h3=	646.279	
A1=	447.424	m2	A2=	54.809	m²	A3=	189.037	m2
EI*tD/A=	91.61							
	ÁREA1			ÁREA2			ÁREA3	
h1=	497.138		h2=	347.996		h3=	149.141	
A1=	223.712	m²	A2=	54.809	m ²	A3=	67.113	m²
A1.2=	111.856	m²				A3.1=	111.856	m²
EI*tE/A=	16.326							
E*I*δE=	29.479							

Fuente. Autor

Tabla 3.46. Inercia reducida de la viga reforzada con un FRP $\phi = 12$ mm con la carga al 75%.

n=	2.127	
X=	0.665	
kd=	19.071	
lr=	3.888E-06	m^4

Fuente. Autor

Tabla 3.47. Deformación de la viga reforzada con un FRP $\phi = 12$ mm con la carga al 75%.

E=	23237	kg/m²	
I=	3.8878	m^4	
d=	0.00326289	3.263	mm

➢ Con la carga al 100%:

- Resultado:

Tabla 3.48. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un FRP $\phi = 12$ mm con la carga al 100%.

х=	0.900	m	x=	0.315	m	x=	0.585	m
RD=	1473.000	Kg	PA=	1473.000	Kg	PB=	1473.000	Kg
	ÁREA1			ÁREA2			ÁREA3	
h1=	1325.700		h2=	463.995		h3=	861.705	
A1=	596.565	m2	A2=	73.079	m²	A3=	252.049	m2
EI*tD/A=	122.147							
	ÁREA1			ÁREA2			ÁREA3	
h1=	662.85		h2=	463.995		h3=	198.855	
A1=	298.283	m²	A2=	73.079	m²	A3=	89.485	m²
A1.2=	149.141	m²				A3.1=	149.141	m²
EI*tE/A=	21.767							
E*I*δE=	39.307							

Fuente. Autor

Tabla 3.49. Inercia reducida de la viga reforzada con un FRP $\phi = 12$ mm con la carga al 100%.

n=	2.127	
X=	0.665	
kd=	19.071	
lr=	3.888E-06	m^4

Fuente. Autor

Tabla 3.50. Deformación de la viga reforzada con un FRP $\phi = 12$ mm con la carga al 100%.

E=	23237	kg/m²
I=	3.8878	m^4
d=	0.0043507	mm

• Varilla corrugada de acero $\phi = 8$ mm.

Tabla 3.51. Datos	s para la viga	reforzada con	ACERO $\phi = 8$ mm.
-------------------	----------------	---------------	----------------------

b=	10.000	cm
h=	16.000	cm
Recubrimiento=	2.000	cm
d=	14.000	cm
fy=	4200.000	kg/cm²
E=	2100000.000	kg/cm²
B1=	0.850	
f'c=	240.000	kg/cm²
Lmin=	64.000	cm
L=	90.000	cm

Fuente. Autor

- Formulas aplicadas:

$$As = \frac{(0.85*f'c*b*d)}{Fy} * \left(1 - \sqrt{1 - \left(\frac{2*Mu}{\phi*0.85*f'c*b*d*d}\right)}\right)$$
(3.5)

$$Asmin = \frac{14}{Fy} * (bw * d) \tag{3.8}$$

$$v_c = 0.53\sqrt{f'c} \tag{3.12}$$

$$v_u = \frac{Vu}{\emptyset * bw * d} \tag{3.13}$$

- Resultado:

Tabla 3.52. Cálculo inicial la viga reforzada con ACERO.

Vc=	1149.501	kg
PA=	1149.501	kg
PD=	1149.501	Kg
MA=	0.000	Kg*cm
MB=	36209.282	kg*cm
MC=	36209.282	kg*cm
MD=	0.000	kg*cm
As=	0.723	cm²

Fuente. Autor

Tabla 3.53. Cálculo final para la viga reforzada con un ACERO $\phi = 8$ mm.

	Asmin=	0.467	cm²
1	Ф8mm=	0.503	cm²
	a=	28560.000	
	Mu=	25634.257	Kg*cm
	RA=	813.786	Kg
	Vu=	6.839	Kg
	Vc=	8.211	Kg

Figura 3.24. Sección transversal de la viga con un ACERO $\phi=8mm.$ Fuente. Autor

• Deformaciones de la viga con una varilla corrugada de acero $\phi = 8$ mm.

Tabla 3.54. Datos para la deformación de la viga reforzada con un ACERO $\phi = 8$ mm.

P=	814.000	kg
b=	100.000	mm
h=	160.000	mm
d=	140.000	mm
Ec=	232379.000	kg/cm²
Es=	2100000.000	kg/cm ²
f'c=	240.000	kg/cm ²
As=	50.300	mm²

Fuente. Autor

- Formulas aplicadas:

$$Ec = 15000\sqrt{f'c} \tag{3.23}$$

$$X = \frac{b}{n*As} \tag{3.27}$$

$$kd = \frac{\sqrt{2 \cdot X \cdot d + 1} - 1}{X} \tag{3.28}$$

$$I_r = \frac{b * kd^3}{3} + n * As * (d - kd)^2$$
(3.29)

➢ Con la carga al 25%:

- Resultado:

Tabla 3.55. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un ACERO $\phi = 8$ mm con la carga al 25%.

x=	0.900	m	x=	0.315	m	x=	0.585	m
RD=	203.500	Kg	PA=	203.500	Kg	PB=	203.500	Kg
	ÁREA1			ÁREA2			ÁREA3	
h1=	183.150		h2=	64.103		h3=	119.048	
A1=	82.418	m²	A2=	10.096	m²	A3=	34.822	m²
EI*tD/A=	16.875							
	ÁREA1			ÁREA2			ÁREA3	
h1=	91.575		h2=	64.103		h3=	27.473	
A1=	41.209	m²	A2=	10.096	m²	A3=	12.363	m²
A1.2=	20.604	m²				A3.1=	20.604	m²
EI*tE/A=	3.007							
E*I*δE=	5.431							

Fuente. Autor

Tabla 3.56. Inercia reducida de la viga reforzada con un ACERO $\phi = 8$ mm con la carga al 25%.

n=	9.037	
X=	0.220	
kd=	31.418	
lr=	6.39305E-06	m^4

Fuente. Autor

Tabla 3.57. Deformación de la viga reforzada con un ACERO ϕ = 8mm con la carga al 25%.

E=	23237	kg/m²
I=	6.3930	m^4
d=	0.000365574	mm

➢ Con la carga al 50%:

- Resultado:

Tabla 3.58. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un ACERO $\phi = 8$ mm con la carga al 50%.

χ=	0.900	m	χ=	0.315	m	х=	0.585	m
RD=	407.000	Кg	PA=	407.000	Kg	PB=	407.000	Kg
		<u>.</u>	-		<u>.</u>			
	ÁREA1			ÁREA2			ÁREA3	
h1=	366.300		h2=	128.205		h3=	238.095	
A1=	164.835	m²	A2=	20.192	m²	A3=	69.643	m²
EI*tD/A=	33.75							
	ÁREA1			ÁREA2			ÁREA3	
h1=	183.15		h2=	128.205		h3=	54.945	
A1=	82.418	m²	A2=	20.192	m²	A3=	24.725	m²
A1.2=	41.209	m²				A3.1=	41.209	m²
EI*tE/A=	6.015							
E*I*δE=	10.86							

Fuente. Autor

Tabla 3.59. Inercia reducida de la viga reforzada con un ACERO ϕ = 8mm con la carga al 50%.

n=	9.037	
X=	0.220	
kd=	31.418	
lr=	6.39305E-06	m^4

Fuente. Autor

Tabla 3.60. Deformación de la viga reforzada con un ACERO $\phi = 8$ mm con la carga al 50%.

E=	23237	kg/m²	
l=	6.3930	m^4	
d=	0.000731013 0.731		mm

➢ Con la carga al 75%:

- Resultado:

Tabla 3.61. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un ACERO $\phi = 8$ mm con la carga al 75%.

Х=	0.900	m	х=	0.315	m	х=	0.585	m
RD=	610.500	Kg	PA=	610.500	Kg	PB=	610.500	Kg
	ÁREA1			ÁREA2			ÁREA3	
h1=	549.450		h2=	192.308		h3=	357.143	
A1=	247.253	m²	A2=	30.289	m²	A3=	104.464	m²
El*tD/A=	50.625							
	ÁREA1			ÁREA2			ÁREA3	
h1=	274.725		h2=	192.308		h3=	82.418	
A1=	123.626	m²	A2=	30.289	m²	A3=	37.088	m²
A1.2=	61.813	m²				A3.1=	61.813	m²
EI*tE/A=	9.021							

Fuente. Autor

E*I*δE=

16.292

Tabla 3.62. Inercia reducida de la viga reforzada con un ACERO $\phi = 8$ mm con la carga al 75%.

n=	9.037	
X=	0.220	
kd=	31.418	
lr=	6.39305E-06	m^4

Fuente. Autor

Tabla 3.63. Deformación de la viga reforzada con un ACERO $\phi = 8$ mm con la carga al 75%.

E=	23237	kg/m²	
I=	6.3930	m^4	
d=	0.001096654	1.097	mm

➢ Con la carga al 100%:

- Resultado:

Tabla 3.64. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un ACERO $\phi = 8$ mm con la carga al 100%.

x=	0.900	m	x=	0.315	m	x=	0.585	m
RD=	814.000	Kg	PA=	814.000	Kg	PB=	814.000	Kg
	ÁREA1			ÁREA2			ÁREA3	
h1=	732.600		h2=	256.41		h3=	476.19	
A1=	329.67	m²	A2=	40.385	m²	A3=	139.286	m²
EI*tD/A=	67.499							
	ÁREA1			ÁREA2			ÁREA3	
h1=	366.3		h2=	256.41		h3=	109.89	
A1=	164.835	m²	A2=	40.385	m²	A3=	49.451	m²
A1.2=	82.418	m²				A3.1=	82.418	m²
EI*tE/A=	12.029							
E*I*δE=	21.721							

Fuente. Autor

Tabla 3.65. Inercia reducida de la viga reforzada con un ACERO $\phi = 8$ mm con la carga al 100%.

n=	9.037	
X=	0.220	
kd=	31.418	
lr=	6.39305E-06	m^4

Fuente. Autor

Tabla 3.66. Deformación de la viga reforzada con un ACERO $\phi = 8$ mm con la carga al 100%.

E=	2323790000		kg/m²
I=	6.3930	m^4	
d=	0.001462093	1.462	mm

• Varilla corrugada de acero $\phi = 12$ mm.

Tabla 3.67. Datos p	oara la viga	reforzada con	ACERO $\phi = 12$ mm.
---------------------	--------------	---------------	-----------------------

b=	20.000	cm
h=	16.000	cm
Recubrimiento=	2.000	cm
d=	14.000	cm
fy=	4200.000	kg/cm²
E=	2100000.000	kg/cm²
B1=	0.850	
f'c=	240.000	kg/cm²
Lmin=	64.000	cm
L=	90.000	cm

Fuente. Autor

- Formulas aplicadas:

$$As = \frac{(0.85*f'c*b*d)}{Fy} * \left(1 - \sqrt{1 - \left(\frac{2*Mu}{\phi*0.85*f'c*b*d*d}\right)}\right)$$
(3.5)

$$Asmin = \frac{14}{Fy} * (bw * d) \tag{3.8}$$

$$v_c = 0.53\sqrt{f'c} \tag{3.12}$$

$$v_u = \frac{Vu}{\emptyset * bw * d} \tag{3.13}$$

- Resultado:

Tabla 3.68. Cálculo inicial la viga reforzada con ACERO.

Vc=	2299.003	kg
PA=	2299.003	kg
PD=	2299.003	Kg
MA=	0.000	Kg*cm
MB=	72418.595	kg*cm
MC=	72418.595	kg*cm
MD=	0.000	kg*cm
As=	1.445	cm²

Fuente. Autor

Tabla 3.69. Cálculo final para la viga reforzada con un ACERO $\phi = 12$ mm.

	Asmin=	0.933	cm²
1	Ф12mm=	1.131	cm²
	a=	57120.000	
	Mu=	57363.799	Kg*cm
	RA=	1821.073	Kg
	Vu=	7.652	Kg
	Vc=	8.211	Kg

Figura 3.25. Sección transversal de la viga con un ACERO ϕ = 12mm. Fuente. Autor

• Deformaciones de la viga con una varilla corrugada de acero $\phi = 12$ mm.

Tabla 3.70. Datos para la deformación de la viga reforzada con un ACERO $\phi = 8$ mm.

P=	1821.000	kg
b=	200.000	mm
h=	160.000	mm
d=	140.000	mm
Ec=	232379.000	kg/cm ²
Es=	2100000.000	kg/cm ²
f'c=	240.000	kg/cm ²
As=	113.100	mm ²

Fuente. Autor

- Formulas aplicadas:

$$Ec = 15000\sqrt{f'c} \tag{3.23}$$

$$X = \frac{b}{n*As} \tag{3.27}$$

$$kd = \frac{\sqrt{2 \cdot X \cdot d + 1} - 1}{X} \tag{3.28}$$

$$I_r = \frac{b * kd^3}{3} + n * As * (d - kd)^2$$
(3.29)

➢ Con la carga al 25%:

- Resultado:

Tabla 3.71. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un ACERO $\phi = 12$ mm con la carga al 25%.

x=	0.900	m	x=	0.315	m	x=	0.585	m
RD=	455.250	Kg	PA=	455.250	Kg	PB=	455.250	Kg
	ÁREA1			ÁREA2			ÁREA3	
h1=	409.725		h2=	143.404		h3=	266.321	
A1=	184.376	m²	A2=	22.586	m²	A3=	77.899	m²
EI*tD/A=	37.751							
	ÁREA1			ÁREA2			ÁREA3	
h1=	204.863		h2=	143.404		h3=	61.459	
A1=	92.188	m²	A2=	22.586	m²	A3=	27.657	m²
A1.2=	46.094	m²				A3.1=	46.094	m²
EI*tE/A=	6.727							
E*I*δE=	12.149							

Fuente. Autor

Tabla 3.72. Inercia reducida de la viga reforzada con un ACERO $\phi = 12$ mm con la carga al 25%.

n=	9.037	
X=	0.196	
kd=	33.037	
lr=	1.41E-05	m^4

Fuente. Autor

Tabla 3.73. Deformación de la viga reforzada con un ACERO $\phi = 12$ mm con la carga al 25%.

E=	23237	kg/m²	
l=	1.4097	m^4	
d=	0.00037085 0.371		mm

➢ Con la carga al 50%:

- Resultado:

Tabla 3.74. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un ACERO $\phi = 12$ mm con la carga al 50%.

Х=	0.900	m	х=	0.315	m	х=	0.585	m
RD=	910.500	Kg	PA=	910.500	Kg	PB=	910.500	Kg
	ÁREA1			ÁREA2			ÁREA3	
h1=	819.450		h2=	286.808		h3=	532.643	
A1=	368.753	m²	A2=	45.172	m²	A3=	155.798	m²
EI*tD/A=	75.502							
	ÁREA1			ÁREA2			ÁREA3	
h1=	409.725		h2=	286.808		h3=	122.918	
A1=	184.376	m²	A2=	45.172	m²	A3=	55.313	m²
A1.2=	92.188	m²				A3.1=	92.188	m²
EI*tE/A=	13.455							
E*I*δE=	24.296							

Fuente. Autor

Tabla 3.75. Inercia reducida de la viga reforzada con un ACERO $\phi = 12$ mm con la carga al 50%.

n=	9.037	
X=	0.196	
kd=	33.037	
lr=	1.41E-05	m ⁴

Fuente. Autor

Tabla 3.76. Deformación de la viga reforzada con un ACERO $\phi = 12$ mm con la carga al 50%.

E=	23237	kg/m²	
I=	1.4097	m^4	
d=	0.000741638	0.742	mm

➢ Con la carga al 75%:

- Resultado:

Tabla 3.77. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un ACERO $\phi = 12$ mm con la carga al 75%.

Х=	0.900	m	Х=	0.315	m	χ=	0.585	m
RD=	1365.750	Kg	PA=	1365.750	Kg	PB=	1365.750	Kg
	ÁREA1			ÁREA2			ÁREA3	
h1=	1229.175		h2=	430.211		h3=	798.964	
A1=	553.129	m²	A2=	67.758	m²	A3=	233.697	m²
EI*tD/A=	113.253							
	ÁREA1			ÁREA2			ÁREA3	
h1=	614.588		h2=	430.211		h3=	184.376	
A1=	276.565	m²	A2=	67.758	m²	A3=	82.969	m²
A1.2=	138.282	m²				A3.1=	138.282	m²
EI*tE/A=	20.183							
E*I*δE=	36.444							

Fuente. Autor

Tabla 3.78. Inercia reducida de la viga reforzada con un ACERO $\phi = 12$ mm con la carga al 75%.

n=	9.037	
X=	0.196	
kd=	33.037	
lr=	1.41E-05	m^4

Fuente. Autor

Tabla 3.79. Deformación de la viga reforzada con un ACERO $\phi = 12$ mm con la carga al 75%.

E=	23237	kg/m²	
I=	1.4097	m^4	
d=	0.001112457	1.112	mm

➢ Con la carga al 100%:

- Resultado:

Tabla 3.80. Método del área de momentos para determinar la deformación en el centro de la viga reforzada con un ACERO $\phi = 12$ mm con la carga al 100%.

x=	0.900	m	х=	0.315	m	x=	0.585	m
RD=	1821.000	Kg	PA=	1821.000	Kg	PB=	1821.000	Kg
	ÁREA1			ÁREA2			ÁREA3	
h1=	1638.900		h2=	573.615		h3=	1065.285	
A1=	737.505	m²	A2=	90.344	m²	A3=	311.596	m²
EI*tD/A=	151.004							
	ÁREA1			ÁREA2			ÁREA3	
h1=	819.45		h2=	573.615		h3=	245.835	
A1=	368.753	m²	A2=	90.344	m²	A3=	110.626	m²
A1.2=	184.376	m²				A3.1=	184.376	m²
EI*tE/A=	26.91							
E*I*δE=	48.592							

Fuente. Autor

Tabla 3.81. Inercia reducida de la viga reforzada con un ACERO $\phi = 12$ mm con la carga al 100%.

n=	9.037	
X=	0.196	
kd=	33.037	
lr=	1.41E-05	m^4

Fuente. Autor

Tabla 3.82. Deformación de la viga reforzada con un ACERO $\phi = 12$ mm con la carga al 100%.

E=	23237	kg/m²	
I=	1.4097	m^4	
d=	0.001483276 1.483		mm

Fuente. Autor

Figura 3.26. Viga de FRP. Fuente. Autor

Figura 3.27. Hormigonado de la viga. Fuente. Autor

3.3. Dimensionamiento y cálculo de una columna con varillas corrugadas en acero y en fibra de vidrio

3.3.1. Consideraciones previas y datos para el diseño

A continuación, se procederá al diseño de columnas con las varillas de fibra de vidrio y con varillas de acero. Las consideraciones a tomarse para este diseño serán los conceptos de columnas a compresión simple. Se desarrollará con cada diámetro de varilla dos columnas, la primera con una sola varilla de refuerzo y la segunda con cuatro varillas de refuerzo y armadas con estribos.

Sin embargo, la varilla de fibra de vidrio presento un inconveniente al momento de realizar el estribo y es que debido a su anisotropía y fragilidad se fracturó al momento de doblarla; por lo que se usará estribos de acero en las varillas de fibra de vidrio.

Figura 3.28. Varilla FRP después de realizar la doblez para el estribo. Fuente. Autor

Todo esto para poder observar el comportamiento que presenta cada una y analizar el porcentaje de carga que aporta la varilla a la columna ante un esfuerzo de compresión simple. Para este análisis se controló el pandeo en la columna, para así garantizar la compresión simple ante el elemento estructural. Para el análisis se basará en las ecuaciones básicas de compresión simple en columnas para el respectivo diseño de cada una de las columnas.

3.3.2. Cálculo

• Varilla corrugada de fibra de vidrio $\phi = 6$ mm.

Tabla 3.83. Datos para la columna reforzada con un FRP $\phi = 6$ mm.

b=	15.000	cm
h=	15.000	cm
Àc=	225.000	cm ²
fy=	7900.000	kg/cm²
f'c=	300.000	kg/cm²
# varillas=	1.000	
φ=	6.000	mm
As=	0.283	cm ²
x=	0.800	
Ф=	0.700	

Fuente. Autor

- Formulas aplicadas:

$$Pu = x * [\emptyset * (0.85 * f'c * Ac + As * fy)]$$

$$\emptyset = 0.7 \rightarrow Para \ columnas \ con \ estribos$$

$$\emptyset = 0.75 \rightarrow Para \ columnas \ con \ zunchos$$

$$x = 0.8 \rightarrow Para \ columnas \ cuadradas \ o \ rectangulares$$

$$\emptyset = 0.85 \rightarrow Para \ columnas \ circulares$$

$$\lambda = \frac{k*L}{r} \le 22 \rightarrow No \ existen \ problemas \ de \ inestabilidad$$

$$(3.20)$$

$$Resultado:$$

Tabla 3.84. Cálculo final para la columna reforzada con un FRP ϕ = 6mm.

Pu=	33341.58	kg

Figura 3.29. Sección transversal de la columna con un FRP $\phi = 6$ mm. Fuente. Autor

|--|

b=	15.000	cm
h=	15.000	cm
Recubrimiento=	2.500	cm
Àc=	225.000	cm²
fy=	7900.000	kg/cm²
f'c=	300.000	kg/cm²
# varillas=	4.000	
φ=	6.000	mm
As=	1.132	cm²
x=	0.800	
Ф=	0.700	

Fuente. Autor

- Formulas aplicadas:

$$Pu = x * [\emptyset * (0.85 * f'c * Ac + As * fy)]$$
(3.17)

$$\emptyset = 0.7 \rightarrow Para \ columnas \ con \ estribos$$

$$\emptyset = 0.75 \rightarrow Para \ columnas \ con \ zunchos$$

$$x = 0.8 \rightarrow Para \ columnas \ cuadradas \ o \ rectangulares$$

$$\emptyset = 0.85 \rightarrow Para \ columnas \ circulares$$

$$\lambda = \frac{k*L}{r} \le 22 \rightarrow No \ existen \ problemas \ de \ inestabilidad$$
(3.20)
Resultado:

Tabla 3.86. Cálculo final para la columna reforzada con cuatro FRP ϕ = 6mm.

Pu=	36976.318	kg

Fuente. Autor

-
Tabla 3.87. Esbeltez.

K=	1	articulado
L=	50	cm
h=	15	cm
)_	11 111	No existe
Λ=	11.111	pandeo

Fuente. Autor

Tabla 3.88. Separación de estribos de acero para la columna reforzada con cuatro FRP $\phi = 6$ mm.

So=	4	cm
So/2=	2	cm

Fuente. Autor

Figura 3.30. Sección transversal de la columna con cuatro FRP $\phi=6mm.$ Fuente. Autor

• Varilla corrugada de fibra de vidrio $\phi = 8$ mm.

Tabla 3.89. Datos para la columna reforzada con un FRP $\phi = 8$ mm.

b=	15.000	cm
h=	15.000	cm
Àc=	225.000	cm²
fy=	6940.000	kg/cm²
f'c=	300.000	kg/cm²
# varillas=	1.000	
φ=	8.000	mm
As=	0.503	cm²
x=	0.800	
Ф=	0.700	

- Formulas aplicadas:

$$Pu = x * [\emptyset * (0.85 * f'c * Ac + As * fy)]$$
(3.17)

$$\emptyset = 0.7 \rightarrow Para \ columnas \ con \ estribos$$

$$\emptyset = 0.75 \rightarrow Para \ columnas \ con \ zunchos$$

$$x = 0.8 \rightarrow Para \ columnas \ cuadradas \ o \ rectangulares$$

$$\emptyset = 0.85 \rightarrow Para \ columnas \ circulares$$

$$\lambda = \frac{k*L}{r} \le 22 \rightarrow No \ existen \ problemas \ de \ inestabilidad$$
(3.20)
Resultado:

Tabla 3.90. Cálculo final para la columna reforzada con un FRP ϕ = 8mm.

Fuente. Autor

_

Figura 3.31. Sección transversal de la columna con un FRP $\phi=8mm.$ Fuente. Autor

Tabla 3.91. Datos para la columna reforzada con cuatro FRP $\phi = 8$ mm.

b=	15.000	cm
h=	15.000	cm
Recubrimiento=	2.500	cm
Àc=	225.000	cm²
fy=	6940.000	kg/cm²
f'c=	300.000	kg/cm²
# varillas=	4.000	
φ=	8.000	mm
As=	2.012	cm²
x=	0.800	
Ф=	0.700	

- Formulas aplicadas:

$$Pu = x * [\emptyset * (0.85 * f'c * Ac + As * fy)]$$
(3.17)

$$\emptyset = 0.7 \rightarrow Para \ columnas \ con \ estribos$$

$$\emptyset = 0.75 \rightarrow Para \ columnas \ con \ zunchos$$

$$x = 0.8 \rightarrow Para \ columnas \ cuadradas \ o \ rectangulares$$

$$\emptyset = 0.85 \rightarrow Para \ columnas \ circulares$$

$$\lambda = \frac{k*L}{r} \le 22 \rightarrow No \ existen \ problemas \ de \ inestabilidad$$
(3.20)
- Resultado:

Tabla 3.92. Cálculo final para la columna reforzada con cuatro FRP $\phi=8mm.$

Fuente. Autor

Tabla 3.93. Esbeltez.

K=	1	articulado
L=	50	cm
h=	15	cm
) –	11 111	No existe
Λ-	11.111	pandeo

Fuente. Autor

Tabla 3.94. Separación de estribos de acero para la columna reforzada con cuatro FRP $\phi = 8$ mm.

So=	6	cm
So/2=	3	cm

Figura 3.32. Sección transversal de la columna con cuatro FRP $\phi=8mm.$ Fuente. Autor

• Varilla corrugada de fibra de vidrio $\phi = 12$ mm.

Tabla 3.95. Datos pa	ara la columna	reforzada con	un FRP $\phi =$	12mm.
----------------------	----------------	---------------	-----------------	-------

b=	15.000	cm
h=	15.000	cm
Àc=	225.000	cm ²
fy=	3400.000	kg/cm²
f'c=	300.000	kg/cm²
# varillas=	1.000	
φ=	12.000	mm
As=	1.131	cm ²
x=	0.800	
Ф=	0.700	

Fuente. Autor

- Formulas aplicadas:

$$Pu = x * [\emptyset * (0.85 * f'c * Ac + As * fy)]$$
(3.17)

$$\emptyset = 0.7 \rightarrow Para \ columnas \ con \ estribos$$

$$\emptyset = 0.75 \rightarrow Para \ columnas \ con \ zunchos$$

$$x = 0.8 \rightarrow Para \ columnas \ cuadradas \ o \ rectangulares$$

$$\emptyset = 0.85 \rightarrow Para \ columnas \ circulares$$

$$\lambda = \frac{k*L}{r} \le 22 \rightarrow No \ existen \ problemas \ de \ inestabilidad$$
(3.20)
- Resultado:

Tabla 3.96. Cálculo final para la columna reforzada con un FRP ϕ = 12mm.

Figura 3.33. Sección transversal de la columna con un FRP ϕ = 12mm. Fuente. Autor

b=	15.000	cm
h=	15.000	cm
Recubrimiento=	2.500	cm
Àc=	225.000	cm ²
fy=	3400.000	kg/cm²
f'c=	300.000	kg/cm²
# varillas=	4.000	
φ=	12.000	mm
As=	4.524	cm ²
x=	0.800	
Ф=	0.700	

Tabla 3.97. Datos para la columna reforzada con cuatro FRP $\phi = 12$ mm.

Fuente. Autor

- Formulas aplicadas:

$$Pu = x * [\emptyset * (0.85 * f'c * Ac + As * fy)]$$
(3.17)

$$\emptyset = 0.7 \rightarrow Para \ columnas \ con \ estribos$$

$$\emptyset = 0.75 \rightarrow Para \ columnas \ con \ zunchos$$

$$x = 0.8 \rightarrow Para \ columnas \ cuadradas \ o \ rectangulares$$

$$\emptyset = 0.85 \rightarrow Para \ columnas \ circulares$$

$$\lambda = \frac{k*L}{r} \le 22 \rightarrow No \ existen \ problemas \ de \ inestabilidad$$
(3.20)
- Resultado:

Tabla 3.98. Cálculo final para la columna reforzada con cuatro FRP ϕ = 12mm.

|--|

Fuente. Autor

Tabla 3.99. Esbeltez.

K=	1	articulado
L=	50	cm
h=	15	cm
) -	11 111	No existe
Λ=	11.111	pandeo

Fuente. Autor

Tabla 3.100. Separación de estribos de acero para la columna reforzada con cuatro FRP $\phi = 12$ mm.

So=	7.5	cm
So/2=	3.75	cm

Figura 3.34: Sección transversal de la columna con cuatro FRP ϕ = 12mm. Fuente. Autor

• Varilla corrugada de acero $\phi = 8$ mm.

Tabla 3.101. Datos para la columna reforzada con un ACERO $\phi = 8$ mm.

b=	15.000	cm
h=	15.000	cm
Àc=	225.000	cm²
fy=	4200.000	kg/cm²
f'c=	300.000	kg/cm²
# varillas=	1.000	
φ=	8.000	mm
As=	0.503	cm²
x=	0.800	
Ф=	0.700	

Fuente. Autor

- Formulas aplicadas:

$$Pu = x * [\emptyset * (0.85 * f'c * Ac + As * fy)]$$
(3.17)

$$\emptyset = 0.7 \rightarrow Para \ columnas \ con \ estribos$$

$$\emptyset = 0.75 \rightarrow Para \ columnas \ con \ zunchos$$

$$x = 0.8 \rightarrow Para \ columnas \ cuadradas \ o \ rectangulares$$

$$\emptyset = 0.85 \rightarrow Para \ columnas \ circulares$$

$$\lambda = \frac{k*L}{r} \le 22 \rightarrow No \ existen \ problemas \ de \ inestabilidad$$
(3.20)

$$Resultado:$$

Tabla 3.102. Cálculo final para la columna reforzada con un ACERO $\phi = 8$ mm.

Pu=	33241.228	kg

Figura 3.35. Sección transversal de la columna con un ACERO $\phi=8mm.$ Fuente. Autor

Tabla 3.103. Datos	para la columna	reforzada con	cuatro ACEROS o	∮ = 8mm.
--------------------	-----------------	---------------	-----------------	----------

b=	15.000	cm
h=	15.000	cm
Recubrimiento=	2.500	cm
Àc=	225.000	cm²
fy=	4200.000	kg/cm²
f'c=	300.000	kg/cm²
# varillas=	4.000	
φ=	8.000	mm
As=	2.012	cm ²
x=	0.800	
Ф=	0.700	

Fuente. Autor

- Formulas aplicadas:

$$Pu = x * [\emptyset * (0.85 * f'c * Ac + As * fy)]$$
(3.17)

$$\emptyset = 0.7 \rightarrow Para \ columnas \ con \ estribos$$

$$\emptyset = 0.75 \rightarrow Para \ columnas \ con \ zunchos$$

$$x = 0.8 \rightarrow Para \ columnas \ cuadradas \ o \ rectangulares$$

$$\emptyset = 0.85 \rightarrow Para \ columnas \ circulares$$

$$\lambda = \frac{k*L}{r} \le 22 \rightarrow No \ existen \ problemas \ de \ inestabilidad$$
(3.20)
- Resultado:

Tabla 3.104. Cálculo final para la columna reforzada con cuatro ACEROS $\phi = 8$ mm.

Pu= 36574.91 kg

Tabla 3.105. Esbeltez.

K=	1	articulado
L=	50	cm
h=	15	cm
)_	11.111	No existe
Λ=		pandeo

Fuente. Autor

Tabla 3.106. Separación de estribos de acero para la columna reforzada con cuatro ACEROS $\phi = 8$ mm.

So=	6	cm
So/2=	3	cm

Fuente. Autor

Figura 3.36. Sección transversal de la columna con cuatro ACEROS $\phi=8mm.$ Fuente. Autor

• Varilla corrugada de acero $\phi = 12$ mm.

Tabla 3.107. Datos para la columna reforzada con un ACERO $\phi = 12$ mm.

b=	15.000	cm
h=	15.000	cm
Àc=	225.000	cm²
fy=	4200.000	kg/cm ²
f'c=	300.000	kg/cm²
# varillas=	1.000	
φ=	12.000	mm
As=	1.131	cm ²
x=	0.800	
Ф=	0.700	

- Formulas aplicadas:

$$Pu = x * [\emptyset * (0.85 * f'c * Ac + As * fy)]$$
(3.17)

$$\emptyset = 0.7 \rightarrow Para \ columnas \ con \ estribos$$

$$\emptyset = 0.75 \rightarrow Para \ columnas \ con \ zunchos$$

$$x = 0.8 \rightarrow Para \ columnas \ cuadradas \ o \ rectangulares$$

$$\emptyset = 0.85 \rightarrow Para \ columnas \ circulares$$

$$\lambda = \frac{k*L}{r} \le 22 \rightarrow No \ existen \ problemas \ de \ inestabilidad$$
(3.20)
- Resultado:

Tabla 3.108. Cálculo final para la columna reforzada con un ACERO $\phi = 12$ mm.

Fuente. Autor

Figura 3.37. Sección transversal de la columna con un ACERO ϕ = 12mm. Fuente. Autor

Tabla 3.109. Datos para la columna reforzada con cuatro ACEROS $\phi = 12$ mm.

b=	15.000	cm
h=	15.000	cm
Recubrimiento=	2.500	cm
Àc=	225.000	cm²
fy=	4200.000	kg/cm²
f'c=	300.000	kg/cm²
# varillas=	4.000	
φ=	12.000	mm
As=	4.524	cm ²
x=	0.800	
Ф=	0.700	

- Formulas aplicadas:

$$Pu = x * [\emptyset * (0.85 * f'c * Ac + As * fy)]$$
(3.17)

$$\emptyset = 0.7 \rightarrow Para \ columnas \ con \ estribos$$

$$\emptyset = 0.75 \rightarrow Para \ columnas \ con \ zunchos$$

$$x = 0.8 \rightarrow Para \ columnas \ cuadradas \ o \ rectangulares$$

$$\emptyset = 0.85 \rightarrow Para \ columnas \ circulares$$

$$\lambda = \frac{k*L}{r} \le 22 \rightarrow No \ existen \ problemas \ de \ inestabilidad$$
(3.20)
Resultado:

Tabla 3.110. Cálculo final para la columna reforzada con cuatro ACEROS $\phi = 12$ mm.

Pu=	42124.421	kg
		-

Fuente. Autor

Tabla 3.111. Esbeltez.

K=	1	articulado
L=	50	cm
h=	15	cm
) _	11.111	No existe
Λ=		pandeo

Fuente. Autor

Tabla 3.112. Separación de estribos de acero para la columna reforzada con cuatro ACEROS $\phi = 12$ mm.

So=	7.5	cm
So/2=	3.75	cm

Figura 3.38. Sección transversal de la columna con cuatro ACEROS ϕ = 12mm. Fuente. Autor

Figura 3.39. Columnas con un FRP de 6mm, 8mm y 12mm respectivamente. Fuente. Autor

Figura 3.40. Columnas con cuatro FRP reforzadas con estribos de acero. Fuente. Autor

Figura 3.41. Columnas de acero reforzadas con estribos de acero. Fuente. Autor

CAPÍTULO IV

RESULTADOS DEFINITIVOS DE LOS ENSAYOS

4.1. Resultados de los ensayos de las vigas sometidas a flexión y de las columnas sometidas a compresión con las respectivas varillas corrugadas de refuerzo

4.1.1. Compresión en columnas

• Columna con un φ =6mm de fibra de vidrio

Tabla 4.1. Compresión axial en columna con un φ =6mm de fibra de vidrio.

Probeta	Carga Calculada (Kgf)
FRP6	33342.00
Probeta	Carga de Rotura (Kgf)
FRP6(1)	37142.00
FRP6(2)	37444.00
FRP6(3)	37003.00

Fuente. Autor

• Columna con cuatro φ =6mm de fibra de vidrio

Tabla 4.2. Compresión axial en columna con cuatro φ=6mm de fibra de vidrio.

Probeta	Carga Calculada (Kgf)	
FRP6	36980.00	
Probeta	Carga de Rotura (Kgf)	
FRP6(1)	47702.00	
FRP6(2)	47590.00	
FRP6(3)	47009.00	

Fuente. Autor

• Columna con un φ =8mm de fibra de vidrio

Tabla 4.3. Compresión axial en columna con un φ =8mm de fibra de vidrio.

Probeta	Carga Calculada (Kgf)	
FRP8	34085.00	
Probeta	Carga de Rotura (Kgf)	
FRP8(1)	37853.00	
FRP8(2)	37250.00	
FRP8(3)	36120.00	

• Columna con cuatro φ =8mm de fibra de vidrio

Probeta	Carga Calculada (Kgf)	
FRP8	39662.00	
Probeta	Carga de Rotura (Kgf)	
FRP8(1)	47392.00	
FRP8(2)	47143.00	
FRP8(3)	46274.00	

Tabla 4.4. Compresión axial en columna con cuatro $\phi{=}8mm$ de fibra de vidrio.

Fuente. Autor

• Columna con un φ =12mm de fibra de vidrio

Probeta	Carga Calculada (Kgf)
FRP12	34283.00
Probeta	Carga de Rotura (Kgf)
FRP12(1)	34819.00
FRP12(2)	34532.00
FRP12(3)	34870.00

Tabla 4.5. Compresión axial en columna con un φ =12mm de fibra de vidrio.

Fuente. Autor

• Columna con cuatro φ =12mm de fibra de vidrio

Tabla 4.6. Compresión axial en columna con cuatro φ =12mm de fibra de vidrio.

Probeta	Carga Calculada (Kgf)	
FRP12	40098.00	
Probeta	Carga de Rotura (Kgf)	
FRP12(1)	38549.00	
FRP12(2)	39379.00	
FRP12(3)	39710.00	

Fuente. Autor

• Columna con un φ =8mm de acero

Tabla 4.7. Compresión axial en columna con un φ =8mm de acero.

Probeta	Carga Calculada (Kgf)	
Acero 8	33241.00	
Probeta	Carga de Rotura (Kgf)	
Acero 8(1)	33532.00	
Acero 8(2)	35126.00	
Acero 8(3)	35002.00	

• Columna con cuatro φ=8mm de acero

Probeta	Carga Calculada (Kgf)	
Acero 8	36575.00	
Probeta	Carga de Rotura (Kgf)	
Acero 8(1)	38823.00	
Acero 8(2)	38140.00	
Acero 8(3)	37048.00	

Tabla 4.8. Compresión axial en columna con cuatro ϕ =8mm de acero.

Fuente. Autor

• Columna con un φ =12mm de acero

Tabla 4.9. Compresión axial en columna con un ϕ =12mm de acero.

Probeta	Carga Calculada (Kgf)
Acero 12	34790.00
Probeta	Carga de Rotura (Kgf)
Acero 12(1)	33087.00
Acero 12(2)	37322.00
Acero 12(3)	37120.00

Fuente. Autor

• Columna con cuatro φ=12mm de acero

Tabla 4.10. Compresión axial en columna con cuatro φ =12mm de acero.

Probeta	Carga Calculada (Kgf)	
Acero 12	42124.00	
Probeta	Carga de Rotura (Kgf)	
Acero 12(1)	43729.00	
Acero 12(2)	44847.00	
Acero 12(3)	44613.00	

Figura 4.1. Columna ensayada a compresión axial. Fuente. Autor

4.1.2. Flexión en vigas

• Viga un φ =6mm de fibra de vidrio

Tabla 4.11. Flexión en viga con φ =6mm de fibra de vidrio.

Probeta	Carga Calculada (Kgf)	δ Calculada (mm)
FRP6	1718.00	4.01
Probeta	Carga de Rotura (Kgf)	δ Medida (mm)
FRP6(1)	1905.00	13.67
FRP6(2)	1927.00	13.75
FRP6(3)	2036.00	14.76
FRP6(4)	17885.00	9.17

Fuente. Autor

• Viga un φ =8mm de fibra de vidrio

Tabla 4.12. Flexión en viga con φ =8mm de fibra de vidrio.

Probeta	Carga Calculada (Kgf)	δ Calculada (mm)
FRP8	2670.00	4.63
Probeta	Carga de Rotura (Kgf)	δ Medida (mm)
FRP8(1)	2916.00	13.49
FRP8(2)	2694.00	13.03
FRP8(3)	2645.00	13.01
FRP8(4)	2721.00	13.39

Fuente. Autor

• Viga un φ =12mm de fibra de vidrio

Tabla 4.13. Flexión en viga con φ =12mm de fibra de vidrio.

Probeta	Carga Calculada (Kgf)	δ Calculada (mm)
FRP12	2946.00	4.35
Probeta	Carga de Rotura (Kgf)	δ Medida (mm)
FRP12(1)	3451.00	13.49
FRP12(2)	3297.00	13.24
FRP12(3)	3453.00	13.75
FRP12(4)	2948.00	12.22

• Viga un φ=8mm de acero

Tabla 4.14. Flexión en viga con φ =8mm de acero.

Probeta	Carga Calculada (Kgf)	δ Calculada (mm)
Acero 8	1628.00	1.46
Probeta	Carga de Rotura (Kgf)	δ Medida (mm)
Acero 8(1)	1781.00	5.36
Acero 8(2)	1792.00	5.62
Acero 8(3)	1713.00	5.31
Acero 8(4)	1761.00	5.29

Fuente. Autor

• Viga un φ =12mm de acero

Tabla 4.15. Flexión en viga con φ =12mm de acero.

Probeta	Carga Calculada (Kgf)	δ Calculada (mm)
Acero 12	3642.00	1.48
Probeta	Carga de Rotura (Kgf)	δ Medida (mm)
Acero 12(1)	3987.00	5.21
Acero 12(2)	3891.00	5.16
Acero 12(3)	3781.00	5.08
Acero 12(4)	3817.00	5.14

Figura 4.2. Viga ensayada a flexión. Fuente. Autor

4.2. Comparación de resultados obtenidos en los ensayos de flexión en vigas y compresión en columnas de hormigón realizadas con las varillas corrugadas en los dos tipos de materiales utilizados

Concluido los respectivos ensayos tanto de flexión en las vigas como de comprensión axil en las columnas con los distintos tipos de materiales, se pudo analizar ciertas características que presentaron los materiales; por lo que se realizó unas graficas comparativas que se muestran a continuación, todo esto para tener en claro ciertos comportamientos que presentaron los materiales al momento del ensayo.

4.2.1. Ensayos a compresión axial en columnas

- Carga_Calculada_1FRP6mm © Carga_Ensayada_1FRP6mm © Carga_Calculada_1ACERO8mm © Carga_Ensayada_1ACERO8mm 37196 33342 33241 44553 32241 CARGAS (Kgf)
- Columnas reforzadas con una varilla de refuerzo.

Figura 4.3. Comparación entre columnas FRP $\phi = 6mm$ y ACERO $\phi = 8mm$. Fuente. Autor

Figura 4.4. Comparación entre columnas FRP $\phi = 8mm$ y ACERO $\phi = 8mm$. Fuente. Autor

Figura 4.5. Comparación entre columnas FRP $\phi = 12$ mm y ACERO $\phi = 12$ mm. Fuente. Autor

- Como se puede analizar en la figura 4.3 y 4.4, notamos que la columna reforzada con fibra soporta un 10% más de la carga diseñada; lo que no ocurre en la figura 4.5, donde la varilla de fibra de vidrio de 12mm de diámetro no soporta ni el 1% más de la carga diseñada. Mientras, que el acero en ambos diámetros soporta un 4% más de la carga diseñada.
- Así mismo, entre las cargas calculadas notamos que la columna reforzada con fibra de vidrio soporta un 1.5% más la carga que las columnas reforzadas con acero, pero esta característica se puede ver solo en las varillas con diámetro de 6mm y 8mm; sin embargo, en la columna reforzada con varilla de fibra de vidrio de 12mm es todo lo contrario, ya que la columna reforzada con acero soporta más carga. También sucede el mismo efecto con la carga medida en el respectivo ensayo.
- Este efecto en varilla de 12mm de diámetro de fibra de vidrio se debe al bajo módulo de elasticidad que posee.

• Columnas reforzadas con cuatro varillas de refuerzo.

Figura 4.6. Comparación entre columnas FRP ϕ = 6mm y ACERO ϕ = 8mm. Fuente. Auto

Figura 4.7. Comparación entre columnas FRP ϕ = 6mm y ACERO ϕ = 8mm. Fuente. Autor

Figura 4.8. Comparación entre columnas FRP $\phi = 12$ mm y ACERO $\phi = 12$ mm. Fuente. Autor

- Analizando las figuras mostradas podemos notar que sucede lo mismo que en el análisis anterior, pero en este caso va variando el porcentaje de carga en exceso, la varilla de fibra de vidrio de 6mm soporta más que todas las varillas mientras que la de 12mm sigue presentando cargas bajas.
- En las varillas de acero no se notó el cambio se mantiene la misma relación que el análisis anterior.

Cabe recalcar que para el diseño de las columnas se usó las formulas del acero con el fin de comparar si había variación o no; sin embargo, los resultados son obvios las formulas del acero no se acoplan a este material ya que presentan un exceso notable de variación con relación al diseño.

Además, al momento de realizar el ensayo a compresión axial en las columnas reforzadas con fibra de vidrio se pudo analizar una característica única; y es que, al momento de exceder su carga de rotura las varillas de fibra de vidrio se rompieron en la unión del estribo como se muestra en la figura 4.9.

Figura 4.9. Columna reforzada con cuatro FRP y estribos de acero. Fuente. Autor

Y es que todo este efecto se vio en la teoría de Poisson en donde la columna presenta un crecimiento volumétrico debido al exceso de carga, generando así unas deformaciones a la varilla de doblado y es ahí donde el estribo le restringe la deformación de la misma y es ahí donde se presenta este corte.

4.2.2. Ensayos a flexión en vigas

Figura 4.10. Carga – Deformación FRP ϕ = 6mm-ACERO ϕ = 8mm. Fuente. Autor

Figura 4.11. Carga – Deformación FRP $\phi = 8$ mm-ACERO $\phi = 8$ mm. Fuente. Autor

Figura 4.12. Carga – Deformación FRP ϕ = 12mm-ACERO ϕ = 12mm. Fuente. Autor

- Analizando las figuras mostradas notamos que la deformación calculada no coincide con la deformación medida en los ensayos. Además, se puede dar cuenta que el acero tuvo una deformación promedio de unos 5 mm mientras que la fibra de vidrio tuvo una deformación promedio de unos 15 mm.
- La fibra de vidrio en los diámetros de 6 y 8 mm respectivamente soporta más carga que el acero mientras tanto que en la de 12mm el acero soporta más carga.

Figura 4.13. Carga – Deformación calculadas. Fuente. Autor

Figura 4.14: Carga – Deformación medidas. Fuente. Autor

Como se puede observar en la figura 4.13 notamos que todas las varillas presentan un análisis lineal, cumpliendo con la representación de la ley de Hooke. Sin embargo, en la figura 4.14 se encuentran las deformaciones medidas en el ensayo y notamos que la varilla de fibra de vidrio no posee un comportamiento lineal sino en curva por lo que no aplica la representación de la ley de Hooke; todo lo contrario, en el acero el cual si presenta un análisis lineal. Por lo que se cumple lo antes mencionado en el ensayo anterior las formulas del acero no se acoplan a este material debido a que se comportan de una manera muy distinta.

Además, se pudo notar que las fisuras en las vigas de acero empezaron a parecer cuando la carga estaba más o menos alrededor del 75% mientras que en las vigas reforzadas con fibra de vidrio empezaron a aparecer cuando la carga estaba cerca del 50%.

También algo muy crítico que se pudo notar en el ensayo es que la viga con acero presento fisuras pequeñas mientras tanto que en las vigas con fibra de vidrio las fisuras eran considerablemente grandes, pero seguía soportando carga.

Figura 4.15. Fisuras en la viga reforzada con FRP. Fuente. Autor

Figura 4.16. Fisuras en la viga reforzada con ACERO. Fuente. Autor

En el ensayo que se hizo a las vigas se pudo cumplir con los parámetros previos al cálculo y era que la viga tenía que fallar primero a la flexión y no al corte; y considerablemente este aspecto se logró solo en las vigas de acero. Y es que en las vigas con fibra de vidrio se observó esta falla, pero soporto más carga de la calculada llevando así que el hormigón sobrepase el valor del esfuerzo último, y así llevándolo al fallo por corte.

Figura 4.17. Falla por flexión. Fuente. Autor

Figura 4.18. Falla por cortante. Fuente. Autor

Figura 4.19. Viga reforzada con FRP – Fallo por cortante. Fuente. Autor

Ciertamente, al realizar este ensayo se pudo analizar la adherencia de la varilla de fibra de vidrio con el hormigón; y es que la adherencia es el fenómeno mediante el cual las varillas, son capaces de soportar los esfuerzos a tracción; siendo esta una propiedad exclusiva del hormigón armado, la forma de comportamiento de este material hace que al fisurarse el hormigón la varilla siga resistiendo dichos esfuerzos.

Sin embargo, la adherencia de la varilla de fibra de vidrio resulto ser baja por lo que presentaba desplazamientos en la viga, también, el corrugado de esta varilla se desprendió mientras se deslizaba la varilla, tal cual se presenta en la figura 4.20.

Figura 4.20. Adherencia. Fuente. Autor

Un último aspecto que se pudo analizar en este ensayo es que al momento de quitar la carga de la viga la varilla de fibra de vidrio volvía a su posición original presentando ciertas fisuras, mientras que en las vigas reforzadas no se puedo apreciar este fenómeno por lo que la varilla quedo deformada. Cabe recalcar que este análisis ya se pudo observar anteriormente en el ensayo de compresión de las varillas.

Figura 4.21. Viga reforzada con FRP ensaya a flexión. Fuente. Autor

CONCLUSIONES Y RECOMENDACIONES

- Conclusiones
 - En el ensayo a tracción se pudo determinar características como el módulo de elasticidad y el punto de ruptura de cada una de las varillas, dando como resultado en el acero el mismo módulo de elasticidad y curva de esfuerzo deformación que se ha venido trabajando en estos tiempos; mientras que la varilla de fibra de vidrio presento un módulo de elasticidad y una curva esfuerzo deformación distinta para cada diámetro de varilla, Así mismo, en este ensayo la varilla de fibra de vidrio falló por aplastamiento en las mordazas debido a que sus corrugas se desprendieron; además, se comprobó que en la fibra a menor diámetro mayor esfuerzo.
 - En el ensayo a compresión se estableció el esfuerzo a la compresión con la respectiva deformación; dando como resultado que la varilla de fibra de vidrio presenta una curva esfuerzo deformación distinta a la del acero.
 - En los ensayos mencionados anteriormente la varilla de fibra de vidrio de 12mm de diámetro presentó características muy inferiores a la del acero; las únicas que lograron tener un comportamiento superior a la del acero fueron las de 6 y 8mm de diámetro.
 - En las varillas de fibra de vidrio se apreció un comportamiento sumamente interesante, y es que al momento de quitar la carga de compresión la varilla retomo su forma original, pero presentando pequeñas fisuras; todo lo contrario del acero.
 - La varilla de fibra de vidrio tiene un cierto ángulo de restricción de más o menos unos 60 grados, el cual cuando es superado ésta se rompe y es que por ser un material muy rígido que no permite dobleces muy altas.

- Ante el análisis a flexión las vigas presentaron una flecha mayor a la calculada; en la del acero la deformación de la viga sobrepasó con unos 3mm, y en las vigas de fibra de vidrio la deformación sobrepaso con unos 10mm aproximadamente, esto se debe a que el módulo de elasticidad de la varilla de fibra de vidrio es muy bajo.
- El análisis respectivo de las columnas como de las vigas se realizó con las formulas del acero; sin embargo, éstas no se acoplaron a la varilla de fibra de vidrio debido a que en los ensayos presentaron diferencias en carga y deformación; en la carga soportó entre el 10 15% más que la calculada y en deformaciones un 8% más.
- La adherencia de la varilla de fibra de vidrio resulto ser baja, por lo que en el análisis a flexión ésta presento desplazamiento en la viga; además, sus corrugas se desprendieron cuando la carga estaba cerca del 90% generando una adherencia baja entre la varilla y el hormigón.
- La varilla de fibra de vidrio con la que se trabajó es de origen ruso, la cual sostiene el mismo comportamiento que la española analizada en la bibliografía leída para el presente trabajo; pero esta varilla española se diferencia ya que si permite su doblez.

Recomendaciones

- Se deberá continuar con la investigación de este material ya que quedan muchas dudas que en el camino fueron apareciendo; como el comportamiento de la varilla de fibra de vidrio ante el fuego y el comportamiento de una viga armada con estribos de acero debido a que la columna presentó una falla de corte en el amarre del estribo.
- Desarrollar parámetros de diseño con la normativa ecuatoriana NEC, con el fin de adecuar las características de la varilla de fibra de vidrio; modificando las ecuaciones de diseño y de análisis de elementos de hormigón armado; debido a que con las formulas actuales ésta varilla presenta muchas variaciones en la carga y deformaciones.
- Tener un adecuado control de las fisuras y deformaciones de los elementos de hormigón al momento de su diseño, comprobando que el elemento estructural tenga una buena resistencia y una buena servicialidad; así mismo, con la adherencia debido a que sus corrugas se desprenden generando una adherencia baja.
- Comparar los resultados con varillas de fibra de vidrio, nacionales y extranjeras, para observar la diferencia que presenta cada una de las varillas y tener una idea clara sobre el comportamiento de la fibra de vidrio.
- Elaborar vigas y columnas mixtas, es decir mezclar el acero y la fibra de vidrio en el refuerzo longitudinal, para analizar que comportamiento presentan ante los diferentes esfuerzos, con el fin de tener una visión clara si se puede o no construir con este material.

BIBLIOGRAFÍA

- ACI318-S05. (2005). Requisitos de Reglamento para Concreto Estructural. *ACI*, 490.
- ACI440.3R-04. (2004). Guide Test Methods for Fiber-Reinforced. ACI, 40.
- Almerich Chulia, A. I. (2010). Diseño, según Estados Límites, de Estructuras de Hormigón Armado con Redondos de Fibra de Vidrio GFRP. Valencia: Universidad Politécnica de Valencia.
- Alomaiza, N. A., & Granizo, J. C. (2012). Disminución del tamaño de grano en producto terminado de varilla corrugada Novacero a través del monitoreo de temperaturas de laminación. Riobamba: Escuela Superior Politécnica de Chimborazo.
- ASTM-A370. (s.f.). Ensayos de tracción y flexión para varillas de alta resistencia (barras reforzadas). *ASTM*.
- **Bravo**, J. (2003). *Comportamiento Mecánico del Hormigón Reforzado con Fibre de Vidrio: Influencia del Porcentaje de Fibra Adicionado*. Chile: Uniersidad de Chile.
- Escamilla Hernández, L. A., & Loza Vega, J. Ó. (2004). XIV Congreso Nacional de Ingeniería Estructural. *Sociedad Mexicana de Ingeniería Estructural*, 12.
- GangaRao, H. (2007). Reinforced concrete design with FRP. CRC Press.
- Google. (2017). *Google*. Recuperado el 20 de Julio de 2015, de Google.
- Guerra Montealegre, E. J. (2015). DISEÑO Y CONSTRUCCIÓN DE TRES MODELOS DISTINTOS DE FORMALETAS EN FIBRA DE VIDRIO PARA LOSAS NERVADAS DE ENTREPISO, SOMETIDAS A UN POSTERIOR ENSAYO DE DEFORMACIÓN PARA DEFINIR EL MODELO CON MAYOR EFICIENCIA CONSTRUCTIVA. Cartagena: Universidad de Cartagena.

- INEN. (2011). Varillas con resaltes de acero de baja aleación, soldables, laminadas en caliente y/o termotratadas para hormigón armado. Requisitos. Quito.
- McCormac, J. C. (2012). *Diseño de Estructuras de Acero*. México: Alfaomega Grupo Editor.
- NEC. (2015). Estructuras de Hormigón Armado. NEC, 122.
- Pancho, F. R. (2011). Influencia de la microestructura sobre las propiedades mecánicas en varillas de acero. Riobamba: Escuela Superior Politécnica de Chimborazo.
- Quintana, E. d. (2014). Polímeros Fibroreforzados. Tecnología.
- Romo, M. P. (2008). *Temas de Hormigón Armado*. Latacunga: Escuela Politécnica del Ejército.

ANEXOS

A continuación, se presenta los diferentes resultados de los ensayos, realizados en las varillas de fibra de vidrio y acero, además los efectos de cada una de las probetas de hormigón realizadas para las comparaciones correspondientes.