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Resumen 

La evapotranspiración (ET) ha sido poco estudiada en regiones muy húmedas, a pesar de su 

destacada importancia en la gestión del agua. El objetivo de este estudio fue estimar la ET diaria 

de referencia (ETo) en ecosistemas de páramo en el altiplano andino, sur de Ecuador, para 

compararla con el método FAO 56 P-M. Datos disponibles de dos estaciones meteorológicas: 

Toreadora (período 2013-2016) y Zhurucay (período 2014) se utilizaron para evaluar el 

rendimiento de 30 modelos predictivos (21 empíricos basado en= radiación, temperatura, 

combinación y transferencia de masa; 8 redes neuronales artificales-RNAs y 1 splines de 

regresión adaptativa multivariante-MARS). Se realizó un análisis estadístico simple (MBE, MAE, 

RMSE). Se desarrolló un análisis inicial de Random  Forests para medir la importancia relativa de 

las variables climáticas. Estos resultados se usaron para ensamblar las RNAs en combinaciones 

de las variables climáticas y con el menor número posible de entradas. MARS ayudó a desarrollar 

la ecuación de REMPE usando la radiación solar y la humedad relativa como entradas 

principales. Los resultados mostraron que las RNAs son los modelos más precisos para estimar 

ETo; sin embargo, las ecuaciones basadas en combinaciones también obtuvieron buenos 

rendimientos. Estos fueron seguidos por ecuaciones basadas en radiación, basadas en 

temperatura y basadas en transferencia de masa. Un método de calibración mejoró el 

rendimiento de la mayoría de los modelos empíricos y empeoró los de los modelos restantes. 

Estos resultados se explicaron por la distribución de radios de calibración para cada ecuación. 

Las ecuaciones basadas en la transferencia de masa y REMPE exhibieron los peores resultados, 

y se sugiere que estas ecuaciones no se deben ser utilizadas en entornos super-húmedos. Estos 

resultados representan una herramienta práctica y útil para facilitar la toma de decisiones y la 

selección del mejor modelo cuando los datos disponibles son escasos. 

 

Palabras clave: Recursos hídricos, Descripción climática, ET de referencia, Método de Penman-

Monteith, Comparación de modelos de predicción. 
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1.   Introduction 

1.1   The Andean páramos 

The Andean mountain range crosses the western fringe of South America, including Ecuador. 

The Ecuadorian highlands represent 34% of the area of the country which is located along the 

inter-Andean alley (Célleri & Feyen, 2009). One of the main ecosystems found in this 

mountainous area is the páramo. The Andean páramos consist of accidental, mostly glacier 

formed valleys and plains with a large variety of lakes, peat bogs and wet grasslands 

intermingled with shrub lands and low-statured forest patches. The total area covered by 

páramo is estimated between 35000 (Hofstede et al., 2003) and 77000 km2 (Dinerstein et al., 

1995). This discrepancy is primarily due to uncertainties in the lower limit of the páramo. The 

natural forest limit is severely altered by human activity (logging, intensive grazing), which 

makes the difference between natural and artificial grasslands difficult to distinguish (Buytaert 

et al., 2006). The Andean páramo is an intertropical montane ecosystem located generally 

between altitudes of 3000 m to the line of perpetual snows, approximately 4300 m. In Ecuador, 

the altitude of 3500 m is commonly used as the lower limit, but the geological, climatic and 

anthropogenic conditions make this limit vary a lot, and that are sometimes páramos from 2800 

m, especially in the south of the country; or closed forests up to over 4000 m (Medina & Mena, 

2001). 

In Ecuador, the páramo covers around 1250000 ha, that is, approximately 6% of the national 

territory (Medina & Mena, 2001). The páramo features a typical tropical high mountain climate 

(cold and humid). Due to its location close to the equator, the daily solar radiation is almost 

constant throughout the year. Intraday temperature variations of more than 20 °C are common 

(“summer every day and winter every night”) (Buytaert et al., 2006). The precipitation can vary 

greatly, from values lower than 700 mm to more than 3000 mm (Luteyn, 1992), with some 

extremes in limited areas, up to 6000 mm (Rangel, 2000). The páramo presents very particular 

hydrological characteristics. Water production in small watersheds can exceed half of the total 

rainfall. This is explained by the soils with high contents of organic matter (great water retention 

capacity), by the low rates of evapotranspiration due to the climate and the absence of a marked 

dry season (Padrón, 2013). 

1.2   Evapotranspiration 

The monitoring and modeling of land surface and vegetation processes is an essential tool for 

the assessment of water and carbon dynamics of terrestrial ecosystems. Evapotranspiration (ET) 

is the simultaneous process of transferring water -originating from a wide range of sources- to 

the atmosphere: by evaporation of water from the soil and water contained in the vegetation 

surface, on one hand, and by transpiration of the vegetation, on the other (Fig. 1). Evaporation 

is the physically based process of transferring water -stored in the soil or on the surface of 

canopies, stems, branches, soils and paved areas- to the atmosphere. Transpiration is the 

evaporation of water in the vascular system of plants through leaf stomata. The opening and 

closure of stomata is controlled by their guard cells. Hence, transpiration is a bio-physical 

process since it involves a living organism and its tissues (Verstraeten et al., 2008). 



 
2 

 

Figure 1. Evapotranspiration process. 

The process of evapotranspiration is instrumental in temperature and water distribution in time 

and space (Eiseltová et al., 2012). Whilst evaporation is a passive process driven solely by solar 

energy input, transpiration involves an active movement of water through the body of plants 

transferring water from the soil to the atmosphere. The process of transpiration is also driven 

by solar energy but plants have the ability to control the rate of transpiration through their 

stomata and have developed many adaptations to conserve water when water is scarce. 

Evapotranspiration is an energy-driven process (Fig. 2). ET increases with temperature, solar 

radiation, and wind. On the other hand, ET decreases with increasing humidity. 

 

Figure 2. Weather variables that influence the ET process. 

ET is one of the major elements of the hydrologic cycle, and its accurate prediction is of 

paramount importance for many investigations such as irrigation system design and 

management, hydrologic water balance, crop yield simulation, irrigation scheduling, drainage 

studies, agricultural and forest meteorology, and water resources planning and management 

(Kumar et al., 2002; Irmak et al., 2003; Chauhan & Shrivastava, 2009; Khoshravesh et al., 2017; 
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Liu et al., 2017). Actual crop evapotranspiration (ETc) are measurable using lysimeter, water 

balance approach, eddy covariance technique or imaging techniques, but their costs are very 

high (Kumar et al., 2002; Verstraeten et al., 2008; Valipour, 2015; Abdullah & Malek, 2016; 

Valipour, 2017). Therefore, field measurements of evapotranspiration are often spatially and 

temporally limited, and instead, ETc is usually calculated from estimated reference crop 

evapotranspiration (ETo) using the crop factor method, which consists of multiplying ETo with 

crop specific coefficients (kc) (Fig. 3) (Kumar et al., 2002; Yoder et al., 2005; Chauhan & 

Shrivastava, 2009; Khoshravesh et al., 2017). A more economical alternative for ETo estimation 

may be an indirect estimate based on climatological variables (Kumar et al., 2002; Landeras et 

al., 2008). 

 

 

Figure 3. Calculation process of reference crop evapotranspiration (ETo), and actual crop 

evapotranspiration under standard conditions (ETc). 

Over the past century, there has been a dramatic increase for the need to develop an accurate 

and standard method to estimate ETo (Jabloun & Sahli, 2008). The FAO 56 Penman-Monteith 

(FAO 56 P-M) equation, adopted by the international scientific community as the 

standard/reference method for determining ETo (Allen et al., 2006), has been ranked as the best 

method for all climatic conditions (Efthimiou et al., 2013). However, this method requires 

several climate measurements such as air temperature, relative humidity, solar radiation, and 

wind speed (Er-Raki et al., 2010). Meteorological stations that meet the requirement are very 

limited in many special ecosystems around the world. In high-mountain environments, such as 

the Andean páramo, meteorological monitoring is limited, and high-quality data is scarce 

(Córdova et al., 2015) due to the extreme weather conditions that prevent proper monitoring 

and frequent failure in establishing long-term measurement facilities. Herein, some authors 

researched the estimation of ETo using limited weather data (Todorovic et al., 2013; Córdova et 

al., 2015). In addition, ET studies are scarce in páramo sites being the most relevant researches 

carried out by Córdova et al. (2015) and Carrillo-Rojas et al. (2016). 

To overcome the data scarcity issue, several alternative methodologies and equations have been 

proposed with less climate parameters for ETo estimation (Jabloun & Sahli, 2008; Er-Raki et al., 

2010): It includes empirical equations (mass transfer-, radiation-, temperature-, and pan 

evaporation-based methods) (e.g. Tabari et al., 2013; Valipour, 2015; Valipour, 2017); regression 

models (Multiple linear, Bayesian, Robust and Multivariate Adaptive Regression Splines (MARS)) 
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(e.g. González-Camacho et al., 2008; Kisi, 2016; Khoshravesh et al., 2017); and machine learning 

(artificial neuronal networks (ANN), random forests (RF) and support vector machine (SVM)) 

(e.g. Kumar et al., 2002; Trajkovic et al., 2003; Cervantes-Osornio et al., 2011; Kisi, 2013). 

Recently, a considerable number of literatures have grown up around the theme of calibration 

and comparison of the performance of different models and methods in different climates, 

assessing their performances with the FAO 56 P-M as the reference (Landeras et al., 2008; Er-

Raki et al., 2010; Efthimiou et al., 2013; Shiri, 2017).  

The main objective of this study is to compare and evaluate the performance of twenty-one 

empirical models, eight ANN models, and a MARS model in estimating daily reference 

evapotranspiration (ETo) compared to the FAO 56 P-M equation at the Andean páramo, where 

climate record is scarce. Firstly, we conducted a nonlinear, non-additive variable selection 

approach using a random forest to identify the most influential variables. Secondly, we 

assembled ANN models in different combinations of the variables in order of the variable 

importance according to the previous random forests analysis. Thirdly, we introduced an 

empirical equation for daily estimation of ETo applying MARS method under local climate 

conditions, using only solar radiation and relative humidity. The comparison would provide a 

practical guidance on the selection of the most appropriate ETo equation under super-humid 

conditions. 

2.   Material and methods 

2.1   Study area 

The meteorological data for this study came from two automatic weather stations, both located 

in the high-elevation páramo of Ecuador (Fig. 4). 

 

Figure 4. Locations of automatic weather stations. 
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 The Zhurucay weather station is situated in the Zhurucay catchment, affluent to the 

Jubones river basin (on the Pacific side of the Andes), draining to the Pacific Ocean, and 

situated 85 km south-west of Cuenca city (3°03′ S, 79°14′ W). The station is located at 

3900 m a.s.l. with an average air temperature of 5.98 °C (maximum value 15.88 °C and 

minimum value -2.35 °C), average relative humidity of 91.44 %, solar radiation of 13.90 

MJ m-1 day-1, wind speed of 3.62 m s-1 and a precipitation of 1345 mm. One year of data 

were available (2014). 

 The Toreadora weather station is located in the Quinuas catchment, in the headwaters 

of the Paute river basin (on the Atlantic side of the Andes), drains to the Amazon river, 

and situated 33 km of Cuenca city (2°47′ S, 79°13′ W). The station is located at 3955 m 

a.s.l. with an average climate values of: air temperature of 5.44 °C (maximum value 17.2 

°C and minimum value -2.4 °C), relative humidity of 89.4 %, solar radiation of 12.13 MJ 

m-1 day-1, wind speed of 2.31 m s-1 and a precipitation of 916 mm. Four years of data 

were available (2013 – 2016). 

2.2   Methods for estimating reference evapotranspiration 

The Penman-Monteith model incorporates thermodynamic and aerodynamic aspects with what 

has proven to be a very accurate method to estimate ETo anywhere (Allen et al., 2006). 

However, the greatest limitation for the use of this model is that it requires a large amount of 

meteorological data, limiting its use in places where these are not available. FAO 56 Penman-

Monteith (FAO 56 P-M) model was used as reference for comparison and calibration of ETo 

equations. The form of the FAO 56 P-M equation is as follows: 

𝐸𝑇𝑜 =
0.408 ∙ ∆ ∙ (𝑅𝑛 − 𝐺) + 𝛾 ∙ [900 (𝑇 + 273)⁄ ] ∙ 𝑢 ∙ (𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾 ∙ (1 + 0.34 ∙ 𝑢)
 (1) 

where 

ETo = reference evapotranspiration [mm day-1], 

Rn = net radiation at the crop surface [MJ m-2 day-1], 

G = soil heat flux density [MJ m-2 day-1], 

T = mean daily air temperature at 2 m height [°C], 

u = wind speed at 2 m height [m s-1], 

es = saturation vapor pressure [kPa], 

ea = actual vapor pressure [kPa], 

es-ea = saturation vapor pressure deficit [kPa], 

∆ = slope vapor pressure curve [kPa °C-1], 

γ psychrometric constant [kPa °C-1]. 

 

The values of Δ, Rn, G, Υ, es and ea were calculated using the equations given by Allen et al. (2006) 

in the FAO irrigation and drainage study 56: 
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 Slope vapor pressure curve (∆): 

∆=
4098 ∙ [0.6108 ∙ exp (

17.27 ∙ T
T + 237.3)]

(T + 237.3)2
 

(2) 

 Soil heat flux density (G): 

Gmes,i = 0.07(Tmes,i+1 − Tmes,i−1) (3) 

G = 0 

where 

Tmes,i -1: average air temperature in month i -1 [°C], 

Tmes,i +1: average air temperature in month i +1 [°C]. 

 

 Psychrometric constant (γ): 

γ = 0.665 ∙ 10−3P (4) 

where 

P: atmospheric pressure [kPa]. 

 

 Saturation vapor pressure (es): 

e°(T) = 0.6108 ∙ exp [
17.27 ∙ T

T + 237.3
] (5) 

es =
e°(Tmax) + e°(Tmin)

2
 

(6) 

where 

e°(T): vapor saturation pressure in air temperature [kPa]. 

 

 Actual vapor pressure (ea) derived from relative humidity data: 

ea =
e°(Tmin)

HRmax
100 + e°(Tmax)

HRmin
100

2
 

(7) 
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where 

e°(Tmin): vapor saturation pressure at the minimum air temperature [kPa], 

e°(Tmax): vapor saturation pressure at the maximum air temperature [kPa], 

HRmax: maximum relative humidity [%], 

HRmin: minimum relative humidity [%]. 

 

 Extraterrestrial radiation for daily periods (Ra): 

Ra =
24 ∙ 60

π
Gscdr[ωs sin(φ) sin(δ) + cos(φ) cos(δ) sin(ω)] (8) 

 
where 

Ra: extraterrestrial radiation [MJ m-2 dia-1], 

Gsc: solar constant = 0.082 MJ m-2 min-1, 

dr: inverse relative distance Earth-Sun, 

ωs: sunset hour angle [rad], 

ϕ: latitude [rad], 

δ: solar declination [rad]. 

[radians] = [
π

180
] [decimaldegrees] (9) 

dr = 1 + 0.033 ∙ cos (
2π

365
J) (10) 

δ = 0.409 ∙ sin (
2π

365
J − 1.39) (11) 

 

where J is the number of the day in the year between 1 (January 1) and 365 (December 31). 

 

ωs =
π

2
− arctan [

− tan(φ) tan(δ)

X0.5
] 

(12) 

where  

X = 1 − [tan(φ)]2[tan(δ)]2 (13) 

and X = 0.00001 if X ≤ 0 
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 Clear-sky solar radiation (Rso): 

Rso = (0.75 + 2 ∙ 10−5 ∙ z) ∙ Ra (14) 

where 

Rso: clear-sky solar radiation [MJ m-2 dia-1], 

z: station elevation above sea level [m]. 

 

 Net solar or net shortwave radiation (Rns):  

Rns = 0.77 ∙ Rs (15) 

where 

Rso: net solar or net shortwave radiation [MJ m-2 dia-1], 

Rs: the incoming solar radiation [MJ m-2 day-1]. 

 

 Net longwave radiation (Rnl): 

Rnl = σ [
Tmax,K

4 + Tmin,K
4

2
] (0.34 − 0.14√ea) (1.35

Rs

Rso
− 0.35) (16) 

where 

Rnl: net longwave radiation [MJ m-2 dia-1], 

σ: constant of Stefan-Boltzmann [4.903 x 10-9 MJ K-4 m-2 day-1], 

Tmax, K: absolute maximum temperature during a 24-hour period [K = °C + 273.16], 

Tmin, K: absolute minimum temperature during a 24-hour period [K = °C + 273.16], 

Rs/Rso: relative shortwave radiation (values ≤ 1.0). 

 

 Net radiation (Rn): 

Rn = Rns − Rnl (17) 
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Twenty-two empirical models and their associated equations for the estimation of reference 

evapotranspiration, are presented in Table 1. The calculation and procedures of all the required 

parameters for ETo estimation through the different empirical models can be thoroughly 

explored within the literature references. The equations presented in Table 1 were divided in 

four groups: temperature-based, radiation-based, combination-based and mass transfer-based. 

Table 1. Selected models to estimate potential daily evapotranspiration with their reference, 

formula, and parameterization. 

Model Reference Formula 

Temperature-based 

Schendel (SCH) 
Schendel 

(1967) 𝐸𝑇𝑜 = 16 ∙
𝑇

𝑅𝐻
 

Hargreaves–
Samani (H-S) 

Hargreaves & 
Samani 
(1985) 

𝐸𝑇𝑜 = 0.0023 ∙ (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)0.5 ∙ (𝑇 + 17.8) ∙ 𝑅𝑎 

Baier-Robertson 
(B-R) 

Baier & 
Robertson 

(1965) 
𝐸𝑇𝑜 = 0.157 ∙ 𝑇𝑚𝑎𝑥 + 0.158(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) + 0.109 ∙ 𝑅𝑎 − 5.39 

McCloud (MC) 
McCloud 

(1955) 𝐸𝑇𝑜 = 0.254 ∙ 1.071.8𝑇 

Radiation-based 

Jones-Ritchie (J-R) 
Jones & 

Ritchie (1990) 

𝐸𝑇𝑜 = 𝛼 ∙ (0.00387 ∙ 𝑅𝑠(0.6 ∙ 𝑇𝑚𝑎𝑥 + 0.4 ∙ 𝑇𝑚𝑖𝑛 + 29) 

5°C < 𝑇𝑚𝑎𝑥 < 35°C 𝛼 = 1.1 

𝑇𝑚𝑎𝑥 > 35°C 𝛼 = 1.1 + 0.05 ∙ (𝑇𝑚𝑎𝑥 − 35) 

𝑇𝑚𝑎𝑥 < 5°C 𝛼 = 0.1 ∙ exp[0.18 ∙ (𝑇𝑚𝑎𝑥 + 35)] 

Irmak (IR) 
Irmak et al. 

(2003) 𝐸𝑇𝑜 = −0.611 + 0.149 ∙ 𝑅𝑠 + 0.079 ∙ 𝑇 

Makkink (MK) 
Makkink 
(1957) 

𝐸𝑇𝑜 = 0.61 ∙
∆

∆ + 𝛾
∙

𝑅𝑠

𝜆
− 0.12 

Turc (TR) Turc (1961) 

𝐸𝑇𝑜 = 𝑎𝑇0.013 ∙
𝑇

𝑇 + 15
∙

23.8856 ∙ 𝑅𝑠 + 50

𝜆
 

𝑅𝐻 ≥ 50% 𝑎𝑇 = 1 

𝑅𝐻 < 50% 𝑎𝑇 = 1 + (50 − 𝑅𝐻) 70⁄  

Jensen-Haise (J-H) 
Jensen & 

Haise (1963) 𝐸𝑇𝑜 = 0.0102 ∙ (𝑇 + 3) ∙ 𝑅𝑠 

Priestley-Taylor 
(P-T) 

Priestley & 
Taylor (1972) 

𝐸𝑇𝑜 = 1.26 ∙
∆

∆ + 𝛾
∙

𝑅𝑛 − 𝐺

𝜆
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Tabari (TB) 
Tabari et al. 

(2013) 
𝐸𝑇𝑜 = −0.642 + 0.174 ∙ 𝑅𝑠 + 0.0353 ∙ 𝑇 

Copais (CP) 
Alexandris et 

al. (2006) 

𝐸𝑇𝑜 = 0.057 + 0.227 ∙ 𝐶2 + 0.643 ∙ 𝐶1 + 0.0124 ∙ 𝐶1 ∙ 𝐶2 

𝐶1 = 0.6416 − 0.00784 ∙ 𝑅𝐻 + 0.372 ∙ 𝑅𝑠 − 0.00264 ∙ 𝑅𝐻 ∙ 𝑅𝑠 

𝐶2 = −0.0033 + 0.00812 ∙ 𝑇 + 0.101 ∙ 𝑅𝑠 + 0.00584 ∙ 𝑇 ∙ 𝑅𝑠 

Combination-based 

Valiantzas (VT1) 
Valiantzas 

(2013) 

𝐸𝑇𝑜 = 0.051 ∙ (1 − 𝛼) ∙ 𝑅𝑠 ∙ √𝑇 + 9.5 − 0.188 ∙ (𝑇 + 13)

∙ (
𝑅𝑠

𝑅𝑎
− 0.194)

∙ [1 − 0.00015 ∙ (𝑇 + 45)2 ∙ √𝑅𝐻 100⁄ ]

− 0.0165 ∙ 𝑅𝑠 ∙ 𝑢0.7 + 0.0585 ∙ (𝑇 + 17) ∙ 𝑢0.75

∙
[(1 + 0.00043 ∙ (𝑇𝑚𝑎𝑥 − 𝑇min)2)2 − 𝐻𝑅 100⁄ ]

[1 + 0.00043 ∙ (𝑇𝑚𝑎𝑥 − 𝑇min)2]
+ 0.0001𝑧 

Valiantzas (VT2) 
Valiantzas 

(2013) 

𝐸𝑇𝑜 = 0.00668 ∙ 𝑅𝑎 ∙ √(𝑇 + 9.5) ∙ (𝑇𝑚𝑎𝑥 − 𝑇𝑑𝑒𝑤) − 0.0696

∙ (𝑇𝑚𝑎𝑥 − 𝑇𝑑𝑒𝑤) − 0.024 ∙ (𝑇 + 20) ∙ (1 −
𝑅𝐻

100
)

− 0.0455 ∙ 𝑅𝑎 ∙ (𝑇𝑚𝑎𝑥 − 𝑇dew)0.5 + 0.0984
∙ (𝑇 + 17)
∙ [1.03 + 0.00055 ∙ (𝑇𝑚𝑎𝑥 − 𝑇min)2

− (𝑅𝐻 100)⁄ ] 

Rijtema (RI) 
Rijtema 
(1968) 𝐸𝑇𝑜 =

(
∆ ∙ 𝑅𝑛

𝜆
) + 𝛾 ∙ 𝑟 ∙ 𝑢0.75 ∙ (𝑒𝑠 − 𝑒𝑎)

(∆ + 𝛾)
 

Mass transfer-based  

Mahringer (MA) 
Mahringer 

(1970) 𝐸𝑇𝑜 = 2.86 ∙ 𝑢0.5 ∙ (𝑒𝑠 − 𝑒𝑎) 

Trabert (TR) 
Trabert 
(1896) 𝐸𝑇𝑜 = 3.075 ∙ 𝑢0.5 ∙ (𝑒𝑠 − 𝑒𝑎) 

WMO WMO (1966) 𝐸𝑇𝑜 = (1.298 + 0.934 ∙ 𝑢) ∙ (𝑒𝑠 − 𝑒𝑎) 

Brockamp-
Wenner (B-W) 

Brockamp & 
Wenner 
(1963) 

𝐸𝑇𝑜 = 5.43 ∙ 𝑢0.456 ∙ (𝑒𝑠 − 𝑒𝑎) 

Rohwer (RO) 
Rohwer 
(1931) 𝐸𝑇𝑜 = (3.3 + 0.891 ∙ 𝑢) ∙ (𝑒𝑠 − 𝑒𝑎) 

Penman (PE) 
Penman 
(1948) 

𝐸𝑇𝑜 = (2.625 + 0.713 ∙ 𝑢) ∙ (𝑒𝑠 − 𝑒𝑎) 

ETo is the reference crop evapotranspiration (mm day-1), Rn is the net radiation (MJ m-2 day-1), G 

is the soil heat flux (MJ m-2 day-1), γ is the psychrometric constant (kPa/°C), λ is the latent heat of 
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vaporization (MJ kg-1), es is the saturation vapor pressure (kPa), ea is the actual vapor pressure 

(kPa), Δ is the slope of saturation vapor pressure-temperature curve (kPa/°C), T is the average 

daily air temperature (°C), u is the mean daily wind speed at 2 m (m/s), r is the roughness 

coefficient, z is the site elevation (m), Tmin is the minimum air temperature (°C), Tmax is the 

maximum air temperature (°C), Tdew is the dew point temperature (°C),  RH is the average relative 

humidity (%), Ra is the extraterrestrial radiation (MJ m-2 day-1), Rs is the solar radiation (MJ m-2 

day-1), and α is equal to 0.23. For calculation of T and Tdew, refer to Allen et al. (2006). To obtain 

roughness coefficient values (r) for the páramo ecosystem refer to Poulenard et al. (2001). 

2.3   Validation and calibration of simplified methods 

The models (Table 1) were validated and calibrated according to the recommendations from 

FAO Methodologies for Crop Water Requirements for new regions using ETo standard FAO 56 

P-M definition (Irmak et al., 2003). To calibrate the empirical models against FAO 56 P-M, the 

calibration method described in Fooladmand & Haghighat (2007), Tabari & Talaee (2011) and 

Mehdizadeh et al. (2017) was used. The calibration radius (cr) was computed on a daily basis as: 

𝑐𝑟 =
𝐸𝑇𝑜𝐹𝐴𝑂56𝑃𝑀

𝐸𝑇𝑜Model
 (18) 

Calibration values on a daily basis were averaged into one main value. They were not chosen to 

work with monthly values due to the limited weather database (2013-2015 calibration period 

from Toreadora weather station). Thus, for validation 2016 period (Toreadora weather station) 

and 2014 period (Zhurucay weather station) were used. Zhurucay station is validated with the 

calibration of Toreadora station for two main reasons: 1) incomplete weather database for 

Zhurucay weather station and 2) both weather stations are located in the same geographical 

area, ecosystem type, and at similar elevations. 

2.4   Variable importance measured with random forests  

The procedure of random forests is a popular and efficient algorithm based on model 

aggregation concepts, and is applicable for classification and regression problems. It was 

proposed by Breiman (2001). The principle of random forests is to combine many binary decision 

trees built using several bootstrap samples coming from a learning sample (L) and choosing 

randomly at each node a subset of explanatory variables (X) (Genuer et al., 2010). More 

precisely, with respect to the well-known “classification and regression trees” (CART) model 

building strategy (Breiman et al., 1984) performing a growing step followed by a pruning one, 

two differences can be noted. First, at each node, a given number of input variables are 

randomly chosen and the best split calculated only within this subset. Second, no pruning step 

is performed so all the trees of the forests are maximal trees. 

The quantification of the variable importance is an important issue in many applied problems 

complementing variable selection by interpretation issues (Genuer et al., 2010). In the random 

forests framework, the most widely used score of importance of a given variable is the increasing 

in mean of the error of a tree (mean square error (MSE) for regression and misclassification rate 

for classification) in the forest when the observed values of this variable are randomly permuted 

in the “out-of-bag” (OOB) samples (it could be slightly negative). Often, such random forests 

variable importance is called permutation importance indices the opposition to total decrease 
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of node impurity measures already introduced in the seminal book about CART by Breiman et 

al. (1984). Random forests for determining variable importance has been widely studied (Sandri 

& Zuccolotto, 2006; Strobl et al., 2007; Strobl et al., 2008; Genuer et al., 2010; Hapfelmeier & 

Ulm, 2013). 

At the same time, weather data input in FAO 56 P-M equation are variables obtained by direct 

measure (solar radiation, temperature, relative humidity, wind, and atmospheric pressure), and 

thus these were analyzed with random forests (Table 2). The Salford Predictive Modeler 8 

software was used for measuring variable importance through random forests tool. 

Table 2. Variable importance of FAO 56 P-M equation inputs applying random forests. 

Variable Score 

Rs 100 

HRmin 46.84 

Tmax 19.94 

HRmax 2.40 

u 1.85 

Tmin 1.06 

P 1.02 

Tmax (maximum air temperature in °C), Tmin (minimum air temperature in °C), Rs (solar radiation 

in W/m2), HRmin (minimum relative humidity in %), HRmax (maximum relative humidity in %), u 

(wind speed at 2 m height in m/s), P (atmosphere pressure in mbar). 

2.5   Artificial neural networks 

ANNs are considered a connecting computational tool that emulates the function of neural 

networks in biological systems (Landeras et al., 2008). ANNs extract the relationship of inputs 

and outputs of a process, without explicitly knowing the physical nature of the problem in such 

a way that the result is transmitted in the network until a signal output is given. The procedure 

of ANN-based models is, in general, divided into training, validation and testing performances 

(Abdullah & Malek, 2016). The architecture of an ANN has an input layer (where data are 

introduced to an ANN), the hidden layer(s) (where data are processed), and the output layer 

(where results of given inputs are provided). ANNs have been widely applied for estimating ETo 

as a function of climatic variables (Kumar et al., 2002; Trajkovic et al., 2003; González-Camacho 

et al., 2008; Chauhan & Shrivastava, 2009). 

The ANNs models were applied using the software NeuralTools 7.5 (Palisade Corporation). The 

ANN type was the Multi-Layer Feedforward Network (MLFN) or Multi-Layer Perceptron 

Network. A sigmoidal function was used as activation in hidden layer neurons. Specifically, 

NeuralTools uses a hyperbolic tangent function. Training consists of finding a set of connection 

weights and bias terms that direct the network to generally the right answers. During the 

training process, the Conjugate Gradient Descent method, together with the Simulated 

Annealing method, were used according to Bishop (1995) and Masters (1995). To avoid over-

learning of ANNs models, the available training data (2013-2015; Toreadora weather station) 
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were divided in two subsets: 80 % of patterns for training and 20 % for cross validation. The 

2016 period for the Toreadora weather station and for the 2014 period of the Zhurucay weather 

station were used for independent validations of the models. According to Koleyni (2010), the 

performance of a neural network is very often related to its architecture. This performance is 

usually determined through test-error experiments due to lack of theory (Laaboudi et al., 2012). 

In order to avoid this time consuming task, NeuralTools software allows one to choose the 

option “Best Net search” to obtain the best neural network configuration and architecture 

across test-error performance. The advantage of the neural method relies on the possibility of 

improving performance criteria by modifying network architecture (Laaboudi et al., 2012). 

The combination of inputs (daily values of weather parameters) for each ANN was selected after 

variable selection with random forests (Table 2). The three most important parameters were 

solar radiation, minimum relative humidity, and maximum air temperature. The inputs of ANNs 

were chosen in order to implement models that use the least number of weather variables. A 

summary of inputs is given in Table 3. 

Table 3. Inputs for the application of each ANN. 

Variable 

inputs ANN1 ANN2 ANN3 ANN4 ANN5 ANN6 ANN7 ANN8 

Rs • • • • • • •  

HRmin • • • • • •  • 

Tmax • • • • •  • • 

HRmax • • • •     

u • • •      

Tmin • •       

P •        

Units are the same as in Table 2. 

2.6   Multivariate adaptive regression splines (MARS) 

MARS is a non-parametric model of non-linear regression that allows explaining the dependence 

of the response variable on one or more explanatory variables (Fridedman, 1991). Non-

parametric modeling does not approximate one single domain-wide function, but adjusts it to 

several other functions for simple metrics, usually low-order polynomials, defined on a sub-

region of the domain (parametric adjustment per section), or sets a simple function for each 

value of the variable (global setting) (Sánchez-Molina & Poveda-Jaramillo, 2006). MARS is usually 

preferred because it allows one to approximate complex nonlinear relationships from data, 

without postulating a hypothesis about the type of non-linearity present. For example, the 

construction of the algorithm model incorporates mechanisms that allow selection of relevant 

explanatory variables. Also, the resulting model is easier to interpret as opposed to black box 

models such as artificial neural networks; finally, the estimation of its parameters is 

computationally efficient and rapid (Velásquez-Henao et al., 2014). In Friedman (1991), MARS 

algorithm is fully presented with aspects related to non-metric modeling and adaptive 

computing. The Salford Predictive Modeler 8 software was used for obtained the MARS 
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regression. MARS method has been widely used for non-linear time series forecasting (e.g. 

Sánchez-Molina & Poveda-Jaramillo, 2006; Velásquez-Henao et al., 2014). 

MARS was applied for weather inputs in the FAO 56 P-M equation. Local páramo conditions 

were analyzed by a non-parametric regression, and this is the model that this research proposes 

as the Reference Evapotranspiration Model for Páramo Ecosystems now called REMPE equation. 

Data from the Toreadora weather station (2013-2015 period), were used for the regression 

analysis. Additionally, data from the periods 2016 (Toreadora) and 2014 (Zhurucay) were used 

for independent validation analysis of the equation. 

The REMPE equation is shown below (Rs is in W/m2, and HRmin is in %): 

BF1 = max( 0, Rs - 151.949); 

BF2 = max( 0, 151.949 - Rs); 

BF3 = max( 0, RHmin - 82.5); 

BF4 = max( 0, 82.5 - RHmin); 

BF5 = max( 0, Rs - 234.782); 

BF6 = max( 0, Rs - 114.839). 

 

REMPE ETo= 1.77954 + 0.0064776 * BF1 - 0.00793659 * BF2 - 0.0256779 * BF3 

             + 0.0188508 * BF4 - 0.00135548 * BF5 + 0.001299 * BF6 

 

2.7   Model comparison analysis 

To analyze similarities and differences among models, the following parameters were employed: 

1) mean bias error (MBE): is a measure that indicates the average tendency of the simulated 

data to be greater or smaller than the observed data, i.e. to reflect the systematic of a model to 

overestimate or underestimate values, 2) mean absolute error (MAE): measures the average 

magnitude of the errors in a set of predictions, without considering their direction. It’s the 

average over the test sample of the absolute differences between prediction and actual 

observation where all individual differences have equal weight, and 3) root mean square error 

(RMSE): is a quadratic scoring rule that measures the average magnitude of the error. It’s the 

square root of the average of squared differences between prediction and actual observation, 

this metric is sensitive to peaks. 

𝑴𝑩𝑬 =
1

𝒏
∑(𝑷𝒊 − 𝑶𝒊)

𝒏

𝒊=1

 (19) 

𝑴𝑨𝑬 =
1

𝒏
∑|𝑷𝒊 − 𝑶𝒊|

𝒏

𝒊=1

 (20) 

𝑹𝑴𝑺𝑬 = √
1

𝒏
∑(𝑷𝒊 − 𝑶𝒊)2

𝒏

𝒊=1

 (21) 

 

where: 

 

Oi = observed value; Pi = simulated value; n = considered data. 
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3.   Results and Discussion 

3.1   Analyses of influential weather variables and model performance  

Random forest results, the assembly of artificial neural networks models and MARS method 

equation were establish in the previous sections. According to the Random forest analysis, the 

dominant variable influencing the ETo estimate was solar radiation (Table 2). The importance 

level of solar radiation was also found by Córdova et al. (2015) and it is referred to as a key factor 

in the FAO 56 P-M equation for ETo estimation in páramo ecosystems. The second dominant 

variable was minimum relative humidity, which is explained by a recognized weather pattern in 

wet ecosystems, thus high relative humidity reduces the total evapotranspiration rate, and on 

the contrary, evapotranspiration increases when humidity decrease (Gong et al., 2006). 

Minimum relative humidity would have stronger influence on maximum relative humidity 

because of its higher intradaily variation (Fig. 5). 

 

Figure 5. Example of maximum and minimum relative humidity pattern (2015 period of 

Toreadora weather station). 

Results from the random forest analysis also revealed that the least dominant variables for ETo 

estimation were wind and atmospheric pressure. This is corroborate by Córdova et al. (2015) 

who determine that wind is the least important variable for ETo estimation in this environment. 

Eight ANN models were assembled to use the minimum number of input variables (Table 3), 

while the MARS method helped obtain REMPE, which incorporated solar radiation and minimum 

relative humidity as the dominant input variables. The results showed that the variable 

discrimination procedure performed by MARS is in conformity with the variable order of 

importance classified by the random forest procedure. 

3.2   Comparison of methodologies for ETo estimation 

This section will focus specifically on the statistical comparison of the different methodologies 

for ETo estimation. For both weather stations, the total performance of different groups of ETo 

equations in the original form are presented in Figure 6, whilst in Figure 7 is presented the 

comparison of the calibrated form of ETO equations. Simple statistical metrics (MBE, MAE and 

RMSE) were used in order to evaluate the overall performance of the models against to the FAO 

56 P-M model. The numerical values obtained through the statistical metrics are presented in 

Appendix 10 and 11. 
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Figure 6. Graphical representation of statistical performance of the different ETo estimation methods versus FAO 56 P-M model. A) Toreadora weather station; 

B) Zhurucay weather station. 
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Figure 7. Graphical representation of statistical performance of the different calibrated ETo estimation methods versus FAO 56 P-M model. A) Toreadora 

weather station; B) Zhurucay weather station.
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3.2.1   Empirical models 

Result comparison of the empirical equations, showed that the combination-based grouping 

method presented the best estimation for model fitting with the lowest statistical values. The 

second best method corresponded to the radiation-based grouping, followed by the 

temperature-based. The mass transfer-based grouping showed the worst estimate for model 

fitting. The same tendency was found by Liu et al. (2017) despite being investigated in a different 

environment. This is explained by the fact that the combination-based equations incorporate 

all, or most, of the weather variables and result in better performances. In terms of precision, 

VT1 was a better equation with regard to the combination-based grouping method in both 

weather stations. In fact, VT1 and VT2 equations derive from FAO 56 P-M model (Valiantzas, 

2013), and thus indicate a high level of performance. However, while the VT1 equation 

incorporates whole data sets, the VT2 equation does not require wind speed data. In spite of 

this, the VT2 performance was excellent. This demonstrates that wind speed is a not a powerful 

variable. In addition, the RI equation needs a precise roughness value to obtain high 

performance, for which the roughness values provided by Poulenard et al. (2001) for three 

páramo sites were used.  

Results from the radiation-based grouping method also showed high performance. J-R was the 

best model for data from the Toreadora weather station, followed by IR, TB and MK; whereas 

for data from the Zhurucay weather station, IR was the best model, followed by MK, J-R and TB. 

This might be explained by the stronger influence of the solar radiation variable on ETo 

estimation after random forest analysis. Lu et al. (2005) and Xu & Singh (2002) have suggested 

that radiation-based approaches performed better than temperature-based approaches, all of 

which corroborate the findings in this study. J-H, P-T and CP models revealed moderate 

performance, whereas TR model showed the poorest performance for both weather stations. 

In the case of TR model, results in this study contradict those from Trajkovic & Kolakovic (2009) 

which indicate that the Turc equation is suited for ETo estimations in humid areas. 

The results from the temperature-based grouping method were very similar to those from the 

radiation-based grouping method, which showed models with regular and high performances. 

Maximum and minimum temperature variables have an acceptable power to explain ETo 

estimate after the random forest analysis. For both weather stations MC was the best model; B-

R and H-S were intermediate and SCH was the poorest. According to Almorox et al. (2015), 

temperature-based models in tropical climates might involve important variations depending 

upon fluctuations of specific local weather, where temperature alone might not be enough for 

proper estimations of ETo. In this study, most of the temperature-based models did not take 

into account solar radiation, vapor pressure deficit, or sunlight duration, corroborating the 

above statement. The mass transfer-based grouping method presented the poorest 

performance. This result may be explained by the fact that the hygrometric deficit (es-ea) is very 

small in páramo areas, and so it may not have a significant effect for ETo estimation. Also, the 

incorporated wind speed variable in the equations might have had a negative effect on this 

method’s performance, as it was show by the random forest analysis (see above paragraphs). 

Singh & Xu (1997) and Gong et al. (2006), also mentioned that wind speed is not a significant 

factor for ETo estimation models. Valipour (2017) stated that estimating precision of mass 

transfer-based models is sensitive to parameter variation in each model. The B-R model showed 

to be an acceptable estimation model for both stations in the mass transfer-based grouping 

method. No other model provided good estimates. Similar results were found by Tabari et al. 

(2013), they showed that the mass transfer-based equations had the worst performances, while 
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the radiation-based and temperature-based models were the best-suited equations for ETo 

estimate. 

3.2.2   Calibration of empirical models 

Depending upon the equation used, the values obtained after comparing the original and 

calibrated models, showed several differences (Figure 6 and 7). Models with a cr value close to 

1 denote that the estimated values compared to the values derived from the original equation 

almost equal those obtained with the FAO 56 P-M equation (MC, J-R, VT1, VT2 and RI). After 

calibration (cr ≈ 1), models that showed the best performances were not expected to improve 

significantly. Comparison of temporal estimations of reference evapotranspiration per group for 

21 empirical models in their original and calibrated form are shown in Appendix 1 to 6. The 

different corresponding groups with regard to the FAO 56 P-M model are shown for validation 

periods with data from the Toreadora (2016) and Zhurucay (2014) weather stations. Generally, 

ETo equations should improve performance after calibration. Surprisingly, this is observed for 

about half of the models. With data from the Toreadora weather station, SCH, H-S, IR, CP, MK, 

J-H and P-T models showed an increased performance and from Zhurucay weather station SCH, 

H-S, J-H, P-T and CP models showed an increased performance. For both weather stations, the 

TR model increased its performance considerably following calibration. No significant 

improvement was observed for the remaining models. 

 

Figure 8. Box plot of calibration radiuses (cr) for 21 empirical models. The median (center line), 

interquartile range (25% to 75%) (box) and interquartile range (0-25% and 75-100%) multiple to 

a factor (1.5) (whiskers). 

The results obtained after calibration for temperature-based grouping is in agreement with the 

recommendation by Bautista et al. (2009) that temperature-based models should not be used 

without a preliminary local calibration in a tropical sub-humid climate. The calibration process 

is also recommended for the radiation-based grouping models, for example, Sentelhas et al. 

(2010) concludes that the application of the P-T model is recommended only after a local 

calibration. All mass transfer-based models, with the exception of B-W, improved their 

performance after calibration, but these are still poor estimating methods. It can be observed 

in Appendix 5 and 6, that all models of this group greatly overestimate the high peak ETo values, 

after calibration.  In contrast, some models present better performances in the original 

uncalibrated form compared to the calibrate form (B-R, TB, IR and B-W). Such unpredictability 

could be explained by the high variability in the distribution of cr values. This is easily observed 

within box plots (Fig. 8), and suggest that this calibration method may not be the most precise 
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one for model performance improvement. Despite this, several of the models with low cr value 

variability improved their performances to acceptable results.  

Estimation accuracy during calibration and validation periods indicated suitability of the 

combination-based, radiation-based and temperature-based models for ETo simulations in the 

páramo ecosystem. Based on the statistics, results determined that mass transfer-based models 

are not accurate for the estimation of ETo in páramo ecosystems. 

3.2.3   Artificial neural networks models 

All ANNs models showed high performances for data from both weather stations surpassing all 

empirical models to a large extent. From ANNs models, ANN2 was the best model for Toreadora, 

and ANN3 for Zhurucay, weather stations. Comparison of temporal estimations of reference 

evapotranspiration for the 8 ANNs models in the corresponding validation period for Toreadora 

weather station are show in Appendix 7 and for Zhurucay in Appendix 8.  The ANNs models for 

the Toreadora weather station proved less error than that of the Zhurucay weather station 

because its calibration was done with data from the Toreadora weather station. Despite, the 

ANN models were calibrated with Toreadora weather station database, the models adjusted 

very well to the validation period of Zhurucay weather station. Better results could have been 

obtained if there were complete climate databases for the Zhurucay weather station. 

ANN1 model for Zhurucay weather station is the less accurate for ETo estimation due to the 

atmospheric pressure variable that probably introduced noise in the ANN model disturbing its 

performance.  ANN6 to ANN8 models were assembled in different combinations of two or three 

main climate parameters to avoid risks of sensor failure. The ANN8 model did not incorporate 

solar radiation variable, and consequently its performance was low compared to the other 

models. In spite of that, this model revealed to be much better than any of the empirical models 

used for ETo estimations. The “Best Net search” option facilitated the determination of the 

structure configuration for each ANN model. This option allowed to obtain satisfactory results 

(Table 4). Results from the prediction accuracy analysis suggested ANNs as a powerful tool for 

modeling ETo in super-humid conditions. This is corroborated by several ETo estimation studies 

that highlighted the high accuracy of ANNs in relation to other methods (e.g. Abdullah & Malek, 

2016). 

Table 4. Summary of training and cross validation processes of the evaluated ANNs. 

Model Type Structure 
RMSE Training 

(mm day-1) 
RMSE Testing 

(mm day-1) 
Inputs 

ANN1 MLFN 7-5-1 0.048 0.046 Rs, HRmin,max, Tmin,max, u, P 

ANN2 MLFN 6-3-1 0.051 0.056 Rs, HRmin,max, Tmin,max, u 

ANN3 MLFN 5-5-1 0.054 0.049 Rs, HRmin,max, Tmax, u 

ANN4 MLFN 4-5-1 0.062 0.064 Rs, HRmin,max, Tmax 

ANN5 MLFN 3-4-1 0.065 0.083 Rs, HRmin, Tmax 

ANN6 MLFN 2-3-1 0.104 0.104 Rs, HRmin 

ANN7 MLFN 2-4-1 0.094 0.146 Rs, Tmax 

ANN8 MLFN 2-3-1 0.221 0.202 HRmin, Tmax 

Structure: number of inputs-number of neurons/nodes in the hidden layer-number of outputs. 
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3.2.4   MARS model 

The REMPE equation showed an unexpected poor performance for both weather stations (RMSE 

= 0.93 and 0.71 in Toreadora and Zhurucay respectively). The equation overestimated daily ETo 

(MBE = 0.49 and 0.29 in Toreadora and Zhurucay respectively). Despite the fact that the 

equation was calibrated with data from the Toreadora weather station, it surprisingly performed 

better with data from the Zhurucay weather station. For both stations, REMPE model results 

surpassed those from mass transfer-based grouping method with the exception of the B-W 

model which presented better performance in its original form. Nevertheless, REMPE had a 

better performance in comparison to SCH, J-H and TR for Toreadora and SCH, H-S, B-R, TR, J-H, 

P-T and CP for Zhurucay, with all the models in their original form. On the other hand, REMPE 

performed better than B-R only, in Toreadora, and better than IR, B-R, TR, J-H and TB, in 

Zhurucay, after the calibration process for the rest of groupings. Comparison of temporal 

estimations of reference evapotranspiration for REMPE model in the corresponding validation 

period for each weather station, are show in Appendix 9. 

REMPE produced a higher error with respect to the best results between the original and 

calibrated empirical models. Mass transfer-base models were the only exceptions. These 

findings were unexpected and represent the enormous number of factors involved in climate 

control, even at specific locations. This sensitivity makes it difficult to actually show that a simple 

equation, especially a non-linear one, can produce accurate predictions (Traore et al., 2010). 

The short time series of data used for the equation calibration, might have also limited its 

performance. In addition, the results obtained in this study are contradictory to the Aghajanloo 

et al. (2013) findings, in which their results showed that multiple non-linear regression (MNLR) 

models can be an acceptable approach to predict daily ETo. Aghajanloo et al. (2013) revealed 

that increasing the numbers of input variables into the MNLR models can improve the accuracy 

of ETo estimates.  

3.2.5   Annual reference evapotranspiration 

 

Figure 9. Annual ETo estimated from original empirical models. Solid line represents the 

reference model. A) data from Toreadora weather station; B) data from Zhurucay weather 

station. 

Annual ETo was obtained from the sum of the daily ETo. The different ETo models to estimate 

annual ETo varied considerably. In regard to the original empirical equations, the combination-
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based grouping, MC and J-R models agreed very closely to the FAO 56 P-M ETo annual value in 

the case of data from Toreadora weather station (Fig. 9A). As for Zhurucay weather station data, 

models with the best adjustments were VT1, VT2, MK, J-R, IR and TB (Fig. 9B). The other models 

underestimated ETo compared with the FAO 56 P-M equation, and a few overestimated it for 

super-humid environments. 

 

Figure 10. Annual ETo estimated from different calibrated methods. Solid line represents the 

reference model. A) data from Toreadora weather station; B) data from Zhurucay weather 

station. 

Once the calibration procedure was applied, several models improved performance to estimate 

daily ETo. As a consequence, annual estimations improved as well. This can be clearly observed 

in Figure 10 for data from both weather stations. The radiation-based models were probably the 

ones that improved the most with respect to the other, especially for data from Toreadora 

weather station (Fig. 10A). ANNs models fit well with adjustments for data from both weather 

stations. Exemptions were ANN1 and ANN8 models for data from the Zhurucay weather station 

(Fig. 10B). The mass transfer-based models overestimated annual ETo values for data from both 

stations (Fig. 10). As opposed to the pattern described in the previous paragraph, once the 

calibration procedure was applied, most of the models overestimated ETo and only a few 

underestimated ETo compared to the FAO 56 P-M equation. 

 

 



 
23 

4.   Conclusions 

Prediction models that require a smaller number of weather parameters for ETo estimations are 

recommended in cases where complete weather data records are lacking or unavailable. 

Complete data sets are often absent for high mountain areas such as páramo ecosystems. The 

páramo ecosystem is considered a super-humid region, although no previous studies have been 

conducted to estimate ETo by means of comparison among different estimation methodologies. 

In this study, to estimate the ETo in páramo regions, the reference evapotranspiration model 

for páramo ecosystems (REMPE) was developed under local conditions. The REMPE equation 

was generated thought the method of multivariate adaptive regression splines (MARS). REMPE, 

21 empirical equations, and eight artificial neural networks (ANNs) models were compared to 

the standard FAO 56 P-M model. Altogether, the combination-based models performed well, 

followed by the radiation-based and temperature-based models. The mass transfer-based 

models had poor performances, with the exception of B-W; however, results indicate that these 

later models are not recommended for ETo estimate in páramo regions because of the super-

humid environmental conditions. The calibration method significantly improved the 

performances of several of the models used. Such an improving effect should be further 

explored in order to develop more advanced calibration methods.  

ANN models were accurate in estimating ETo, although specific patterns observed are difficult 

to explain due to complex non-linear phenomena. Nevertheless, the fact that ANNs models 

include different combinations of weather variables so as to use the smallest possible number 

of inputs, without decreasing modeling performance, these models should be applied in first 

instances when estimating ETo in páramo ecosystems.  

By developing REMPE, solar radiation and minimum relative humidity were incorporated into 

the model as required variables. However, the REMPE equation showed an unsatisfactory 

performance when compared to that of other empirical equations. Can adding more input 

variables to the REMPE equation result in an improvement in its performance? This is an open 

question for further research. 

In terms of software, NeuralTools v7.5 and Salford Predictive Modeler v8 are user friendly for 

easy implementation of methods, so these are highly recommended for data modeling in similar 

studies. 

The FAO 56 P-M equation served as a reference model in the absence of lysimeter 

measurements. At the same time, lysimeter measurements perform better than the FAO 56 P-

M, or other costly methods. That being said, this study raises the question about whether or not 

FAO 56 P-M is a valid reference to be used under super-humid conditions. Additionally, lysimeter 

measurements are not yet available. Therefore, this research suggests that for future studies it 

is necessary to undertake lysimeter measurements and to assess differences between these two 

methods in very wet páramo regions. 

Therefore, the results presented in this thesis show, on one hand, how to select an appropriate 

ETo equation to be applied in water-logged environments, and with limited climatic data. On 

the other hand, these results allow the use of simple and accurate methods for ETo estimate in 

a difficult mountain highland topography; often with scant resource availability assigned to 

weather monitoring.  
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It is proposed to continue the research line by applying other techniques of ET estimation (e.g. 

lysimeters and eddy covariance). In addition, it is recommended to include a greater number of 

meteorological stations spatially distributed in páramo locations, incorporate longer available 

time series of climatic data, and develop new empirical equations for páramo environments by 

applying different regression techniques (e.g. wavelet regression -WR-). 

 

5.   References 

 

Abdullah, S. S., & Malek, M. A. (2016). Empirical Penman-Monteith equation and artificial 

intelligence techniques in predicting reference evapotranspiration: a review. International 

Journal of Water, 10(1), 55-66. 

Aghajanloo, M. B., Sabziparvar, A. A., & Talaee, P. H. (2013). Artificial neural network–genetic 

algorithm for estimation of crop evapotranspiration in a semi-arid region of Iran. Neural 

Computing and Applications, 23(5), 1387-1393. 

Alexandris, S., Kerkides, P., & Liakatas, A. (2006). Daily reference evapotranspiration estimates 

by the “Copais” approach. Agricultural Water Management, 82(3), 371-386. 

Allen, R. G., Pruitt, W. O., Wright, J. L., Howell, T. A., Ventura, F., Snyder, R., Itenfisu, D., Steduto, 

P., Berengena, J., Baselga, J., Smith, M., Pereira, L. S., Raes, D., Perrier, A., Alves, I., Walter, I., 

Elliott, R., & Smith, M. (2006). A recommendation on standardized surface resistance for hourly 

calculation of reference ET o by the FAO56 Penman-Monteith method. Agricultural Water 

Management, 81(1), 1-22. 

Almorox, J., Quej, V. H., & Martí, P. (2015). Global performance ranking of temperature-based 

approaches for evapotranspiration estimation considering Köppen climate classes. Journal of 

Hydrology, 528, 514-522. 

Baier, W., & Robertson, G. W. (1965). Estimation of latent evaporation from simple weather 

observations. Canadian journal of plant science, 45(3), 276-284. 

Bautista, F., Bautista, D., & Delgado-Carranza, C. (2009). Calibration of the equations of 

Hargreaves and Thornthwaite to estimate the potential evapotranspiration in semi-arid and sub-

humid tropical climates for regional applications. Atmósfera, 22(4), 331-348. 

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford University Press. 

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. 

Brockamp, B., Wenner, H. (1963). Verdunstungsmessungen auf den Steiner See bei Münster. Dt 

Gewässerkundl Mitt, 7, 149-154. 

Buytaert, W., Célleri, R., De Bièvre, B., Cisneros, F., Wyseure, G., Deckers, J., & Hofstede, R. 

(2006). Human impact on the hydrology of the Andean páramos. Earth-Science Reviews, 79(1), 

53-72. 

Carrillo-Rojas, G., Silva, B., Córdova, M., Célleri, R., & Bendix, J. (2016). Dynamic mapping of 

evapotranspiration using an energy balance-based model over an Andean Páramo Catchment 

of Southern Ecuador. Remote Sensing, 8(2), 160. 



 
25 

Célleri, R., & Feyen, J. (2009). The hydrology of tropical Andean ecosystems: importance, 

knowledge status, and perspectives. Mountain Research and Development, 29(4), 350-355. 

Cervantes-Osornio, R., Arteaga-Ramírez, R., Vázquez-Peña, M. A., & Quevedo-Nolasco, A. 

(2011). Redes neuronales artificiales en la estimación de la evapotranspiración de 

referencia. Revista mexicana de ciencias agrícolas, 2(3), 433-447. 

Chauhan, S., & Shrivastava, R. K. (2009). Performance evaluation of reference 

evapotranspiration estimation using climate based methods and artificial neural 

networks. Water resources management, 23(5), 825-837. 

Córdova, M., Carrillo-Rojas, G., Crespo, P., Wilcox, B., & Célleri, R. (2015). Evaluation of the 

Penman-Monteith (FAO 56 PM) method for calculating reference evapotranspiration using 

limited data. Mountain Research and Development, 35(3), 230-239. 

Dinerstein, E., Olson, D., Graham, D., Webster, A., Primm, S., Bookbinder, M., Ledec, G. (1995). 

A conservation assessment of the terrestrial ecoregions of Latin America and the Caribbean. The 

World Bank, Washington, D.C. 

Efthimiou, N., Alexandris, S., Karavitis, C., & Mamassis, N. (2013). Comparative analysis of 

reference evapotranspiration estimation between various methods and the FAO56 Penman-

Monteith procedure. European Water, 42, 19-34. 
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Appendix 1: Daily ETo estimations of temperature-based models. Temporal comparison against the reference model (FAO 56 P-M) for both weather stations. 

 



 

 31 

Appendix 2: Daily ETo estimations of radiation-based models. Temporal comparison against the reference model (FAO 56 P-M) for Toreadora weather 

station. 
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Appendix 3: Daily ETo estimations of radiation-based models. Temporal comparison against the reference model (FAO 56 P-M) for Zhurucay weather 

station. 
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Appendix 4: Daily ETo estimations of combination-based models. Temporal comparison against the reference model (FAO 56 P-M) for both weather 

stations. 
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Appendix 5: Daily ETo estimations of mass transfer-based models. Temporal comparison against the reference model (FAO 56 P-M) for Toreadora weather 

station. 
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Appendix 6: Daily ETo estimations of mass transfer-based models. Temporal comparison against the reference model (FAO 56 P-M) for Zhurucay weather 

station. 
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Appendix 7: Daily ETo estimations of ANN models. Temporal comparison against the reference 

model (FAO 56 P-M) for Toreadora weather station.  
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Appendix 8: Daily ETo estimations of ANN models. Temporal comparison against the reference 

model (FAO 56 P-M) for Zhurucay weather station. 
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Appendix 9: Daily ETo estimations of REMPE model. Temporal comparison against the reference 

model (FAO 56 P-M) for both weather stations. 
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Appendix 10. Statistical performance of ETo estimation methods versus FAO 56 P-M model for 

daily ETo estimation with data from the 2016 period (Toreadora weather station). 

Model Type 
MBE 
(mm) 

MAE 
(mm) 

RMSE 
(mm) 

cr 

 

MBE 
(mm) 

MAE 
(mm) 

RMSE 
(mm) 

Original Calibrated 

SCH 

Te
m

p
er

at
u

re
-

b
as

ed
 

-0.74 0.75 0.89 1,62 0.089 0.38 0.58 

H-S 0.42 0.56 0.64 0,80 -0.078 0.32 0.51 

B-R -0.32 0.50 0.67 0,46 -1.270 1.27 1.37 

MC -0.04 0.49 0.68 1,01 -0.016 0.50 0.68 

J-R 

R
ad

ia
ti

o
n

-b
as

ed
 

-0.07 0.16 0.21 1,08 0.087 0.17 0.25 

IR -0.25 0.26 0.30 1,23 0.176 0.24 0.34 

MK -0.30 0.31 0.35 1,22 0.096 0.20 0.29 

TR -1.47 1.47 1.58 3,69 0.166 0.24 0.31 

J-H -0.74 0.74 0.77 1,73 0.242 0.33 0.45 

P-T 0.48 0.48 0.51 0,79 -0.058 0.17 0.24 

TB -0.27 0.32 0.36 1,32 0.305 0.39 0.57 

CP -0.42 0.54 0.61 1,42 0.275 0.43 0.92 

VT1 

C
o

m
b

in
at

io
n

-b
as

ed
 

0.05 0.10 0.12 0,95 -0.059 0.12 0.16 

VT2 0.10 0.30 0.39 0,93 -0.054 0.27 0.40 

RI 0.07 0.14 0.20 0,94 -0.059 0.16 0.23 

MA 

M
as

s 
tr

an
sf

er
-b

as
ed

 

-1.07 1.07 1.11 2,60 0.546 0.76 1.22 

TR -0.99 0.99 1.04 2,42 0.548 0.76 1.22 

WMO -1.27 1.27 1.33 3,23 0.525 0.74 1.26 

B-W -0.22 0.44 0.63 1,42 0.561 0.77 1.22 

RO -0.79 0.80 0.84 2,05 0.566 0.77 1.19 

PE -1.05 1.05 1.09 2,57 0.565 0.76 1.19 

ANN1 

A
rt

if
ic

ia
l N

eu
ra

l 

N
et

w
o

rk
s 

- - - - -0.025 0.04 0.06 

ANN2 - - - - -0.007 0.04 0.05 

ANN3 - - - - -0.009 0.04 0.06 

ANN4 - - - - -0.010 0.06 0.09 

ANN5 - - - - -0.011 0.05 0.09 
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ANN6 - - - - -0.038 0.10 0.13 

ANN7 - - - - -0.001 0.09 0.15 

ANN8 - - - - -0.016 0.18 0.27 

REMPE 
M

A
R

S 
- - - - 0.493 0.67 0.93 
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Appendix 11. Statistical performance of ETo estimation methods versus FAO 56 P-M model for 

daily ETo estimation with data from the 2014 period (Zhurucay weather station). 

Model Type 
MBE 
(mm) 

MAE 
(mm) 

RMSE 
(mm) 

 

MBE 
(mm) 

MAE 
(mm) 

RMSE 
(mm) 

Original Calibrated 

SCH 

Te
m

p
er

at
u

re
-

b
as

ed
 

-0.70 0.72 0.90 0.020 0.41 0.50 

H-S 0.46 0.52 0.57 -0.008 0.29 0.38 

B-R -0.38 0.47 0.57 -1.188 1.19 1.25 

MC 0.10 0.49 0.60 0.119 0.50 0.60 

J-R 

R
ad

ia
ti

o
n

-b
as

ed
 

0.12 0.18 0.24 0.274 0.30 0.37 

IR -0.06 0.15 0.20 0.362 0.39 0.47 

MK -0.10 0.17 0.22 0.285 0.31 0.40 

TR -1.28 1.28 1.37 0.314 0.34 0.40 

J-H -0.57 0.57 0.62 0.374 0.40 0.50 

P-T 0.67 0.67 0.69 0.137 0.20 0.24 

TB -0.07 0.21 0.27 0.505 0.55 0.70 

CP -0.41 0.43 0.47 0.202 0.28 0.47 

VT1 

C
o

m
b

in
at

io

n
-b

as
ed

 0.04 0.13 0.16 -0.052 0.15 0.19 

VT2 0.09 0.30 0.36 -0.047 0.28 0.37 

RI 0.28 0.29 0.32 0.151 0.19 0.23 

MA 

M
as

s 
tr

an
sf

er
-b

as
ed

 

-0.99 0.99 1.03 0.435 0.69 0.92 

TR -0.92 0.92 0.96 0.436 0.69 0.92 

WMO -1.10 1.10 1.17 0.613 0.85 1.19 

B-W -0.28 0.42 0.50 0.393 0.65 0.86 

RO -0.79 0.79 0.84 0.349 0.62 0.84 

PE -1.01 1.01 1.05 0.350 0.62 0.84 

ANN1 

A
rt

if
ic

ia
l N

eu
ra

l 

N
et

w
o

rk
s 

- - - -0.25 0.28 0.36 

ANN2 - - - 0.012 0.05 0.07 

ANN3 - - - 0.010 0.05 0.06 

ANN4 - - - 0.046 0.09 0.11 

ANN5 - - - 0.040 0.08 0.10 
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ANN6 - - - -0.023 0.11 0.13 

ANN7 - - - 0.141 0.17 0.20 

ANN8 - - - -0.144 0.24 0.32 

REMPE 
M

A
R

S 
- - - 0.292 0.55 0.71 

 


