Universidad del Azuay
Facultad de Ciencia y Tecnología
Escuela de Biología, Ecología y Gestión

Trabajo de graduación previo a la obtención de Título de Biólogo con mención en Ecología y Gestión.

Sustrato y humedad; su interrelación como factores determinantes de Polifenismo en *Pseudopogonogaster hebardi* (Terra, 1982) en laboratorio.

José Manuel Falcón Reibán

Director: Sebastián Padrón M. PhD.

2018
Agradecimientos

A mi padre, en su memoria, quién me enseñó acerca del mundo natural y promovió mi fascinación por aquellos “bichos” que pocos aprecian y admiran.

A mi madre, quién me ha apoyado a lo largo de mi vida, en mis estudios y en mi crecimiento como persona y profesional.

A mis amigos, a quienes no podrá terminar de agradecer en esta vida por todo el apoyo y la paciencia que me han brindado.

Agradezco especialmente a Sebastián Padrón; quién no solamente me ha brindado su ayuda como profesional, sino además, me ha brindado su amistad y confianza, y gracias a quién, puedo presentar este trabajo.

A Boris Tinoco, quién me ha brindado su conocimiento y ayuda en gran parte de este proyecto.

A Patricio Picón, amigo incondicional, quién me ha brindado su apoyo en colectas en el campo, manejo de la colonia y sobre todo por la gran labor fotográfica que ha realizado y que se presenta en este trabajo.

A quienes forman parte del Ministerio del Ambiente por otorgarme los permisos necesarios para la realización de este estudio.

A todas aquellas personas, que de una u otra manera han colaborado con la realización de este proyecto, tanto en el campo como en laboratorio; y aunque sin hacer mención a cada una; no dejo de reconocer y agradecer su labor.
Índice

Resumen .. iv
Abstract .. v
Introducción .. 1
Metodología ... 3
 Fase de campo ... 3
 Descripción de la especie .. 4
 Diseño de la investigación .. 5
 Fase de laboratorio ... 6
 Análisis de datos ... 7
Resultados .. 8
Discusiones ... 10
Conclusiones ... 14
Recomendaciones .. 15
Referencias .. 16
Anexos .. 22

Índice de tablas

Tabla 1. Modelo para explicar la interacción entre humedad y sustrato con la probabilidad de cambiar de un morfo a otro... 9

Índice de gráficos

Gráfico 1. Probabilidad de expresión de fenotipos distintos dependiente de la procedencia de los individuos. .. 9
Gráfico 2. Probabilidad de expresión de fenotipos distintos dependiente de la interacción de la humedad ambiental y el sustrato. ... 10

Índice de anexos

Anexo 1. Datos climáticos de la Estación El Gullán, período Abril- Agosto 2017. 22
Anexo 2. Especímenes manejados en cautiverio y su tratamiento experimental. 22
Anexo 3. Rango promedio RGB de los morfos originales y los resultantes de cambio fenotípico. ... 24
Anexo 4. Contenedores utilizados para albergar a cada individuo. (A y B) contenedores para primeros estadíos, (C) contenedor para individuos sobre el cuarto estadío. 25
Anexo 5. Estantería de cría y experimentación de P. hebardi. .. 25
Anexo 6. Hembra juvenil de Pseudopogonogaster hebardi, Morfo Musgo, forma oscura.
Fotografía: Sebastián Padrón... 26

Anexo 7. Hembra juvenil de Pseudopogonogaster hebardi, Morfo Musgo, forma oscura. Fotografía: Sebastián Padrón... 26

Anexo 8. Hembra subadulta de Pseudopogonogaster hebardi, Morfo Liquen, melánico. Fotografía: Sebastián Padrón... 27

Anexo 9. Hembra adulta de Pseudopogonogaster hebardi, Morfo Liquen. Fotografía: Patricio Picón... 27

Anexo 11. Macho inmaduro de Pseudopogonogaster hebardi, Morfo Liquen, forma oscura. Fotografía: Patricio Picón... 28

Anexo 12. Hembra adulta de Pseudopogonogaster hebardi, Morfo Musgo, forma clara. Fotografía: Patricio Picón... 29

Anexo 13. Hembra inmadura de Pseudopogonogaster hebardi, Morfo Liquen. Fotografía: Patricio Picón... 29

Anexo 14. Macho inmaduro de Pseudopogonogaster hebardi, Morfo Liquen, melánico. Fotografía: Patricio Picón... 30

Anexo 15. Hembra inmadura de Pseudopogonogaster hebardi, Morfo Liquen, forma oscura. Fotografía: Patricio Picón... 30

Anexo 16. Hembra adulta de Pseudopogonogaster hebardi, Morfo Liquen verde, forma clara. Fotografía: Patricio Picón... 31

Anexo 17. Hembra adulta de Pseudopogonogaster hebardi, Morfo Liquen blanco. Fotografía: Patricio Picón... 31
SUSTRATO Y HUMEDAD; SU INTERRELACIÓN COMO FACTORES DETERMINANTES DE POLIFENISMO EN
Pseudopogonogaster hebardi (Terra, 1982) EN LABORATORIO.

Resumen

El polifenismo es un fenómeno evolutivo condicionado por factores ambientales y la interrelación de estos con el genotipo de los organismos, el cual expresa fenotipos distintos; para efectos de estudio se utilizó como organismo modelo a Pseudopogonogaster hebardi, Mantodea: Thespidae. Se manejó una colonia experimental, y se simularon condiciones naturales y artificiales. Los resultados de este estudio mostraron que P. hebardi tiene la capacidad de expresar morfos distintos a los de sus progenitores, según sean las condiciones ambientales donde se desarrolle; sin embargo, no se consiguió obtener un cambio total de un fenotipo a otro. Inferimos que los factores seleccionados, no son los únicos constituyentes, para denotar cambios en los individuos; las condiciones experimentales no sean las adecuadas y las poblaciones naturales muestren patrones de aislamiento.

Palabras clave: Polifenismo, mantodea, thespidae, evolución parapátrica, plasticidad fenotípica.

PhD. Sebastián Padrón Martínez
Director del Trabajo de Titulación

PhD. Antonio Crespo Ampudia
Coordinador de la Escuela de Biología

José M. Falcón Reibán
Autor
SUBSTRATE AND HUMIDITY; ITS INTERRELATION AS DETERMINING FACTORS OF POLYPHENISM IN *Pseudopogonogaster hebardi* (Terra, 1982) IN LABORATORY.

ABSTRACT

Polyphenism is an evolutionary phenomenon conditioned by environmental factors and the interrelation of these with the genotype of organisms that express different phenotypes. The model organism for study purposes was *Pseudopogonogaster hebardi*, Mantodea: Thespidae. An experimental colony was managed and natural and artificial conditions were simulated. The results of this study showed that *P. hebardi* had the ability to express morphs different from those of its parents according to the environmental conditions where it developed. However, it was not possible to obtain a total change from one phenotype to another. It was inferred that the selected factors were not the only constituents to denote changes in the individuals, the experimental conditions were not adequate and the natural populations showed isolation patterns.

Key words: Polyphenism, mantodea, thespidae, parapatric evolution, phenotypic plasticity.

PhD. Sebastián Padrón Martínez
Degree Work Director

José M. Falcón Reibán
Author

PhD. Antonio Crespo Ampudia
School Coordinator

Translated by
Ing. Paul Arpi
Introducción

El polifenismo es la variación y expresión de fenotipos diferentes en un organismo como resultado de la exposición a condiciones ambientales distintas y las adaptaciones que el organismo sufre debido a estas condiciones (McCollum & Van Buskirk, 1996; Pfennig & McGee, 2010). A pesar de que el polifenismo es frecuente en varias especies, este ha sido muy poco estudiado y comprendido (Shapiro, 1976; Bond, 2007; Simpson et al., 2011; Pfenning et al., 2010); por lo que su estudio aporta valiosos conocimientos sobre las adaptaciones de los organismos a su ambiente. Para ello, en este estudio, se ha tomado a la especie *Pseudopogonogaster hebardi*, una especie de mantis neotropical distribuida en los Andes sur de Ecuador, como organismo modelo, para lo cual se ha establecido una colonia de cría con fines investigativos y experimentales.

Se considera que los cambios fenotípicos expresados en una especie otorgan características distintivas entre individuos, lo que conlleva a cambios genéticos y que pueden ser seleccionados o eliminados de acuerdo a la ventaja adaptativa que estos confieran en un periodo de tiempo determinado (West-Eberhard, 1986). Por ejemplo, Shapiro (1976), menciona la capacidad de expresar morfos distintos de pelaje de acuerdo a la estacionalidad, los cuales confieren ciertas ventajas a los animales para confundirse en el ambiente, evitando así, ser vistos por sus predadores o presas.

El polifenismo es un proceso evolutivo (Abouheif & Wray, 2002), que otorga características fenotípicas a diferentes organismos (Bond, 2007) tales como: insectos (Abouheif & Wray, 2002; Brisson, J. A., Davis & Stern, 2007), anfibios (McCollum, & Van Buskirk, 1996) y arácnidos (Bonte & Maelfait, 2004); condicionado por diversos factores ambientales (Bonte & Maelfait, 2004) y la plasticidad fenotípica o ecológica de los organismos para adaptarse a entornos cambiantes o alterados (West-Eberhard, 1989). Ya sea por las condiciones climáticas, sean éstas estacionales o estables, en las que se desarrolla una especie o poblaciones (Shapiro, 1976), tipo de hábitat (West-Eberhard, 1989; Bonte & Maelfait, 2004), estímulos químicos o biológicos (Seehausen & van Alphen, 1998; Abouheif & Wray, 2002; Tanaka, 2004; Bonte & Maelfait, 2004; Brisson et al., 2007), influencia de sustancias en los medios en los que se desarrollan (Wente, & Phillips, 2003), presencia o ausencia de predadores (McCollum, & Van Buskirk, 1996; Muschick et al, 2011), número de individuos (Tanaka, 2004; Cease et al., 2010), entre otros. Todas estas respuestas frente a múltiples factores ambientales son otorgadas por un gen capaz de expresar fenotipos distintivos entre individuos de una
especie (Fusco & Minelli 2010).

Existen diferencias claras entre polimorfismo y polifenismo (Brisson et al., 2007), términos comúnmente utilizados para describir fenómenos similares; el polimorfismo envuelve todo carácter que esté genéticamente controlado y sea más o menos discontinuo en su expresión fenotípica (Mayr, 1968). Siendo este el resultado de la existencia de genes capaces de expresar morfologías distintivas entre individuos de una especie (Harvell, 1994; de Castro, 2006), los mismos que son expresados en generaciones futuras, estos genes están inmersos dentro del genotipo de una población; la cual posee varios genes con capacidades de expresar fenotipos variables, y puede ocurrir que solo exista dos tipos alternativos discontinuos, como el caso del dimorfismo sexual, o pueden existir múltiples variaciones o tipos como en el caso de las distintas castas de una colonia de hormigas (Reina, soldados y obreros).

Mientras que, el polifenismo, a pesar de ser un proceso relacionado con mecanismos genéticos de expresión fenotípica condicionados por factores ambientales, se diferencia del polimorfismo debido a que las especies con morfos polifénicos comparten un mismo genotipo (Fusco & Minelli 2010); en otras palabras, es la expresión de varios fenotipos distintos condicionados por un gen capaz de manifestarlos (Grearson & Liston, 2012); este fenómeno involucra morfos entre individuos o poblaciones que poseen diferencias discretas en sus fenotipos, sin morfologías intermedias y a menudo comportamentales (Fusco & Minelli 2010; Grearson & Liston, 2012).

Al polifenismo se lo ha tomado como un elemento evolutivamente importante, al considerar que podría actuar como un factor condicionante de procesos de especiación (West-Eberhard ,1986 &West-Eberhard, 1989). Debido a la variación en la expresión de fenotipos distintos, especialmente aquellos que muestren coloraciones muy distintas entre morfos (West-Eberhard ,1986; Wente, & Phillips, 2003) los individuos pueden diferenciarse en poblaciones muy disímiles, aun compartiendo un mismo hábitat (West-Eberhard ,1986 & Pfennig et al., 2010), por lo que se podrían aislarse a lo largo de varias generaciones en taxas distintas (Pfennig & McGee, 2010), siendo las diferencias fenotípicas las condicionantes en este caso, del inicio de un proceso de especiación (Minelli & Fusco, 2012).

El polifenismo confiere ventajas adaptativas entre individuos de una especie, relacionadas con su interacción con factores ambientales (McCollum & Van Buskirk, 1996; Pfennig & McGee, 2010); estos cambios, pueden conducir a la selección de una
variedad o morfotipo de una especie, según sea su respuesta a los factores ambientales y la supervivencia de la población; a su vez, se considera que estos cambios podrían ser condicionantes de especiación, en particular, especiación simpátrica (West-Eberhard, 1986; Mayr, E. 1968; Pfennig & McGee, 2010), la cual es muy poco frecuente y difícil de evidenciar, ya que los organismos que están o han sufrido procesos de especiación simpátrica, conviven en un mismo ambiente, sin barreras geográficas o físicas que impidan el entrecruce de sus poblaciones. Como en el caso de peces cíclicos del complejo *Pundamilia nyererei* (Antes *Haplocromis*) que según Seehausen & van Alphen (1998) la selección por parte de las hembras, dependiente de la coloración de los machos, ha originado poblaciones aisladas; esto fue posteriormente corroborado por Kocher (2004); demostrando que las poblaciones están variando por consecuencia del aumento de sólidos en suspensión en las aguas, cambios de coloración en individuos masculinos y selección sexual por parte de las hembras.

La especiación simpátrica involucra la divergencia de una parte de una población hasta conseguir independencia evolutiva dentro de un mismo espacio geográfico, es decir, el aislamiento reproductivo de una parte de la población origina una nueva especie con el pasar del tiempo, aun pudiendo estar en contacto con otra parte de la población original (Arnold, 1997; Bush, 1969; Endler, 1989). Generalmente este proceso conlleva a que la nueva o las nuevas poblaciones utilicen nichos ecológicos distintos, pero, mantienen la distribución de la especie ancestral (Bush, 1969; Bonte, D., & Maelfait, J. P., 2004) desarrollando mecanismos de aislamiento reproductivo (Perfectti, 2002). La divergencia en simpatria puede estar favorecida por la especialización ecológica de una parte de la población (Bush, 1969; Seehausen & van Alphen 1998; Perfectti, 2002).

Para evidenciar los cambios plásticos que posee *P. hebardi* de acuerdo a las condiciones impuestas en un ambiente dado, en este estudio se experimentó probando diferentes factores ambientales como determinantes de polifenismo. Simulando las condiciones naturales donde ocurre la especie y generando nuevas condiciones para favorecer la expresión de fenotipos distintos.

Metodología

Fase de campo

La estación Científica “El Gullán” se encuentra ubicada en la parroquia Las Nieves, perteneciente al cantón Nabón. Tiene una superficie de 120 hectáreas y está ubicada entre los 2800 y 3000 msnm. Se pueden distinguir formaciones vegetales como el
bosque Montano Alto, el de Neblina Montano y Páramo Herbáceo, allí existen también, especies introducidas como el pino y el ciprés, así como pastizales para ganado.

Las referencias climáticas y factores ambientales que fueron simulados en laboratorio corresponden a los registrados en La Estación científica El Gullán durante el período Abril – Agosto (Ver Anexo 1); mediante el uso de medidores ambientales de temperatura y humedad, HOBO U23 Pro v2 External Temperature Data Logger, se obtuvo el rango de temperatura y humedad necesaria para controlar y simular los parámetros ambientales de la localidad.

Descripción de la especie

El género *Pseudopogonogaster* comprende seis especies (Rivera, Yagui & Ehrmann, 2011) distribuidas en Colombia, Ecuador y Perú (Lombardo & Agabiti, 2001; Rivera, Yagui & Ehrmann, 2011); en Ecuador se encuentran las especies *P. mirabilis* y *P. hebardi*, este género comprende especies polífénicas (Rivera & Svenson, 2016) de pequeño tamaño (23-27 mm); de coloración variable entre verde, gris, blanco, negro y marrón con tonalidades muy versátiles (Salazar, 2005), presentando variaciones de color que contrastan entre ellas como bandas de distintas tonalidades en su cuerpo y sus apéndices locomotores; según la descripción de Rivera et al. (2011), el género presenta
las siguientes características: la cabeza presenta un vértice poco desarrollado y escasamente más elevado que la línea imaginaria que conecta la región superior de los ojos, poseen un vértice cóncavo en vista dorsal, los tubérculos yuxtaoculares ligeramente elevados como el vértice. Escudo frontal transversal, con una protuberancia notable y bien delimitada a lo largo de los bordes laterales; el clípeo posee un tubérculo medial; el pronoto con prosona y sección proximal del metasona protuberante, metasona medialmente constreñido y con tubérculos distales bien desarrollados y protuberantes, frecuentemente cortados longitudinalmente por una profunda depresión perteneciente a la carina longitudinal del pronoto, siendo en la mayoría de las especies vestigial. El pronoto presenta un margen lateral frecuentemente denticulado en varios grados (Salazar, 2000); los denticulos pueden estar ausentes en los machos y basalement se encuentran rodeados por una pigmentación oscura. Poseen una dilatación supracoxal bastante desarrollada. El primer lóbulo de la coxa posee un margen anterior con diminutas dentículas. Fórmula de espinación de patas delanteras (F= Fémur, ES= Espinas Externas, DS= Espinas Discoidales, T= Tibia, IS= Espinas Internas, ES= Espinas Externas): F= 12IS / 4ES / 4DS; T= 8-11 IS/6ES. Patas meso y metatorácicas esbeltas y largas (Rivera et al., 2011). Los machos poseen alas bastante desarrolladas (Salazar & Carrejo, 2002); alas mesotorácicas esbeltas y largas, al encontrarse dobladas las alas meso y metatorácicas superan la longitud del abdomen. Las alas presentan varias manchas oscuras contrastantes. Las hembras son ápteras.

El meso y metanoto de las hembras presenta una proyección distal recurvada. Abdomen de la hembra dilatado, cada tergo exhibe un lóbulo de apariencia foliácea de varios tamaños ubicados dorsomedialmente, estos lóbulos son claramente notables en los tergos 2, 3 y 4, los cuales son mucho más desarrollados y con márgenes dorsales irregulares, a veces similares a lóbulos secundarios. Los ángulos lateroposteriores de los segmentos abdominales poseen pequeños lóbulos triangulares. Los machos presentan el abdomen delgado, lobulado como en las hembras, pero no tan notorio. Los lóbulos dorsales de los tergos 2 a 4 están presentes pero atrofiados, rodeados y ocultados por las alas; sin embargo, estos lóbulos son distintos en las ninfas masculinas. La placa supraanal posee la apariencia similar a una lengua (Rivera, Yagui & Ehrmann, 2011).

Diseño de la investigación

Se simularon las condiciones ambientales naturales para el manejo y cría de la colonia experimental de *P. hebardi* dentro del Laboratorio de Entomología, recreando escenarios o factores similares en los que la especie se desarrolla naturalmente, tomando
como hábitat de referencia la localidad El Gullán, La Paz-Azuay. Se manejó un grupo control y se experimentó con otros grupos para inducir cambios fenotípicos en los individuos. El morfotipo seleccionado como referente para la experimentación de inducción de cambios fenotípicos es el que presenta la apariencia de liquen blanco, siendo éste el morfo más frecuente de la localidad, por lo que se tomó al mismo como el morfo “original” para inducir cambios en su fenotipo.

El sustrato es sin duda uno de los principales factores determinantes de las variaciones fenotípicas en muchas especies (Lindberg & Pearse, 1990; Byers, 1990). Considerando que una de las principales características de *P. hebardi* es su alta variación de morfotipos relacionados a los sustratos dónde habita, se lo ha escogido como uno de los dos principales condicionantes de las diferentes expresiones fenotípicas en este estudio.

La humedad se considera como otro factor importante para la expresión de fenotipos diferentes; es por esto que se la ha relacionado con el sustrato donde habita la especie, especialmente en los líquenes, ya que los mismos; al encontrarse deshidratados su coloración es más clara o blanquecina (Fleig & Riquelme, 1991); y al aumentar la humedad ambiental o con la presencia de lluvia, éstos se tornan más verdes, presumiblemente por mayor actividad de parte de las cianobacterias simbiotones (Honda & Villegas, 1999), además, resaltan o se vuelven más notorias las estructuras de los líquenes con la presencia de humedad o agua.

Fase de laboratorio

En el Laboratorio de Entomología de la Universidad del Azuay se llevó a cabo la parte experimental, aquí se instaló un área destinada para la cría y manejo de la especie con fines experimentales y científicos; recreando las condiciones ambientales y experimentales para el manejo de *P. hebardi*, y a su vez, se evaluó la interacción entre la humedad y el sustrato como los posibles factores principales condicionantes del polifenismo en esta especie.

Se seleccionaron 20 individuos, nacidos en cautiverio y otros colectados en el campo, para cada tratamiento experimental, los mismos que se encontraban entre el primer y tercer estadio de desarrollo, ya que facilitaba el condicionamiento para la expresión de fenotipos distintos (Ver Anexos, Anexo 2). Se mantuvo un grupo control de 10 individuos, el cual se manejó de acuerdo a parámetros ambientales propios de la localidad de referencia. Se evaluó si existieron diferencias en el fenotipo (variaciones en su coloración) de los individuos criados en condiciones experimentales comparándolos
con el morfo liquen blanco como referente original; para ello, se utilizó el programa Photoshop CS6 2016 y se midió el rango RGB (Rojo, Verde y Azul) del color de cada individuo utilizando fotografías de los mismos, se escogió el segundo segmento abdominal para seleccionar ocho puntos (pixeles) de color y promediar el rango de color en cada individuo que mostró un cambio visible; de esta manera se evitó que los datos referentes a la coloración de los especímenes sean subjetivos (Anexo 3).

Se utilizaron contenedores cilíndricos de plástico de 10 centímetros de altura y 5 centímetros de diámetro para los individuos en los primeros estadíos, para facilitarles la captura y encuentro de presas; y otros de 14 centímetros de altura y un diámetro de 10 centímetros para los individuos más desarrollados (Anexo 4). Se realizó simulaciones de líquenes con canastillas plásticas y silicona para cristal (no tóxica), blanca y negra como sustrato de referencia; para simular otros tipos de sustrato (musgo verde) se usaron plantas artificiales, similares a musgos, usadas para decoración en acuarios; con el fin de evitar cambios en la coloración del sustrato y mantenerlo uniforme durante el período de experimentación (Ver Anexos, Anexo 4).

Un primer y segundo grupo se sometieron a humedad más elevada (>70%) en dos sustratos distintos (Musgo y Liquen Blanco); un tercer y cuarto grupo fueron sometidos a humedad más baja (<50%) de igual manera, en ambos sustratos.

Análisis de datos

Se midió si estas variables se interrelacionaron para condicionar la expresión de fenotipos distintos mediante la ejecución de un modelo de regresión logística en el software R (R Core Team, 2013). Este método permite modelar la probabilidad de que un evento ocurra en función de otros factores (Balakrishnan, 1991), para explicar y predecir una variable binaria, manifestando si un factor es válido o inválido para probar una variable (Agresti, 2002); en este caso, muestra la probabilidad de que los factores ambientales (sustrato y humedad) sean significativos o no para ocasionar cambios en el fenotipo de *P. hebardi*.

Por último, se evaluó si ha existido o no evidencia de cambios morfológicos entre los individuos sometidos a los distintos tratamientos y cuáles de éstos han representado ser condicionantes importantes para expresar fenotipos distintos. Para ello, se consideró si ha existido un cambio visible y apreciable entre el morfo de la madre (Original) y la descendencia sometida a los distintos experimentos; para ello, se mantuvo a los
individuos en cada tratamiento experimental hasta que alcanzaron un sexto estadío de desarrollo, período de tiempo entre seis a siete meses; según observaciones propias en laboratorio, en el cual se encuentran por finalizar su desarrollo ninfal o ya han alcanzado la edad adulta y los cambios morfológicos son visualmente evidentes.

Resultados

De un total de 62 individuos que alcanzaron su sexto estadío de desarrollo, 35 de ellos, provenientes tanto de cría en cautiverio como de colecta de campo, mostraron un cambio apreciable en su fenotipo; 33 individuos fueron mantenidos en condiciones de humedad elevada (<70%), de los cuales 27 mostraron una respuesta favorable al cambiar su fenotipo, los otros seis individuos no mostraron un cambio visible en su fenotipo y únicamente uno de ellos provenía de cría en cautiverio. Por otra parte, 29 individuos fueron mantenidos en condiciones de humedad baja (>50%) de los cuales, 8 mostraron un cambio en su fenotipo, siendo aquellos que se encontraban en un sustrato distinto (musgo) al “original” en este estudio, los que mostraron diferencias visibles, siendo únicamente tres, provenientes de campo (Ver Anexos, Anexo 2).

Los resultados muestran que existe una marcada interacción entre la humedad y el sustrato en cuanto a la probabilidad de que *P. hebardi* exprese fenotipos distintos (Ver Tabla 1). La humedad ambiental demostró ser por sí sola, una variable fuerte para inducir cambios en el fenotipo de los individuos. Siendo aquellos, los criados en condiciones de humedad más elevada (> 70%) los que presentaron un mayor cambio en su expresión fenotípica frente a los individuos que se manejaron en condiciones de humedad más baja (< 50%). El sustrato, individualmente, no representó ser un factor significativo para condicionar respuestas de cambio de un fenotipo a otro. Estos resultados indican que la humedad es el factor más importante para condicionar cambios en la expresión fenotípica, sin embargo la magnitud de su efecto depende del sustrato. El Gráfico 2, representa los resultados de la interacción Humedad: Sustrato, en donde el eje Y, muestra la media de la probabilidad de que los individuos expresen un fenotipo distinto. Además, existió influencia en los resultados dependiente de la procedencia de los individuos sean éstos, provenientes de colectas en el campo o de nacimientos en cautiverio.
Tabla 1. Modelo para explicar la interacción entre humedad y sustrato con la probabilidad de cambiar de un morfo a otro.

Coeficientes:

| | Estimado | Error estándar | Valor Z | Pr (> |z|) |
|-------------------------|----------|----------------|---------|--------|
| (Intercept) | 3,43 | 1,06 | 3,25 | 0,001176** |
| HumedadBaja | -5,49 | 1,46 | -3,77 | 0,000162*** |
| SustratoMusgo | -1,24 | 1,03 | -1,20 | 0,229488 |
| ProcedenciaB | -2,05 | 0,80 | -2,57 | 0,010261* |
| HumedadBaja:SustratoMusgo | 4,39 | 1,70 | 2,59 | 0,00966** |
| Cód Signif. | 0 ‘****’ | 0,001 ‘***’ | 0,01 ‘*’ | 0,05 ‘.’ | 0,1 ‘’ | 1 |

El Gráfico 1 muestra, en el eje Y, la probabilidad de que exista influencia correspondiente a la procedencia de los individuos, y en el eje X la procedencia, A, para los individuos nacidos en laboratorio y B, los individuos colectados en el campo. Como se puede observar, los individuos provenientes de laboratorio (A) muestran una mayor tendencia a expresar cambios en su fenotipo frente a los individuos colectados en el campo (B). Sin embargo, existe un solapamiento entre ambos, por lo que la tendencia a expresar un fenotipo distinto es medianamente marcada.

Gráfico 1. Probabilidad de expresión de fenotipos distintos dependiente de la procedencia de los individuos.
Discusiones

Al finalizar la fase de prueba, los individuos sometidos a los distintos tratamientos experimentales, no presentaron una variación muy marcada en su expresión fenotípica. Los cambios evidenciados, sin embargo, respondieron a los nuevos parámetros impuestos a cada individuo. Pese a la capacidad para expresar un morfo distinto al original, no se consiguió un cambio fuerte en su fenotipo, es decir, la variación cromática resultante no fue la esperada (Morfo musgo verde).

Además, el efecto de la procedencia de los individuos tuvo un valor significativo al momento de relacionarlo con cambios en la expresión fenotípica. Esto puede estar relacionado al tamaño de la muestra, la cual fue relativamente baja. A su vez, los individuos criados en cautividad permanecieron todo su desarrollo, desde el nacimiento, sometidos a los distintos tratamientos, frente a aquellos colectados en campo que entraron a experimentación al encontrarse en estadíos más avanzados.

A pesar de que, en condiciones naturales pueden ser múltiples factores ambientales los que condicionen fenotipos distintivos entre una misma especie; algunos son más influyentes o determinantes que otros para dichas expresiones, como la temperatura.
(Rojas et al. 2000; Valetti, Salas, & Martino, 2013); en el desarrollo de un organismo (Rosenthal, 2012) y condicionante de expresiones fenotípicas distintivas en varios organismos (Gasca, 2014). A su vez, varios estudios relacionados con la visión de los insectos (Belmonte & Cerveró 1999; Cohen, Lapidot & Antignus, 2002) sugieren que la intensidad lumínica puede afectar al comportamiento y morfología de los mismos (Riera, 2013). En el caso de los mántidos, los cuales por su ecología y etología son eficientes cazadores con una visión bastante desarrollada (Hurd & Eisenberg, 1984; Hurd, 1988), la luz podría estar influenciando en su expresión fénica, sobre todo en su coloración.

Sin embargo, mediante pruebas y experimentos anteriores *P. hebardi* ha mostrado mayor relación en su expresión de fenotipos distintos con el sustrato dónde habita y la humedad ambiental, por lo que se escogió estos dos factores ambientales como los principales inductores de cambios morfológicos en la especie.

Como se observó, la humedad ambiental resultó ser significativa para el cambio de un fenotipo a otro. Siendo los individuos nacidos en laboratorio aquellos que presentaron mayor probabilidad de expresar un morfo distinto al original. Éstos cambios más marcados, pueden relacionarse con la edad del individuo y las condiciones de cría en cautiverio (Gómez, 2012), teniendo en cuenta que, éstos, desde su eclosión son sometidos a los distintos tratamientos experimentales, frente a aquellos individuos colectados en el campo, que mayormente se encontraban atravesando su segundo o tercer estadío de desarrollo; los mismos, mostraron mayor resistencia a expresar morfos distintos.

La humedad ambiental es un condicionante fuerte para provocar cambios en el fenotipo de *P. hebardi*. En su ambiente natural, este insecto habita sobre líquenes y musgos; los cuales muestran adaptaciones en sus estructuras para soportar condiciones de humedad ambiental variable (Gerson, 1973; Avendaño & Aguirre, 2007; Zúñiga et al., 2012); las mismas que pueden relacionarse con la capacidad de cambio de coloración en *P. hebardi*, al aumentar la humedad ambiental, en especial el caso de los líquenes, los cuales muestran mayor actividad de las cianobacterias simbiontes y su coloración se torna más verdosa (Gerson, 1973; Fleig & Riquelme, 1991; Honda & Vilegas, 1999; Zúñiga et al., 2012) por consiguiente, el insecto tiene que variar su coloración para semejar la del sustrato y pasar desapercibido. Al disminuir la humedad ambiental, los líquenes se deshidratan y presentan una tonalidad blanquecina (Honda & Vilegas, 1999; Zúñiga et al., 2012), éstos, al estar en áreas más expuestas (matorral y vegetación
arbustiva) permanecen gran parte del día con este aspecto, y los insectos que habitan en ellos, muestran generalmente, morfos claros (Gerson, 1973). Como se evidenció en laboratorio, los insectos sometidos a una humedad menor a 50%, en su mayoría, no mostraron cambios en su coloración y permanecieron con tonalidades blancas (Morfo original para el estudio).

Debido a la humedad ambiental el hábitat donde ocurre P. hebardi es bastante heterogéneo y su capacidad para camuflarse depende de su capacidad para adaptarse a nuevas condiciones ambientales (Farkas et al., 2013); éstas condiciones, favorecen o afectan la expresión de morfos distintos (Núñez et al., 2003; Simpson et al., 2011; Farkas et al., 2013), interactuando con el genotipo de los individuos, y de esta manera, favoreciendo ciertos fenotipos y permitiendo la especialización o adaptación a escala local en un ambiente heterogéneo determinado (Núñez et al., 2003).

Por otra parte, los resultados mostraron que el sustrato no significó en gran medida, un factor para provocar cambios en el fenotipo de los individuos, pese a que esta especie de mantis posee un aspecto muy similar al sustrato donde habita (Lombardo & Ayala, 1999; Rivera & Ehrman, 2011). Esto podría resaltar la probabilidad de que la población de P. hebardi muestre patrones de aislamiento (Endler, 1989; Perfectti, 2002; Núñez et al., 2003), dependientes del hábitat de preferencia de cada morfo o fenotipo (Farkas et al., 2013). Como se mencionó anteriormente, P. hebardi mostró que el morfo seleccionado como referente original (Liquen Blanco) para el estudio; no obtuvo un cambio total hacia el morfo esperado (Musgo), correlacionando estos datos de laboratorio con los monitoreos realizados en el campo, para la toma de datos y parámetros ambientales; se evidenció que los individuos que muestran un morfo similar a líquenes, se encuentran en áreas más expuestas a la luz, humedad más baja, vegetación con predominancia arbustiva y en plantaciones de especies introducidas como pino (Pinus patula y Pinus radiata). Por otro lado, aquellos individuos que presentan un morfo similar a musgos, se los ha encontrado en zonas de bosque nativo, con menos exposición a la luz y en un ambiente más húmedo.

Por lo tanto, P. hebardi, siendo una especie polifénica y tomando en cuenta que la plasticidad fenotípica es un factor que puede afectar los procesos de evolución (Perfectti, 2002; Drury et al., 2015), debido a que puede interferir en el reconocimiento de individuos conespecíficos (Drury et al., 2015) ocasionando segregación entre grupos de individuos disímiles y favoreciendo el aislamiento reproductivo (Perfectti, 2002), está estrechamente relacionada con patrones de especiación (Endler, 1989; Perfectti,
2002; Núñez et al., 2003; Minelli & Fusco, 2012), lo cual favorece la hipótesis de que la especie se encuentra atravesando inicios de un proceso de especiación. Sin embargo, a escala humana es complejo predecir o documentar si una especie está mostrando inicios o no de un proceso de especiación (Endler, 1989; Kocher, 2004) o simplemente sus poblaciones muestren respuestas plásticas frente a condiciones ambientales alteradas, distintas, o, por selección y preferencia de un tipo de hábitat determinado (Endler, 1989; Perfectti, 2002; Kocher, 2004; Drury et al., 2015) sin necesariamente mostrar aislamiento reproductivo (Endler, 1989; Minelli & Fusco, 2012). Por lo que sumaría valiosos aportes al estudio el realizar análisis genéticos para confirmar si existe o no aislamiento entre las poblaciones y validar la hipótesis.

Con la probabilidad de que las poblaciones naturales de *P. hebardi* manifiesten una respuesta favorable a mostrar inicios de un proceso de especiación; el modelo de especiación parapátrica (Arnold, 1997; Perfectti, 2002) encaja para esta especie; debido a que este tipo de especiación resulta sin que exista una barrera geográfica completa o marcada que separe las poblaciones (Endler, 1989; Perfectti, 2002); tal como sucede en el hábitat natural donde ocurre *P. hebardi*, en dónde, la continuidad del hábitat difiere por un ligero gradiente altitudinal, separando las áreas de matorral arbustivo y el bosque nativo; otorgando características ambientales distintivas a los dos tipos de hábitat sin que exista una barrera marcada que los separe. Este modelo detalla que, inclusive, la especie descendiente puede compartir parte del rango de distribución con la especie madre e híbridar en áreas de contacto entre ambas (Perfectti, 2002). Las poblaciones resultantes difieren debido a factores ambientales, estocásticos o por la misma selección local (Endler, 1989; Perfectti, 2002; Núñez et al., 2003). El flujo interpoblacional y la hibridación podrían anular la divergencia (Endler, 1989; Arnold, 1997), pero debido a determinadas situaciones, la selección que favorece las mutaciones locales (Perfectti, 2002; Núñez et al., 2003), puede conducir a la formación de declives en la frecuencia de algunos alelos de la población (Mayr, 1968; Arnold, 1997; Perfectti, 2002), la selección sexual y la disminución en eficacia de los híbridos llevarían al desarrollo final de la especiación (Perfectti, 2002).

A su vez, Perfectti (2002) menciona que los organismos candidatos a sufrir especiación parapátrica, son aquellos con hábitos sedentarios y con poca capacidad de dispersión. Por lo tanto *P. hebardi* se acopla a esta descripción, debido a que las hembras de esta especie son ápteras (Lombardo & Ayala, 1999; Rivera & Ehrman, 2011) y los machos, a pesar de poseer alas, no son grandes voladores (observaciones personales,
información sin publicar) por lo que su capacidad de dispersión es relativamente baja.

Teniendo en cuenta estos aspectos; los machos de esta especie son quienes recorren el entorno en busca de potenciales parejas reproductivas (Rivera y Ehrman, 2011; Observaciones personales, información sin publicar) por lo que podrían estar siendo ellos, quienes actúen principalmente en la selección y aislamiento reproductivo (Endler, 1989; Perfectti, 2002); debido a que, el costo energético de buscar pareja fuera de su rango de distribución (Desde el Bosque al Matorral o viceversa) sería elevado, optarían por aparearse con hembras que habiten el mismo entorno (Pianka & Ayala, 1982); marcando así, inicios de un proceso selectivo.

A su vez, el hábitat impondría ciertos factores que promuevan o beneficien a un morfo u otro (Pianka & Ayala, 1982; Endler, 1989; Perfectti, 2002); por lo tanto, se marcaría una barrera selectiva (Perfectti, 2002; Kocher, 2004) por parte de los individuos que mejor se acoplen a las condiciones ambientales de un entorno dado (Perfectti, 2002; Núñez et al., 2003; Minelli & Fusco, 2012); mostrando una ventaja adaptativa (Endler, 1989) y por ende, reproduciéndose y promoviendo esos genes en las poblaciones siguientes (Arnold, 1997; Perfectti, 2002; Kocher, 2004).

P. hebardi posee características que le atribuyen ventajas adaptativas (Endler, 1989; Arnold, 1997) en distintos ambientes; la capacidad de expresar morfos distintos (Lombardo & Ayala, 1999; Rivera & Ehrman, 2011) y su ciclo de vida corto (Información sin publicar) le permiten acoplarse a entornos cambiantes y mostrar patrones de selección natural (Perfectti, 2002) dependientes del ambiente donde se desarrolle, favoreciendo el aislamiento entre individuos de la población.

Conclusiones

Los resultados de este estudio, mostraron que *Pseudopogonogaster hebardi* tiene la capacidad de expresar morfos distintos a los de sus progenitores, (Morfo original) según sean las condiciones ambientales donde se desarrolle; sin embargo, no se consiguió obtener un cambio total de un fenotipo a otro.

La humedad ambiental, fue el factor determinante más significativo, para que la especie muestre cambios en su fenotipo. El sustrato por sí solo, no fue un factor significativo para que los individuos expresen fenotipos distintos.

Se teoriza la posibilidad de que esta especie esté mostrando inicios de un proceso de especiación. Debido a la capacidad de expresar morfos distintos lo que le confiere
ciertos atributos como un organismo candidato y susceptible a sufrir dicho proceso.

Los resultados sin embargo, no toman en cuenta otras variables ambientales que pudieran estar influenciando sobre P. hebardi para que exprese morfos distintos. Por lo que se vuelve necesario continuar con otros estudios para evidenciar si existe o no un proceso selectivo que influencie en el aislamiento poblacional de la especie.

Recomendaciones

Debido a la cantidad de factores ambientales que pueden influenciar sobre P. hebardi para que exprese fenotipos alternativos, se tornaría favorable realizar otros experimentos: sumando e interrelacionando otras variables para tratar de evidenciar cuáles actúan directamente sobre la especie para favorecer otros fenotipos. Realizar monitoreos de las poblaciones naturales para visualizar la predominancia de cada morfotipo en los diferentes hábitats. Experimentar con pruebas de entrecruzamiento de un morfo con otro y evaluar cambios en la descendencia, supervivencia y fertilidad. A su vez, realizar análisis genéticos para determinar si existe aislamiento entre las distintas poblaciones. Mejorar el sistema de cría para fomentar mayor productividad de la población y mantener una colonia más estable a lo largo del tiempo, en caso de pretender continuar con este tipo de estudios.
Referencias

Oedaleus asiaticus? Journal of insect physiology, 56(8), 926-936.

Mayr, E. (1968). Especies Animales y Evolución. Ediciones de la Universidad de Chile; Ediciones Ariel, S.A.

Tropical, 61(1), 273-280.

Anexos

Anexo 1. Datos climáticos de la Estación El Gullán, período Abril- Agosto 2017.

![Gráfico de temperatura y humedad]

Anexo 2. Especímenes manejados en cautiverio y su tratamiento experimental.

<table>
<thead>
<tr>
<th>Procedencia (A cautiverio - B campo)</th>
<th>Estadío</th>
<th>Tratamiento</th>
<th>Humedad</th>
<th>Sustrato</th>
<th>Resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>Alta</td>
<td>Alta</td>
<td>Líquen</td>
<td>Cambia</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>Alta</td>
<td>Alta</td>
<td>Líquen</td>
<td>Cambia</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>Alta</td>
<td>Alta</td>
<td>Líquen</td>
<td>Cambia</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>Alta</td>
<td>Alta</td>
<td>Líquen</td>
<td>Cambia</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>Alta</td>
<td>Alta</td>
<td>Líquen</td>
<td>Cambia</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>Alta</td>
<td>Alta</td>
<td>Líquen</td>
<td>Cambia</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>Alta</td>
<td>Alta</td>
<td>Líquen</td>
<td>No Cambia</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>Alta</td>
<td>Alta</td>
<td>Líquen</td>
<td>No Cambia</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>Alta</td>
<td>Alta</td>
<td>Musgo</td>
<td>Cambia</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>Alta</td>
<td>Musgo</td>
<td>Cambia</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>Alta</td>
<td>Musgo</td>
<td>Cambia</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>Alta</td>
<td>Musgo</td>
<td>Cambia</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>Alta</td>
<td>Musgo</td>
<td>Cambia</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>Alta</td>
<td>Musgo</td>
<td>No Cambia</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>Alta</td>
<td>Musgo</td>
<td>No Cambia</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>Alta</td>
<td>Musgo</td>
<td>No Cambia</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>Alta</td>
<td>Musgo</td>
<td>No Cambia</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>Baja</td>
<td>Liquen</td>
<td>Cambia</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>Baja</td>
<td>Liquen</td>
<td>No Cambia</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>Baja</td>
<td>Liquen</td>
<td>No Cambia</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>Baja</td>
<td>Liquen</td>
<td>No Cambia</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>Baja</td>
<td>Liquen</td>
<td>No Cambia</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>Baja</td>
<td>Liquen</td>
<td>No Cambia</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>Baja</td>
<td>Liquen</td>
<td>No Cambia</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>Baja</td>
<td>Liquen</td>
<td>No Cambia</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>Baja</td>
<td>Liquen</td>
<td>No Cambia</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>Baja</td>
<td>Liquen</td>
<td>No Cambia</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>Baja</td>
<td>Liquen</td>
<td>No Cambia</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>Baja</td>
<td>Musgo</td>
<td>Cambia</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>Baja</td>
<td>Musgo</td>
<td>Cambia</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>Baja</td>
<td>Musgo</td>
<td>Cambia</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>Baja</td>
<td>Musgo</td>
<td>No Cambia</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>Baja</td>
<td>Musgo</td>
<td>No Cambia</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>Baja</td>
<td>Musgo</td>
<td>No Cambia</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>Baja</td>
<td>Musgo</td>
<td>No Cambia</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>Baja</td>
<td>Musgo</td>
<td>No Cambia</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>Baja</td>
<td>Musgo</td>
<td>No Cambia</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>Baja</td>
<td>Musgo</td>
<td>No Cambia</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>Baja</td>
<td>Musgo</td>
<td>No Cambia</td>
<td></td>
</tr>
</tbody>
</table>
Anexo 3. Rango promedio RGB de los morfos originales y los resultantes de cambio fenotípico.

<table>
<thead>
<tr>
<th>Color</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Morfo Original</td>
<td>161</td>
</tr>
<tr>
<td>Morfo Original</td>
<td>220</td>
</tr>
<tr>
<td>Morfo Original</td>
<td>198</td>
</tr>
<tr>
<td>Morfo Resultante 1</td>
<td>173</td>
</tr>
<tr>
<td>Morfo Resultante 2</td>
<td>162</td>
</tr>
<tr>
<td>Morfo Resultante 3</td>
<td>91</td>
</tr>
<tr>
<td>Morfo Resultante 4</td>
<td>38</td>
</tr>
<tr>
<td>Morfo Resultante 5</td>
<td>190</td>
</tr>
<tr>
<td>Morfo Resultante 6</td>
<td>26</td>
</tr>
<tr>
<td>Morfo Resultante 7</td>
<td>108</td>
</tr>
<tr>
<td>Morfo Resultante 8</td>
<td>150</td>
</tr>
<tr>
<td>Morfo Resultante 9</td>
<td>141</td>
</tr>
<tr>
<td>Morfo Resultante 10</td>
<td>178</td>
</tr>
<tr>
<td>Morfo Resultante 11</td>
<td>171</td>
</tr>
<tr>
<td>Morfo Resultante 12</td>
<td>166</td>
</tr>
<tr>
<td>Morfo Resultante 13</td>
<td>158</td>
</tr>
<tr>
<td>Morfo Resultante 14</td>
<td>190</td>
</tr>
<tr>
<td>Morfo Resultante 15</td>
<td>190</td>
</tr>
<tr>
<td>Morfo Resultante 16</td>
<td>132</td>
</tr>
<tr>
<td>Morfo Resultante 17</td>
<td>126</td>
</tr>
<tr>
<td>Morfo Resultante 18</td>
<td>145</td>
</tr>
<tr>
<td>Morfo Resultante 19</td>
<td>70</td>
</tr>
<tr>
<td>Morfo Resultante 20</td>
<td>145</td>
</tr>
<tr>
<td>Morfo Resultante 21</td>
<td>87</td>
</tr>
<tr>
<td>Morfo Resultante 22</td>
<td>104</td>
</tr>
<tr>
<td>Morfo Resultante 23</td>
<td>118</td>
</tr>
<tr>
<td>Morfo Resultante 24</td>
<td>104</td>
</tr>
<tr>
<td>Morfo Resultante 25</td>
<td>100</td>
</tr>
<tr>
<td>Morfo Resultante 26</td>
<td>83</td>
</tr>
<tr>
<td>Morfo Resultante 27</td>
<td>125</td>
</tr>
<tr>
<td>Morfo Resultante 28</td>
<td>141</td>
</tr>
<tr>
<td>Morfo Resultante 29</td>
<td>219</td>
</tr>
<tr>
<td>Morfo Resultante 30</td>
<td>207</td>
</tr>
<tr>
<td>Morfo Resultante 31</td>
<td>210</td>
</tr>
<tr>
<td>Morfo Resultante 32</td>
<td>167</td>
</tr>
<tr>
<td>Morfo Resultante 33</td>
<td>197</td>
</tr>
<tr>
<td>Morfo Resultante 34</td>
<td>190</td>
</tr>
<tr>
<td>Morfo Resultante 35</td>
<td>169</td>
</tr>
</tbody>
</table>
Fotografías

Anexo 4. Contenedores utilizados para albergar a cada individuo. (A y B) contenedores para primeros estadíos, (C) contenedor para individuos sobre el cuarto estadío.

Anexo 5. Estantería de cría y experimentación de *P. hebardi*.

