

UNIVERSIDAD DEL AZUAY FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA ELECTRÓNICA

"Guía de Buenas Prácticas de Seguridad en Redes para la Configuración de Dispositivos de Capa 2 y 3 del Modelo OSI y Validación en una Red de Pruebas"

Trabajo de graduación previo a la obtención del título de: INGENIERO ELECTRÓNICO

Autor:

LUIS MIGUEL SERRANO VÁZQUEZ

Director: DANIEL ESTEBAN ITURRALDE PIEDRA Ph.D

CUENCA, ECUADOR

DEDICATORIA

Dedico esta tesis a mis padres Diana y Felipe y a mi hermano Luis Felipe por haberme apoyado siempre en mis estudios, por ser un ejemplo de valores y virtudes, por aconsejarme siempre que lo he necesitado y porque son lo más importante en mi vida.

AGRADECIMIENTOS

Mi agradecimiento va dirigido a mi director de tesis por haber sido un excelente maestro, por despertar en mí el interés por el tema de esta tesis y por haberme ayudado en el desarrollo de la misma.

A todos mis maestros por haberme instruido con sus vastos conocimientos.

A la Universidad del Azuay por haber sido mi segundo hogar durante estos últimos años y por haberme brindado facilidades para formarme como profesional.

De manera muy especial mi gratitud a Patricio Sánchez, mi maestro de matemáticas del colegio, por haberme aconsejado y motivado a seguir esta carrera.

ÍNDICE DE CONTENIDOS

DEDICATORIA i
AGRADECIMIENTOSii
ÍNDICE DE CONTENIDOS iv
ÍNDICE DE FIGURAS vii
RESUMENxii
ABSTRACT
1. CAPÍTULO 1: INTRODUCCIÓN
1.1. Problemática1
1.2. Motivación de la investigación
1.3. Objetivo general
1.4. Objetivos específicos:
1.5. Metodología2
2. CAPÍTULO 2: ESTADO DEL ARTE
2.1. Introducción
2.2. Estado del Arte
2.3. Conclusiones
3. CAPÍTULO 3: MARCO TEÓRICO
3.1. Introducción
3.2. Capa 3 (Red)
3.2.1. Protocolo IP (Internet Protocol)
3.2.2. Encabezado IP
3.2.3. ICMP (Internet Control Message Protocol)
3.3. Capa 4 (Transporte)
3.3.1. Protocolo TCP (Transmission Control Protocol)
3.3.2. Segmento TCP

3.3.3.	Establecimiento de conexión TCP	3
3.3.4.	UDP (User Datagram Protocol)	3
3.3.5.	Datagrama UDP	3
3.3.6.	Puertos)
3.3.7.	Estados de un puerto)
3.4. Pro	otocolos y servicios en un router)
3.4.1.	Telnet)
3.4.2.	SSH (Secure Shell))
3.4.3.	Winbox10)
3.4.4.	MAC (Media Access Control) Telnet10)
3.4.5.	MAC Winbox10)
3.4.6.	MAC Ping10)
3.4.7.	Neighbor Discovery10)
3.4.8.	Bandwidth server10)
3.4.9.	DNS (Domain Name System)11	l
3.4.10.	Cloud Update Time11	l
3.4.11.	NTP (Network Time Protocol)11	l
3.5. Ca	pa 2 (Enlace de datos)11	l
3.5.1.	Subcapas11	l
3.5.2.	Trama12)
3.5.3.	Ethernet12	2
3.5.4.	ARP (Address Resolution Protocol)12)
3.5.5.	Switch	<u>)</u>
3.5.6.	Bridge13	3
3.5.7.	STP (Spanning Tree Protocol)13	;
3.5.8.	VLAN (Virtual Local Area Network)14	ł
3.5.9.	SNMP (Simple Network Management Protocol)15	5

3.5.10.	Port Mirroring	15
3.6. Tú	nel IPsec	15
3.6.1.	IPsec	15
3.6.2.	ESP (Encapsulating Security Payload)	16
3.6.3.	AH (Authentication Header)	16
3.6.4.	IKE (Internet Key Exchange)	17
3.7. Sei	rvicios de seguridad	18
3.8. Cla	asificación de ataques	18
3.8.1.	Ataques de reconocimiento	18
3.8.2.	Ataques de acceso	19
3.8.3.	Ataques de denegación de servicios	19
3.9. So:	ftware	20
3.9.1.	Kali Linux	20
3.9.2.	Metasploitable 2	20
3.9.3.	Wireshark	20
3.9.4.	Winbox	20
3.9.5.	GNS3	20
3.9.6.	PWGen	21
3.10.	Conclusiones	21
4. CAPÍT	ULO 4: DESARROLLO	22
4.1. Int	roducción	22
4.2. Seg	guridad en un router	22
4.2.1.	Topología	22
4.2.2.	Pruebas en la red vulnerable	23
4.2.3.	Configuraciones de seguridad	43
4.3. Seg	guridad de capa 2	70
4.3.1.	Topología	70

4.3	3.2.	Pruebas en la red vulnerable	72
4.3	3.3.	Configuraciones de seguridad	80
4.4.	Túr	nel IPsec	87
4.4	4.1.	Topología	87
4.4	4.2.	Pruebas en la red vulnerable	88
4.4	4.3.	Configuraciones de seguridad	97
4.5.	Cor	nclusiones	101
5. CA	A PÍTU	JLO 5: RESULTADOS	102
5.1.	Intr	oducción	102
5.2.	Seg	guridad en un router	102
5.2	2.1.	Validaciones	102
5.3.	Seg	guridad de capa 2	118
5.3	3.1.	Validaciones	118
5.4.	Túr	nel IPsec	122
5.4	4.1.	Validaciones	122
5.5.	Cor	nclusiones	124
6. CO	DNCL	USIONES	125
7. BI	BLIO	OGRAFÍA	

ÍNDICE DE FIGURAS

Figura 4.1: Topología N°1 de la red de pruebas2	22
Figura 4.2: Topología N° 2 de la red de pruebas	22
Figura 4.3: Configuración de usuario de administración	23
Figura 4.4: Acceso al router mediante Telnet.	23
Figura 4.5: Filtrado de protocolo Telnet en Wireshark	24
Figura 4.6: Obtención de nombre de usuario y contraseña del administrador2	24
Figura 4.7: Obtención de nombre de usuario y contraseña mediante WinboxExplo	oit.
	25
Figura 4.8: Ataque de diccionario exitoso	27
Figura 4.9: Ataque de fuerza bruta exitoso.	28
Figura 4.10: Acceso al servidor web de Metasploitable 2	30
Figura 4.11: Intento de conexión, desde un cliente legítimo, al servidor web	30
Figura 4.12: Ataque SYN FLOOD mediante hping3	30
Figura 4.13: Monitoreo de tráfico en la ventana Interface List	31
Figura 4.14: Monitoreo de tráfico, mediante Wireshark, en el servidor	31
Figura 4.15: Intento de conexión, desde un cliente legítimo, al servidor web	32
Figura 4.16: Ataque SYN FLOOD mediante hping3	33
Figura 4.17: Monitoreo de tráfico en ventana Interface List	33
Figura 4.18: Pestaña Address Lists	34
Figura 4.19: Monitoreo de tráfico, mediante Wireshark, en el servidor	34
Figura 4.20: Intento de conexión, desde un cliente legítimo, al servidor web	35
Figura 4.21: Intento de establecer una conexión, con dirección IP suplantada,	al
servidor	35
Figura 4.22: Monitoreo de tráfico en ventana Interface List	36
Figura 4.23: Monitoreo de tráfico, mediante Wireshark, en el servidor	36
Figura 4.24: Descubrimiento de hosts exitoso.	39
Figura 4.25: Descubrimiento exitoso de filtrado en puertos	39
Figura 4.26: Escaneo TCP SYN exitoso	40
Figura 4.27: Descubrimiento exitoso de servicios y versiones en puertos4	41
Figura 4.28: Escaneo UDP exitoso	42
Figura 4.29: Cambio de nombre de usuario y contraseña del administrador4	43
Figura 4.30: Creación de grupo con privilegios personalizados.	44
Figura 4.31: Creación de usuario y asignación a grupo	45

Figura 4.32: Habilitación solo de servicios seguros
Figura 4.33: Desactivación de servicios de acceso por direcciones MAC47
Figura 4.34: Desactivación del protocolo Neighbor Discovery48
Figura 4.35: Desactivación de servicio Bandwidth Server
Figura 4.36: Desactivación de servidor DNS49
Figura 4.37: Desactivación de Cloud Update Time49
Figura 4.38: Activación de encriptado fuerte50
Figura 4.39: Ventana Interface List
Figura 4.40: Desactivación de LCD51
Figura 4.41: Actualización del sistema operativo
Figura 4.42: Actualización del firmware51
Figura 4.43: Respaldo de la configuración del router52
Figura 4.44: Análisis de paquetes durante un ataque de contraseña53
Figura 4.45: Configuraciones en la pestaña General54
Figura 4.46: Configuraciones en la pestaña Advanced54
Figura 4.47: Configuraciones en la pestaña Action55
Figura 4.48: Configuraciones en la pestaña General56
Figura 4.49: Configuraciones en la pestaña Action57
Figura 4.50: Configuraciones en la pestaña General57
Figura 4.51: Configuraciones en la pestaña Advanced
Figura 4.52: Configuraciones en la pestaña Action
Figura 4.53: Creación de listas de direcciones IP60
Figura 4.54: Configuraciones en la pestaña General61
Figura 4.55: Configuraciones en la pestaña Advanced
Figura 4.56: Configuraciones en la pestaña Action62
Figura 4.57: Configuraciones en la pestaña General63
Figura 4.58: Configuraciones en la pestaña Extra64
Figura 4.59: Configuraciones en la pestaña Action64
Figura 4.60: Ventana IP Settings
Figura 4.61: Configuraciones en la pestaña General67
Figura 4.62: Configuraciones en la pestaña Advanced
Figura 4.63: Configuraciones en la pestaña Action
Figura 4.64: Configuraciones en la pestaña General69
Figura 4.65: Configuraciones en la pestaña Extra69

Figura 4.99: Configuraciones para la fase 2 de IKE90
Figura 4.100: Configuraciones para la comunicación con el peer remoto90
Figura 4.101: Configuración del método de autenticación y asignación de una
contraseña91
Figura 4.102: Configuración de las políticas IPsec92
Figura 4.103: Configuración de las políticas IPsec92
Figura 4.104: Configuraciones en la pestaña General
Figura 4.105: Configuraciones en la pestaña Action
Figura 4.106: Configuración de Port Mirroring en el switch94
Figura 4.107: Análisis de tráfico del protocolo AH94
Figura 4.108: Captura de datos de la fase 1 de IKE mediante Cain & Abel95
Figura 4.109: Captura de datos de la fase 1 de IKE mediante Cain & Abel95
Figura 4.110: Pestaña Cracker de Cain & Abel96
Figura 4.111: Configuraciones del ataque de diccionario96
Figura 4.112: Ataque de diccionario exitoso
Figura 4.113: Configuración de ESP98
Figura 4.114: Configuración del modo main
Figura 4.115: Configuración de PFS100
Figura 5.1: Acceso al router por SSH102
Figura 5.2: Filtrado de paquetes del protocolo SSH103
Figura 5.3: Datos encriptados por SSH103
Figura 5.4: Intento fallido de obtención de nombre de usuario y contraseña mediante
WinboxExploit
Figura 5.5: Intento fallido de obtención de nombre de usuario y contraseña mediante
Winbox Exploit104
Figura 5.6: Generador de contraseñas seguras105
Figura 5.7: Intento fallido de descifrar el nombre de usuario y contraseña105
Figura 5.8:: Intento fallido de descifrar el nombre de usuario y contraseña106
Figura 5.9: Dirección IP agregada a lista de bloqueo107
Figura 5.10: Estadísticas de la primera regla de Firewall107
Figura 5.11: Ataque SYN FLOOD mediante hping3108
Figura 5.12: Monitoreo de tráfico en ventana Interface List108
Figura 5.13: Lista de bloqueo SynFlooder108
Figura 5.14: Estadísticas de la primera regla de firewall109

Figura 5.15: Intento de conexión, desde un cliente legítimo, al servidor web1	09
Figura 5.16: Recursos del router1	10
Figura 5.17: Ataque SYN FLOOD mediante hping31	10
Figura 5.18: Monitoreo de tráfico en ventana Interface List1	11
Figura 5.19: Intento de conexión, desde un cliente legítimo, al servidor web1	11
Figura 5.20: Intento de establecer una conexión, con dirección IP suplantada,	al
servidor1	11
Figura 5.21: Monitoreo de tráfico en ventana Interface List1	12
Figura 5.22: Monitoreo de tráfico, mediante Wireshark, en el servidor1	12
Figura 5.23: Escaneo TCP SYN fallido1	13
Figura 5.24: Descubrimiento fallido de servicios y versiones en puertos1	14
Figura 5.25: Escaneo TCP completo fallido1	15
Figura 5.26: Escaneo TCP Null fallido1	16
Figura 5.27: Escaneo TCP FIN fallido1	16
Figura 5.28: Escaneo TCP Xmas fallido1	17
Figura 5.29: Escaneo UDP fallido1	17
Figura 5.30: Lista de bloqueo Port Scanner1	18
Figura 5.31: Ping fallido desde el host del atacante1	18
Figura 5.32: Tabla de direcciones MAC del switch1	19
Figura 5.33: Tasas de transmisión y recepción de los puertos1	19
Figura 5.34: Intento de comunicación entre la PC2 y la PC11	20
Figura 5.35: Tasas de transmisión y recepción de los puertos1	20
Figura 5.36: Pestaña Status del switch 31	21
Figura 5.37: Estado de puertos1	21
Figura 5.38: Captura de datos, mediante Wireshark, en la PC31	22
Figura 5.39: Análisis de tráfico del protocolo ESP1	22
Figura 5.40: Pestaña Sniffer de Cain & Abel1	23
Figura 5.41: Captura de paquetes de la fase 1 mediante Wireshark1	23
Figura 5.42: Información encriptada de la autenticación1	23

Guía de Buenas Prácticas de Seguridad en Redes para la Configuración de Dispositivos de Capa 2 y 3 del Modelo OSI y Validación en una Red de Pruebas

RESUMEN

Las tecnologías de la información han adquirido una gran importancia en la actualidad, por lo que los ataques a redes son cada vez más frecuentas. El presente trabajo tiene como objetivo principal elaborar una guía de configuraciones para equipos de capa 2 y capa 3, del modelo OSI, que permitan implementar seguridad en una red. Para comprobar la validez de las configuraciones, se implementaron varias redes de pruebas, compuestas por dispositivos de la marca MikroTik, a las cuales se les realizaron diferentes ataques.

Palabras Clave: Seguridad, Redes, MikroTik.

Ing. Daniel Iturralde Ph.D Coordinador de Ingeniería Electrónica

Ing. Daniel Iturralde Ph.D Director del trabajo de titulación

Permono

Luis Miguel Serrano Vázquez Autor

Guide to Good Network Security Practices for the Configuration of Layer 2 and 3 Devices of the OSI Model and Validation in a Test Network

ABSTRACT

Information technologies have acquired great importance today, so network attacks are becoming more frequent. The main objective of this work is to develop a configuration guide for Layer 2 and Layer 3 devices of the OSI model, which allows to implement security in a network. To verify the validity of the configurations, several test networks were implemented, they were composed of MikroTik brand devices to which different attacks were performed.

Keywords: Security, Networks, MikroTik.

Iturro

Ing. Daniel Iturralde Ph.D Electronic Engineering Coordinator

10

Ing. Daniel Iturralde Ph.D Thesis Director

JADominino V

Luis Miguel Serrano Vázquez
Author

ADDED AZUAY Dpto. Idiomas

Translated by Ing. Paúl Arpi

1. CAPÍTULO 1: INTRODUCCIÓN

1.1. Problemática

En los últimos años el internet y las redes de computadores se han convertido en herramientas fundamentales e indispensables para el funcionamiento de empresas, industrias, negocios y la sociedad en general. Debido a la importancia que han adquirido estas herramientas, las mismas se han convertido en el foco de constantes ataques con el fin de vulnerar sistemas y obtener información valiosa para posteriormente usarla con fines malintencionados.

1.2. Motivación de la investigación

Las tecnologías de la información se han convertido en herramientas fundamentales para el funcionamiento de la sociedad. Por lo que la seguridad en redes es un área de estudio muy importante en la actualidad, ya que permite reconocer y solventar vulnerabilidades para garantizar la disponibilidad de un servicio, la confidencialidad e integridad de la información.

1.3. Objetivo general

Elaborar una guía de configuraciones, orientada a equipos de capa 2 y 3 (modelo OSI), que permita implementar seguridad en una red.

1.4. Objetivos específicos:

- Realizar una investigación sobre los trabajos previos relacionados con el tema propuesto y sobre los ataques más comunes en redes.
- Implementar una red de pruebas en la cual se puedan utilizar herramientas para generar ataques.
- Realizar configuraciones en los equipos de red que permitan contrarrestar los ataques sobre la red de pruebas.
- Analizar los resultados encontrados y obtener conclusiones en base a los mismos.

1.5. Metodología

Se utilizará la investigación bibliográfica mediante la consulta de diferentes libros, publicaciones, revistas, etc. para obtener la información de trabajos previos y de los ataques más comunes en redes.

Se realizará una investigación bibliográfica mediante la consulta de libros y páginas web para aprender a utilizar herramientas que permitan generar ataques de red y también se realizará una investigación experimental al construir la red física de pruebas.

Se utilizará la investigación bibliográfica mediante la consulta de información en la página web del fabricante de los equipos y también se realizará una investigación experimental para aplicar las configuraciones en equipos reales.

Se realizará una investigación experimental al realizar diferentes ataques en la red de pruebas para comprobar la validez de las configuraciones previamente realizadas.

Se aplicará la investigación descriptiva debido a que se detallarán los pasos a seguir para implementar una red segura.

2. CAPÍTULO 2: ESTADO DEL ARTE

2.1. Introducción

En este capítulo se expondrán trabajos realizados, por diferentes autores, sobre seguridad en redes inalámbricas, seguridad en redes cableadas, diseño de escenarios educacionales para enseñar seguridad en redes, etc.

2.2. Estado del Arte

En (Pauzhi & Coronel, 2015) se realizó el diseño e implementación de políticas de seguridad, en un WISP (Wireless Internet Service Provider), con el objetivo de invalidar ataques comunes como: ataques de diccionario, man in the middle, wardriving, puntos de acceso no autorizados, etc. El WISP utiliza dispositivos de la marca MikroTik.

En (Chiu, 2006) se presenta un trabajo en el que se exponen los riesgos de seguridad en redes inalámbricas, debido a que cualquier persona dentro del rango de cobertura puede intentar acceder a la red. Se explican las herramientas que utilizan los atacantes para detectar y marcar redes inseguras y los mecanismos y protocolos, pertenecientes al estándar IEEE (Institute of Electrical and Electronics Engineers) 802.11, como OSA (Open System Authentication), SKA (Shared Key Authentication), encriptación WEP (Wired Equivalent Privacy), etc. con el objetivo de garantizar la seguridad en una red inalámbrica

En (Zavarsky, Butakkov, & Hlyne, 2015) se realizó un trabajo en el cual se analizan los diversos componentes que conforman el protocolo SCAP (Security Content Automation Protocol) y se lo aplicó con el objetivo de automatizar las configuraciones de seguridad en un router CISCO.

En (Ternero) se exponen los ataques más comunes que son realizados en las redes y se explican las configuraciones de seguridad que se deben implementar como: ACL (Acces Control List), VLAN (Virtual Local Area Network), criptografía en redes, protocolos seguros, VPN (Virtual Private Network), cortafuegos, etc. los ejemplos expuestos son orientados a equipos de la marca CISCO.

En (Andreatos, 2017) se diseñaron escenarios educacionales para enseñar seguridad en redes. Dentro de estos escenarios se enseñó como instalar diferentes herramientas para ataque a una red, defensa de una red, monitoreo de tráfico, análisis de paquetes, etc. También se realizaron pruebas de ataques DoS (Denial of Service) mediante herramientas instaladas en plataformas Windows y Linux.

En (Patel, Ghaghda, & Nagecha, 2014) se realizó un estudio en el que se exponen diferentes tipos de amenazas y mecanismos de seguridad en ambientes educacionales. Para abordar los problemas de seguridad, los autores proponen un modelo de seguridad para redes cableadas e inalámbricas.

En (Cueva, Pozo, & Iturralde, 2016) se desarrolló e implementó un software, denominado Easy Network Designer Software, que permite realizar la virtualización de una red y la configuración remota de parámetros de dispositivos Mikrotik. El software fue desarrollado mediante Java y Mysql. Se realizaron pruebas con redes complejas.

En (Marsá-Maestre, de la Hoz, Giménez-Guzmán, & López-Carmona, 2012) se demuestra como una herramienta, basada en tecnologías de virtualización, permite generar escenarios para ser utilizados en la educación de seguridad en redes. Se describe un ejemplo de un escenario y se establecen los beneficios del uso de esta herramienta en cursos de seguridad.

En (Roschke, Willems, & Meinel, 2010) se propone un laboratorio, para entrenamiento en seguridad, en el cual se presentan diferentes escenarios para la práctica tanto de ataque como de defensa. Los escenarios se clasifican según diferentes niveles de dificultad y se crean mediante componentes virtualizados y componentes dedicados de infraestructura de red. Al final se describen las experiencias de profesores y estudiantes en base a lo trabajado en diferentes sesiones de entrenamiento.

2.3. Conclusiones

La idea principal, de la mayoría de los trabajos citados, es exponer diferentes ataques de red que son comunes y enseñar los mecanismos de defensa que permiten contrarrestarlos.

3. CAPÍTULO 3: MARCO TEÓRICO

3.1. Introducción

En este capítulo se tratarán conceptos necesarios para el desarrollo del trabajo. Se explicarán características y protocolos de determinadas capas del modelo OSI (Open System Interconnection), conceptos sobre los servicios de la seguridad en redes, la clasificación de los ataques de red y el software que se utilizará en las pruebas.

3.2. Capa 3 (Red)

3.2.1. Protocolo IP (Internet Protocol)

"IP es un protocolo de baja sobrecarga, que provee solo las funciones necesarias para enviar un paquete de un origen a un destino en un sistema de redes. Algunas de las características de este protocolo son las siguientes: (CISCO, CCNA 1: Introduction to Networks)".

- "No establece una conexión para el envío de datos".
- "No garantiza la entrega de paquetes".
- "La operación es independiente del medio que transporta los datos".

3.2.2. Encabezado IP

"El encabezado IP contiene información importante sobre el paquete. Algunos de los campos más importantes son:" (CISCO, CCNA 1: Introduction to Networks)

- Versión: "Identifica la versión del paquete IP".
- Servicios diferenciados: "Se utiliza para determinar la prioridad de cada paquete".
- Tiempo de vida: "Se utiliza para limitar la vida útil de un paquete".
- Protocolo: "Permite que la capa de red pase los datos al protocolo de capa superior correspondiente".
- Dirección IP de origen: "Valor que representa la dirección IP de origen (de dónde proviene el paquete)".
- Dirección IP de destino: "Valor que representa la dirección IP de destino (a dónde va el paquete)".

3.2.3. ICMP (Internet Control Message Protocol)

ICMP es un protocolo, de la capa de red, utilizado para el envío de mensajes para reporte de errores o para proporcionar respuestas sobre el procesamiento de paquetes IP. El objetivo de este protocolo es brindar retroalimentación sobre problemas en la comunicación (CISCO, CCNA 1: Introduction to Networks) (Postel, 1981).

Los mensajes se envían de host a host (petición y respuesta) y utilizan la cabecera IP.

Algunos de los mensajes son los siguientes:

- Timestamp: Es un mensaje que se utiliza para la consulta del tiempo. Este valor se da en milisegundos y se cuenta desde medianoche UT (Universal Time) (Postel, 1981).
- Echo: "Este mensaje se utiliza para determinar si un host está en funcionamiento" (CISCO, CCNA 1: Introduction to Networks).
- Destino inalcanzable: "Un host o un Gateway pueden enviar un mensaje de destino inalcanzable cuando reciben un paquete que no pueden entregar" (CISCO, CCNA 1: Introduction to Networks).

3.3. Capa 4 (Transporte)

3.3.1. Protocolo TCP (Transmission Control Protocol)

"Es un protocolo de la capa de transporte, que divide los datos en segmentos y los transmite de forma confiable ya que utiliza la función de acuse de recibo. Con este protocolo se garantiza que todos los segmentos llegarán a su destino" (CISCO, CCNA 1: Introduction to Networks).

Algunas propiedades de TCP son las siguientes (CISCO, CCNA 1: Introduction to Networks):

- Establece una conexión antes de realizar la transmisión de datos.
- Realiza un acuse de recibo para confirmar la recepción de datos, y en el caso de que estos se hayan perdido hace que se retransmitan.
- Mediante números de secuencia, garantiza que el receptor rearme los segmentos en el orden correcto.
- "Administra el flujo de datos en el caso de que se produzca una sobrecarga de recursos".

3.3.2. Segmento TCP

Debido a todo el control que realiza el protocolo TCP sobre los segmentos, necesita de una sobrecarga sobre el encabezado que encapsula. En el encabezado se encuentra lo siguiente (CISCO, CCNA 1: Introduction to Networks):

- Puerto de origen: Es el número que identifica al puerto de donde salen los segmentos.
- Puerto de destino: Es el número de puerto que identifica al servicio que se quiere acceder.
- Número de secuencia: "Se utiliza para rearmar los datos".
- Número de acuse de recibo: "Indica los datos que se recibieron".
- Longitud del encabezado: "Indica la longitud del encabezado del segmento TCP".
- Reservado: "Campo reservado para el futuro".
- Bits de control o flags (banderas): "Bits que indican el propósito y la función del segmento TCP".
- Tamaño de la ventana: "Indica la cantidad de segmentos que se pueden aceptar por vez".
- Checksum: "Se utiliza para la verificación de errores en el encabezado y los datos del segmento".
- Urgente: Indica si la información es urgente.

Dentro de los bits de control se encuentran los siguientes (Tanenbaum & Wetherall, 2012):

- URG: "Indica si está en uso el apuntador urgente".
- ACK: "Indica el acuse de recibo".
- PSH: "Indica datos que se deben transmitir de inmediato".
- RST: "Se utiliza para reestablecer una conexión, rechazar un segmento o rechazar un intento de conexión".
- SYN: "Se utiliza para establecer conexiones".
- FIN: "Se usa para liberar una conexión".

3.3.3. Establecimiento de conexión TCP

Antes de que se puedan enviar datos, se debe establecer una conexión entre las dos entidades. Para realizar esta conexión se produce el enlace de 3 vías y se utilizan los bits de control (CISCO, CCNA 1: Introduction to Networks):

- Primero, el cliente envía un paquete con el bit SYN habilitado hacia el servidor para solicitar una sesión cliente a servidor.
- El servidor envía un paquete con los bits SYN y ACK habilitados hacia el cliente para confirmar la sesión solicitada y para solicitar una sesión servidor a cliente.
- El cliente envía un paquete con el bit ACK habilitado hacia el servidor para confirmar la sesión solicitada.

3.3.4. UDP (User Datagram Protocol)

Es un protocolo de la capa de transporte poco confiable, que permite entregar segmentos con una sobrecarga reducida. El objetivo es disminuir las demoras en la transmisión (CISCO, CCNA 1: Introduction to Networks).

UDP cuenta con las siguientes características (CISCO, CCNA 1: Introduction to Networks):

- "No establece una conexión".
- "No cuenta con procesos que hagan al emisor reenviar datos que se perdieron o dañaron".
- "No dispone de un mecanismo para reordenar los datos a su secuencia original".
- "No cuenta con mecanismos para controlar la cantidad de datos que envía el dispositivo de origen".

3.3.5. Datagrama UDP

"La porción de comunicación se conoce como datagrama, y está conformado por:" (CISCO, CCNA 1: Introduction to Networks)

- Puerto de origen.
- Puerto de destino.
- Longitud.

• Checksum.

3.3.6. Puertos

Los puertos TCP/UDP se clasifican en (CISCO, CCNA 1: Introduction to Networks):

- Puertos bien conocidos (Números del 0 al 1023): "Están reservados para servicios y aplicaciones en servidores".
- Puertos registrados (Números del 1024 al 49151): "Se asignan a procesos o aplicaciones que el usuario elige instalar en lugar de aplicaciones comunes que recibirían un número de puerto bien conocido. Si no lo utiliza un servidor, un cliente puede utilizarlo como puerto de origen".
- Puertos dinámicos o privados (Números del 49152 al 65535): "Se asigna al cliente cuando este inicia una conexión a un servicio".

3.3.7. Estados de un puerto

Un puerto se considera abierto si acepta conexiones TCP o datagramas UDP. Un puerto se considera cerrado cuando es accesible, pero no tiene una aplicación ejecutándose (Nmap).

3.4. Protocolos y servicios en un router

3.4.1. Telnet

"Es un protocolo que permite establecer una sesión de interfaz de línea de comandos de forma remota, mediante una interfaz virtual, a través de una red. Telnet transmite los datos sin encriptar. El dispositivo de red debe tener, por lo menos, una interfaz activa con una dirección IP asignada" (CISCO, CCNA 1: Introduction to Networks).

Telnet funciona, por defecto, en el puerto TCP 23.

3.4.2. SSH (Secure Shell)

"Proporciona un inicio de sesión remoto, similar a Telnet, excepto que utiliza servicios de red más seguros. Proporciona seguridad (encriptación) en la autenticación y en la transmisión de datos" (CISCO, CCNA 1: Introduction to Networks).

SSH funciona, por defecto, en el puerto TCP 22.

3.4.3. Winbox

Winbox es un servicio que permite administrar routers, de la marca Mikrotik, por medio de una interfaz gráfica de usuario.

Winbox funciona por defecto en el puerto TCP 8291. Para conectarse al router se utiliza la dirección IP de la interfaz *ethernet* a la cual se vaya a conectar (Mikrotik, Manual:Winbox, s.f.).

3.4.4. MAC (Media Access Control) Telnet

"Este protocolo sirve para proporcionar acceso a un router que no tiene una dirección IP asignada. Para realizar la conexión se utiliza la dirección MAC de destino. Su funcionamiento es igual al de Telnet. Solo funciona entre routers Mikrotik" (Mikrotik, MAC access, s.f.).

3.4.5. MAC Winbox

Su funcionamiento es igual al de Winbox, pero la conexión se realiza utilizando la dirección MAC de la interfaz del router (Mikrotik, MAC access, s.f.).

3.4.6. MAC Ping

"Ping es un servicio que permite verificar la conectividad, de capa 3, entre 2 dispositivos" (CISCO, CCNA 1: Introduction to Networks).

MAC ping es similar al ping convencional, pero utiliza direcciones MAC (Mikrotik, Manual:Tools/Ping, s.f.).

3.4.7. Neighbor Discovery

"Es un protocolo que se utiliza para detectar otros dispositivos, compatibles con el mismo, en una red. Con este protocolo se obtiene la dirección IP, dirección MAC, etc. de los otros dispositivos" (Mikrotik, Manual:Securing Your Router, s.f.) (Mikrotik, Neighbor discovery, s.f.).

3.4.8. Bandwidth server

"Esta herramienta se utiliza para medir el rendimiento (cantidad de datos movidos satisfactoriamente de un lugar a otro en un periodo de tiempo) entre dos routers" (Mikrotik, Manual:Securing Your Router, s.f.) (INTEL, s.f.).

3.4.9. DNS (Domain Name System)

"En redes, los dispositivos se identifican con direcciones IP para poder enviar y recibir datos. Estas direcciones numéricas son difíciles de recordar, por lo que se crearon los nombres de dominio, que son más fáciles de recordar. El protocolo DNS es un servicio encargado de realizar la traducción de un nombre de dominio a una dirección IP" (CISCO, CCNA 1: Introduction to Networks).

DNS funciona por defecto en el puerto UDP/TCP 53.

3.4.10. Cloud Update Time

Es un servicio que permite mantener actualizada la hora del reloj en un dispositivo de red. Para obtener las actualizaciones de hora, el dispositivo se conecta a la nube de Mikrotik (Mikrotik, Manual:IP/Cloud, s.f.).

3.4.11. NTP (Network Time Protocol)

"Es un protocolo que se utiliza para sincronizar la hora en los relojes de los dispositivos de red" (CISCO, CCNA 2: Routing and Switching Essentials).

NTP funciona por defecto en el puerto UDP 123.

3.5. Capa 2 (Enlace de datos)

"La capa 2 (capa de enlace de datos) es responsable del intercambio de tramas entre los nodos y a través de un medio de red físico. Los nodos son dispositivos de red conectados a un medio común. Acepta paquetes de la capa 3 y los empaqueta en tramas, controla el acceso al medio y realiza la detección de errores" (CISCO, CCNA 1: Introduction to Networks).

3.5.1. Subcapas

La capa de enlace de datos cuenta con dos subcapas que son (CISCO, CCNA 1: Introduction to Networks):

- LLC (Logical Link Control): "Coloca en la trama información para identificar el protocolo de capa de red que se utiliza para la trama".
- MAC (Media Access Control): "Proporciona el direccionamiento de la capa de enlace de datos y la delimitación de los datos".

3.5.2. Trama

Los campos que se pueden encontrar en una trama son los siguientes (CISCO, CCNA 1: Introduction to Networks):

- Indicadores de comienzo y fin de la trama: "Utilizados por la subcapa MAC para identificar el inicio y fin de la trama".
- Direccionamiento: "Utilizado por la subcapa MAC para identificar el nodo origen y el nodo destino".
- Tipo: "Utilizado por la subcapa LLC para identificar el protocolo de capa 3".
- Control: "Identifica servicios para el control del flujo".
- Datos: "Contenido de la trama".
- Detección de errores: "Campo utilizado para la detección de errores".

3.5.3. Ethernet

Es la tecnología más utilizada, a nivel mundial, para redes LAN (Local Area Network). Corresponde a la capa 1 (capa física) y a la capa 2 (capa de enlace de datos) del modelo OSI. Ethernet está compuesto, básicamente, por software y hardware que, en conjunto, permiten la transferencia de datos entre computadoras (Spurgeon, 2000).

3.5.4. ARP (Address Resolution Protocol)

El protocolo ARP permite obtener la dirección MAC de un dispositivo cuando se conoce la dirección IP del mismo. El dispositivo A, que desea comunicarse con el dispositivo B, envía una trama a todos los equipos de la red con la dirección IP del dispositivo B y solo este último responderá con su dirección MAC (Tanenbaum & Wetherall, 2012).

3.5.5. Switch

Permite conectar varios dispositivos dentro de una misma red. Debido a que pertenece a la capa 2, solamente utiliza direcciones MAC para la identificación de los dispositivos. Un switch utiliza la tabla de direcciones MAC en la que guarda la dirección MAC de un dispositivo y el número de puerto al que el dispositivo está conectado. Gracias a esto puede saber a dónde debe enviar los datos (CISCO, CCNA 1: Introduction to Networks).

3.5.6. Bridge

Bridge es una característica, que se puede configurar en un router, que permite conectar hosts de diferentes LANs como si estuvieran en una misma LAN (Mikrotik, Manual:Interface/Bridge, s.f.).

3.5.7. STP (Spanning Tree Protocol)

La redundancia se refiere a la existencia de varios enlaces para que los datos puedan tomar caminos alternativos en caso de que exista algún problema con el enlace principal. Si en la red existen varias rutas y no hay un servicio que administre estas rutas, se producirá un bucle de capa 2. Estos bucles pueden provocar problemas como: inestabilidad en la tabla de direcciones MAC por la recepción de una misma trama por diferentes puertos, tormentas de broadcast y la transmisión de varias copias de una misma trama (CISCO, CCNA 3: Scaling Networks).

STP es un protocolo, de capa 2, que permite controlar los enlaces redundantes en una red. Se encarga de bloquear el puerto por el que se conecta el enlace alternativo si está funcionando el enlace principal y se encarga de desbloquear el puerto por el que se conecta el enlace alternativo si el enlace principal falla (CISCO, CCNA 3: Scaling Networks).

Este protocolo utiliza un algoritmo para determinar cuál es el puerto que se debe bloquear. También establece a uno de los switches como puente raíz. Esto se refiere a que este switch se utilizará como punto de referencia para el cálculo de rutas (CISCO, CCNA 3: Scaling Networks).

Cada switch tiene un identificador de puente que está formado por un valor de prioridad, la dirección MAC del dispositivo y un identificador de sistema. Los switches se envían entre ellos unas tramas, llamadas BPDU (Bridge Protocol Data Unit), en las cuales incluyen su identificador de puente. De esta manera pueden determinar cual tiene el identificador de puente más bajo y establecerlo como puente raíz. Cuando ya se conoce el puente raíz, el algoritmo calcula la ruta más corta hacia el mismo y la establece como la ruta principal. El protocolo también identifica a los puertos de los switches de la siguiente forma (CISCO, CCNA 3: Scaling Networks):

• Puertos raíz: "Son los puertos de switch más cercanos al puente raíz".

- Puertos designados: "Son todos los puertos que no son raíz y que aún pueden enviar tráfico a la red".
- Puertos alternativos y de respaldo: "Están configurados en estado de bloqueo para evitar bucles".
- Puertos deshabilitados: "Son puertos que se encuentran desactivados".

El protocolo STP se declaró obsoleto con la aparición de RSTP (Rapid Spanning Tree Protocol), el cual es una mejora de STP. RSTP proporciona mayor velocidad de recálculo cuando cambia la topología de la red (CISCO, CCNA 3: Scaling Networks).

3.5.8. VLAN (Virtual Local Area Network)

Permite dividir una red LAN física en varias redes LAN lógicas independientes. De esta manera se pueden separar en grupos a los dispositivos que comparten una misma red física. Los dispositivos, que pertenezcan a una misma VLAN, se pueden comunicar como si estuvieran en una red física independiente, pero comparten la infraestructura con otros dispositivos de otras VLANs. Esto permite aislar a los usuarios que tengan información delicada, reducir costos en actualizaciones en la red, reducir el tráfico innecesario en la red, etc. (CISCO, CCNA 2: Routing and Switching Essentials)

Para el funcionamiento de las VLAN se utiliza un proceso de etiquetado, que consiste en añadir un campo adicional al encabezado de la trama ethernet. Este campo lo añade el switch para identificar la VLAN a la que pertenece el dispositivo que envía una trama. Este proceso se define en el estándar 802.1Q (CISCO, CCNA 2: Routing and Switching Essentials).

Cada VLAN se identifica con un valor numérico conocido como VLAN ID.

Algunos conceptos importantes, dentro de VLAN, son los siguientes (CISCO, CCNA 2: Routing and Switching Essentials):

- Puerto de acceso: Es un puerto por el que entra y sale tráfico sin etiquetar, por lo que está destinado para hosts. Pertenece a solo a una VLAN.
- Puerto troncal: "Es un puerto que acepta tráfico proveniente de diferentes VLANs o que no proviene de una VLAN. Se utiliza para la conexión con otro switch o un router".
- VLAN nativa: Es la VLAN que se asigna a un puerto troncal. A esta VLAN se asocia el tráfico sin etiquetar.

3.5.9. SNMP (Simple Network Management Protocol)

SNMP es un protocolo utilizado para la administración de dispositivos de red. puede utilizarse para obtener información de los dispositivos y también para realizar modificaciones en la configuración de los mismos. Existen varias versiones de este protocolo, pero solo la versión 3 implementa seguridad para el intercambio de información (CISCO, Configuring SNMP, 2016).

3.5.10. Port Mirroring

Consiste en que el switch realiza una copia del tráfico que circula a través de él y la envía a un puerto determinado. El equipo que esté conectado en este puerto recibirá todo el tráfico para poder realizar un monitoreo. (Mikrotik, Manual:Switch Chip Features, s.f.).

3.6. Túnel IPsec

3.6.1. IPsec

"IPsec es un conjunto de características que se utilizan para proteger los datos IP durante la comunicación entre dos entidades" (Ariganello, 2014). Se utiliza cuando se requiere enviar información delicada a través de redes desprotegidas como internet (CISCO, Security for VPNs with IPsec Configuration Guide, Cisco IOS XE Release 3S, 2018).

Actúa en la capa de red y también puede proteger capas superiores (Ariganello, 2014) (CISCO, Security for VPNs with IPsec Configuration Guide, Cisco IOS XE Release 3S, 2018).

Los dispositivos que se comunican entre sí y utilizan IPsec para la protección se denominan peers (CISCO, Security for VPNs with IPsec Configuration Guide, Cisco IOS XE Release 3S, 2018).

IPsec garantiza lo siguiente (Ariganello, 2014) (CISCO, Security for VPNs with IPsec Configuration Guide, Cisco IOS XE Release 3S, 2018):

- Confidencialidad: El emisor puede encriptar los paquetes.
- Integridad: El receptor puede autenticar los paquetes recibidos para asegurar que no han sido alterados.

- Autenticación del origen de los datos: El receptor puede autenticar la fuente de los paquetes.
- Anti-replay: Los paquetes producidos con un ataque de este tipo pueden ser detectados y descartados por el receptor.

IPsec dispone de 2 modos, que son los siguientes (Ariganello, 2014):

- Transporte: "La cabecera IPsec se agrega después de la cabecera IP original, por lo que esta última queda expuesta. Los datos de la capa de transporte y superiores se benefician de IPsec".
- Túnel: "Los datos y la cabecera IP original se protegen al agregar una nueva cabecera IP en la que se utilizan las direcciones de los peers"

Para la autenticación, encriptación, generación de llaves, y establecimiento de asociaciones de seguridad (acuerdo de parámetros entre dos peers), IPsec se basa en los protocolos que se verán a continuación (Ariganello, 2014).

3.6.2. ESP (Encapsulating Security Payload)

Es el protocolo más utilizado en IPsec, debido a la seguridad que proporciona. Este protocolo brinda confidencialidad, integridad, autenticación del origen y Anti-replay. Es el único que encripta los datos, para lo cual utiliza los siguientes procesos (Ariganello, 2014):

- DES (Data Encryption Standard).
- 3DES (Tiple Data Encryption Standard).
- AES (Advanced Encryption Standard): Este es uno de los algoritmos más utilizados.

"Encriptar es el proceso de transformar datos mediante un algoritmo y una llave, con el fin de que sean ilegibles para todos excepto para quien pueda desencriptarlos. La llave es información que utiliza el algoritmo para encriptar o desencriptar" (Ariganello, 2014) (Criptografía, 2017).

3.6.3. AH (Authentication Header)

Este protocolo proporciona las mismas características de seguridad que ESP, excepto la confidencialidad, por lo que los datos no se encriptan para la comunicación. Para garantizar la integridad y la autenticación, AH y ESP utilizan HMAC (Hash-based Message Authentication Code). Algunos de los algoritmos son los siguientes (Ariganello, 2014):

- MD5 (Message Digest).
- SHA-1 (Secure Hash Algorithm): Es más seguro que MD5.

Hash es una función que recibe datos de entrada y los transforma en un conjunto de caracteres de longitud finita. Cuando se utiliza HMAC, tanto el emisor como el receptor comparten una llave secreta. El emisor pasa el mensaje y la llave por una función hash y obtiene un código, el cual se envía, junto al mensaje, al receptor. Este último, al recibir el paquete, utiliza la función hash con el mensaje y la llave para obtener un código y compararlo con el que envió el emisor. De esta manera se autentica y garantiza la integridad (Ariganello, 2014).

3.6.4. IKE (Internet Key Exchange)

IKE es un método que permite el intercambio, de forma segura, de los parámetros necesarios para IPsec. Parámetros como: llaves de autenticación, llaves de encriptación, etc. (Ariganello, 2014) Utiliza el protocolo ISAKMP (Internet Security Association and Key Management Protocol) en el puerto UDP 500 (Lipták & Eren, 2012).

IKE tiene 2 fases que son las siguientes (CISCO, Configuring Internet Key Exchange for IPsec VPNs, 2018) (Molenaar, s.f.):

- Fase 1: En esta fase se realiza la negociación de llaves que servirán para la comunicación segura en la fase 2. Los peers negocian parámetros de autenticación, encriptación, grupo DH (Diffie Hellman), hashing, etc. Una vez culminada la negociación, se utiliza el grupo DH para generar llaves secretas compartidas mediante el intercambio de ciertos valores. Estas llaves se utilizarán para la encriptación. Finalmente se realiza un proceso de autenticación.
- Fase 2: En esta fase se realiza la negociación de los parámetros que se utilizarán en IPsec como: protocolo y modo IPsec, parámetros de encriptación, autenticación, etc. Esta negociación está protegida por las asociaciones de seguridad de la fase 1.

La Fase 1 tiene 2 modos de operación (Ariganello, 2014):

- Modo Main: Todo el proceso se realiza con el intercambio de 6 mensajes entre los peers. Con este modo se encriptan los parámetros que se usan en el proceso de autenticación. Es más demorado, pero seguro.
- Modo Aggressive: Todo el proceso se realiza con el intercambio de 3 mensajes entre los peers. Con este modo no se encriptan los parámetros que se usan en el proceso de autenticación. Es más rápido, pero menos seguro.

La fase 2 tiene solo un modo llamado Quick (Lipták & Eren, 2012).

3.7. Servicios de seguridad

William Stallings, en su libro (Stallings, 2004), establece que los seis servicios de seguridad en redes son:

- Autenticación: "Se refiere a la seguridad de que la entidad que se comunica es quien dice ser".
- Control de acceso: "Es la prevención del uso no autorizado de una fuente".
- Confidencialidad de los datos: "Es la protección de los datos contra una revelación no autorizada".
- Integridad de los datos: Es la seguridad de que los datos no hayan sido modificados desde que fueron enviados hasta que llegaron a su destino.
- No repudio: Es una protección de la comunicación en la cual se evita que el emisor o receptor interrumpan la comunicación.
- Disponibilidad: "Es la propiedad que tiene un sistema de estar accesible y utilizable a petición de una entidad".

3.8. Clasificación de ataques

Ernesto Ariganello propone clasificar los ataques en tres categorías principales, que son las siguientes:

3.8.1. Ataques de reconocimiento

"Los ataques de reconocimiento consisten en el descubrimiento y mapeo de sistemas, servicios o vulnerabilidades sin autorización". Este tipo de ataques se basan en el uso de software que se encuentra disponible en internet y que su descarga es gratuita. Las herramientas más utilizadas para este tipo de ataques son las siguientes (Ariganello, 2014):

- Sniffers de paquetes: "Captura todos los paquetes de red que se transmiten en una LAN (Local Area Network)".
- Barridos de ping: "Es una técnica que permite determinar el rango de direcciones IP (Internet Protocol) que corresponde a hosts activos".
- Escaneo de puertos: "Escaneo de puertos TCP (Transmission Control Protocol) y UDP (User Datagram Protocol) para detectar servicios abiertos".
- Búsqueda de información en internet: "Permite revelar información sobre el dueño de un dominio en particular".

3.8.2. Ataques de acceso

"Los ataques de acceso explotan vulnerabilidades en servicios de autenticación, FTP (File Transfer Protocol) y web con el objetivo de obtener acceso a cuentas, bases de datos y otra información sensible" (Ariganello, 2014).

El autor expone diversos ejemplos de este tipo de ataque (Ariganello, 2014):

- Ataques de contraseña: Consiste en intentar adivinar las contraseñas para el ingreso a un sistema.
- Explotación de la confianza: Consiste en aprovechar, de forma no autorizada, los privilegios de un sistema para comprometer al objetivo.
- Redirección de puerto: Se realiza partiendo de un sistema comprometido, para redireccionar sesiones a través de él.
- Man in the Middle: Consiste en interceptar el tráfico producido entre dos entidades con el objetivo de leer y modificar los datos.
- Desbordamiento de buffer: Consiste en saturar con datos la memoria del buffer para que los datos validos se sobrescriban y se ejecute código malicioso.

3.8.3. Ataques de denegación de servicios

Los ataques de denegación de servicios consisten en enviar una gran cantidad de solicitudes a una red con el objetivo de saturar la capacidad de procesamiento provocando que el sistema no acepte solicitudes legítimas (Ariganello, 2014). Algunos de los ejemplos de este tipo de ataques son los siguientes (Ariganello, 2014):

- Ping de la muerte: "Consiste en enviar un ping con un tamaño de paquete mayor al máximo permitido para que el nodo objetivo colapse".
- Ataque smurf: "Consiste en el envío de una gran cantidad de solicitudes ICMP (Internet Control Message Protocol) a direcciones broadcast, para que el router reenvíe el broadcast y se obtenga una respuesta de todos los hosts, generando así una gran cantidad de tráfico".
- Inundación TCP/SYN: "Consiste en saturar un servidor con conexiones a medio abrir, que fueron generadas por la inundación de paquetes SYN TCP con direcciones de origen falsas".

3.9. Software

3.9.1. Kali Linux

"Kali Linux es un proyecto de código abierto que provee información para el entrenamiento en seguridad informática y servicios para pruebas de penetración" (Kali, About Kali Linux, s.f.). "Es una distribución de Linux basada en Debian, que dispone de herramientas de penetración y auditoría de seguridad" (maslinux, 2018).

3.9.2. Metasploitable 2

"Metasploitable es una máquina virtual, basada en Linux, con muchas vulnerabilidades configuradas de forma intencional. Esta herramienta se utiliza para realizar pruebas de hacking en un ambiente controlado" (RAPID7, s.f.).

3.9.3. Wireshark

"Wireshark es un analizador de protocolos de red que permite analizar tráfico, a un nivel microscópico, en una red. Es utilizado en empresas, agencias gubernamentales e institutos de educación a nivel mundial" (WIRESHARK, s.f.).

3.9.4. Winbox

Es un programa por el cual se puede administrar routers Mikrotik mediante una interfaz gráfica (Mikrotik, Manual:Winbox, s.f.).

3.9.5. GNS3

"Es una herramienta gratuita, que permite diseñar, construir y probar redes en un ambiente virtual. Evita la necesidad de adquirir hardware" (GNS3, s.f.).

3.9.6. PWGen

"Es una herramienta que permite generar contraseñas seguras y de forma aleatoria. Le permite al usuario elegir la longitud de la contraseña y los tipos de caracteres que se incluirán en esta" (PWGen, s.f.).

3.10. Conclusiones

Los conceptos presentados permiten comprender las vulnerabilidades o seguridades que caracterizan a diferentes protocolos y servicios que se utilizan en las redes de computadoras.

Se conceptualiza el objetivo de la seguridad en redes y se clasifican los ataques de red en base a su objetivo para poder comprender que es lo que busca un atacante y que es lo que significa la seguridad en una red.

4. CAPÍTULO 4: DESARROLLO

4.1. Introducción

Este capítulo se enfocará en 3 temas: seguridad en un router, seguridad de capa 2 y túnel IPsec. Para cada tema se realizarán diferentes ataques en redes de prueba y se plantearán las configuraciones y las buenas prácticas de seguridad que ayuden a contrarrestar estos ataques.

4.2. Seguridad en un router

4.2.1. Topología

En la figura 4.1 se encuentra la primera topología de la red en la que se realizarán pruebas. Se utilizará el router Mikrotik hAP LITE TC (RB941-2Nd-TC).

Figura 4.1: Topología Nº1 de la red de pruebas.

La segunda topología, de la red de pruebas, se encuentra en la figura 4.2. El modelo del router que se utilizará es: Mikrotik hAP LITE TC (RB941-2Nd-TC).

Figura 4.2: Topología Nº 2 de la red de pruebas.
4.2.2. Pruebas en la red vulnerable

Se crea un usuario para administración del router, como se puede ver en la figura 4.3.

Figura 4.3: Configuración de usuario de administración.

Obtención de contraseña Telnet mediante Wireshark

Se utilizará la topología de la figura 4.1.

El servicio de Telnet está habilitado en el router.

Se inicia la captura de datos, mediante Wireshark, en la computadora.

En la figura 4.4 se pueden examinar los comandos que se deben utilizar para conectarse, mediante Telnet, a la interfaz *ethernet* con dirección IP 10.10.1.1.

En la terminal se ingresa el nombre de usuario y contraseña para acceder al router.

						root (@kali: ~	-			1	0	•	٢
File Edit V	liew	Searc	h Tei	minal	Help									
root@kali: Trying 10. Connected Escape cha	⊶# te 10.1. to 10 racte	lnet 1 .10.1 r is	10.10 .1. .^]'	0.1.1										
MikroTik v(Login: usua Password:	5.42. ario_	10 (l 1	ong - 1	erm)										
														ľ
МММ	MMM		ККК						TITTITIT		ккк			
MMMM I	MMMM		KKK						TTTTTTTTTTTT		KKK			
MMM MMMM	MMM	111	KKK	KKK	RRRR	RR	000	000		III	KKK	KK	(
MMM MM	MMM	111	KKKI	K	RRR	RRR	000	000		111	KKKKK			
MIMIM	MMM	111	KKK	KKK	RRRR	RR	000	000		111	KKK K	KK	2	
IMIMIM	MMMM	111	KKK	KKK	RRR	RRR	000	000		111	KKK	KKP		

Figura 4.4: Acceso al router mediante Telnet.

En la figura 4.5, mediante Wireshark, se realiza un filtrado de los paquetes del protocolo Telnet.

(*eth0		1 - N	0	•	0
<u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>G</u> o <u>C</u> apt	ture <u>A</u> nalyze <u>S</u> tat	istics Telephon <u>y W</u> ireless <u>T</u> oo	ols <u>H</u> elp				
	i 🖲 💆 🖪	× 2 3 8	- + .) + + 📃 📕	ଇ୍ର୍ ପ୍				
te	lnet				Ex	pressio	n	+
No.	Time	Source	Destination	Protocol	Length Info			-
	87 18.953509772	10.10.1.245	10.10.1.1	TELNET	93 Telnet	Data	12/22/	
	89 18.959780644	10.10.1.1	10.10.1.245	TELNET	78 Telnet	Data		
	91 18.960360676	10.10.1.1	10.10.1.245	TELNET	105 Telnet	Data		
	93 18.960610314	10.10.1.245	10.10.1.1	TELNET	145 Telnet	Data		
	94 18.962281155	10.10.1.1	10.10.1.245	TELNET	69 Telnet	Data		
	96 18.962539424	10.10.1.245	10.10.1.1	TELNET	69 Telnet	Data		
4	97 18,963680108	10.10.1.1	10.10.1.245	TELNET	102 Telnet	Data		+

Figura 4.5: Filtrado de protocolo Telnet en Wireshark.

En cualquier paquete se hace click derecho/Follow/TCP Stream y se abre una ventana con toda la información de los paquetes Telnet, como el nombre de usuario y contraseña del administrador. La información obtenida se puede ver en la figura 4.6.

Wireshark · Follow TCP Stream (tcp.stream eq 3) · eth0	2	•	(
			1.1
Password: mikrotik1234			

Figura 4.6: Obtención de nombre de usuario y contraseña del administrador.

Obtención de contraseña Winbox mediante Winbox Exploit

Para esta prueba se simuló el router, mediante el software GNS3, con la versión del sistema operativo RouterOS 6.42 (Stable).

Se utilizará la topología de la figura 4.1.

Algunas versiones de RouterOS cuentan con una vulnerabilidad identificada con el código universal CVE-2018-14847. Esta vulnerabilidad se basa en que, utilizando una herramienta llamada WinboxExploit, se puede obtener el archivo de base de datos de los usuarios del sistema a través del puerto Winbox. Las versiones vulnerables son: (Mikrotik, CVE-2018-14847 WINBOX VULNERABILITY, 2018).

- Desde la 6.29 a la 6.42 (Stable).
- Desde la 6.30.1 a la 6.40.7 (Longterm).
- Desde la 6.29rc1 a la 6.43rc3 (Beta).

WinboxExploit es una herramienta que se ejecuta con Python 3 y cuenta con las siguientes funciones (BasuCert, s.f.):

Winbox

• WinboxExploit: Acceso por Winbox (python3 WinboxExploit.py X donde X es la dirección IP de destino).

Mac Winbox Server

• MACServerExploit: Acceso por MAC Winbox Server (python3 MACServerExploit.py X donde X es la dirección MAC de destino).

Adicionalmente se puede agregar, junto a la dirección IP o MAC, el puerto de destino, en caso de que se haya cambiado el puerto por defecto.

En la figura 4.7 se pueden examinar los comandos ejecutados en la terminal para obtener el nombre de usuario y contraseña del router. El ataque está dirigido a la interfaz *ethernet* con dirección IP 10.10.1.1, pero también podría dirigirse a la dirección MAC, aprovechando los servicios de acceso por MAC que ofrece Mikrotik.

Figura 4.7: Obtención de nombre de usuario y contraseña mediante WinboxExploit.

Ataques de contraseña

En esta prueba se realizará un ataque de diccionario para obtener la contraseña de acceso, al router, por SSH.

Se utilizará la topología de la figura 4.1.

Un ataque de diccionario es una técnica para obtener acceso a un sistema protegido por una contraseña. Consiste en utilizar una lista de palabras y probar cada una de ellas como contraseña en el sistema de autenticación (Rouse, dictionary attack, s.f.). Este ataque se aprovecha del mal hábito, de los usuarios, de utilizar contraseñas cortas, con palabras comunes, sucesiones simples de números, etc.

Kali Linux dispone de hydra, la cual es una herramienta que permite realizar un ataque de diccionario (Kali, Hydra Package Description, s.f.).

Hydra soporta una gran cantidad de protocolos como: ftp, ssh, smtp, etc.

Algunas de las opciones que se pueden configurar dentro de hydra son las siguientes:

- -l: Nombre de usuario (-l X donde X es el nombre de usuario a probar).
- -L: Archivo con la lista de nombres de usuario (diccionario) (-L X donde X es la ruta al archivo).
- -P: Archivo con la lista de contraseñas (diccionario) (-P X donde X es la ruta al archivo).
- -x: Generador de contraseñas para fuerza bruta (-x MIN:MAX:CHARSET donde MIN y MAX son las cantidades mínima y máxima de caracteres y Charset es el juego de caracteres (A para letras mayúsculas, a para letras minúsculas y 1 para números)).
- -t: número de conexiones en paralelo (-t X donde X es el número de conexiones paralelas. Para ssh x=4).

Se debe indicar la dirección IP de destino y el protocolo que se desea usar.

En el router se dejó el nombre de usuario por defecto y se agregó una contraseña.

En la figura 4.8 se pueden analizar los comandos ejecutados en la terminal para obtener la contraseña del router. El ataque está dirigido a la interfaz *ethernet* con dirección IP 10.10.1.1, se utiliza ssh, se prueba con el nombre de usuario admin y se utiliza la lista de palabras rockyou.txt.

root@kali: ~	0	•	0
File Edit View Search Terminal Help			
<pre>root@kali:~# hydra -l admin -P /usr/share/wordlists/rockyou.txt -t 4 10.10.1.1 ssh Hydra v9.0 (c) 2019 by van Hauser/THC - Please do not use in military or secret service ions, or for illegal purposes.</pre>	orga	niz	at
Hydra (https://github.com/vanhauser-thc/thc-hydra) starting at 2019-11-25 12:15:28 [WARNING] Restorefile (you have 10 seconds to abort (use option -I to skip waiting)) evious session found, to prevent overwriting, ./hydra.restore [DATA] max 4 tasks per 1 server, overall 4 tasks, 14344399 login tries (l:1/p:14344399), tries per task	from ~35	1 a 5861	pr .00
<pre>[DATA] attacking ssh://10.10.1.1:22/ [STATUS] 52.00 tries/min, 52 tries in 00:01h, 14344347 to do in 4597:33h, 4 active [STATUS] 41.33 tries/min, 124 tries in 00:03h, 14344275 to do in 5783:59h, 4 active [22][ssh] host: 10.10.1.1 login: admin password: 159753 1 of 1 target successfully completed, 1 valid password found Hydra (https://github.com/vanhauser-thc/thc-hydra) finished at 2019-11-25 12:19:31 root@kali:-#</pre>			

Figura 4.8: Ataque de diccionario exitoso.

En esta prueba se realizará un ataque de fuerza bruta para obtener la contraseña de acceso, al router, por SSH.

Un ataque de fuerza bruta es una técnica para obtener acceso a un sistema protegido por una contraseña. A diferencia del ataque de diccionario, en el ataque de fuerza bruta no se utiliza una lista de palabras, frases, etc. si no se utilizan todas las combinaciones posibles de caracteres permitidos para formar contraseñas y probarlas en el sistema de autenticación (Rouse, brute force attack, s.f.).

La herramienta hydra permite realizar ataques de fuerza bruta.

En el router se dejó el nombre de usuario por defecto y se agregó una contraseña.

En la figura 4.9 se pueden examinar los comandos ejecutados en la terminal para obtener la contraseña del router. El ataque está dirigido a la interfaz *ethernet* con dirección IP 10.10.1.1, se utiliza ssh, se prueba con el nombre de usuario admin y cada contraseña tiene un total de 4 caracteres numéricos.

root@kali: ~ 0 0 File Edit View Search Terminal Help lkali:~# hydra -l admin -x 4:4:1 -t 4 10.10.1.1 ssh Hydra v9.0 (c) 2019 by van Hauser/THC - Please do not use in military or secret service organizations, or for illegal purposes. Hydra (https://github.com/vanhauser-thc/thc-hydra) starting at 2019-11-27 10:58: [WARNING] Restorefile (you have 10 seconds to abort... (use option -I to skip wa iting)) from a previous session found, to prevent overwriting, ./hydra.restore [DATA] max 4 tasks per 1 server, overall 4 tasks, 10000 login tries (l:1/p:10000), ~2500 tries per task [DATA] attacking ssh://10.10.1.1:22/ [STATUS] 52.00 tries/min, 52 tries in 00:01h, 9948 to do in 03:12h, 4 active [STATUS] 41.33 tries/min, 124 tries in 00:03h, 9876 to do in 03:59h, 4 active [STATUS] 41.71 tries/min, 292 tries in 00:07h, 9708 to do in 03:53h, 4 active [STATUS] 40.27 tries/min, 604 tries in 00:15h, 9396 to do in 03:54h, 4 active [STATUS] 40.39 tries/min, 1252 tries in 00:31h, 8748 to do in 03:37h, 4 active [22][ssh] host: 10.10.1.1 login: admin password: 1379 1 of 1 target successfully completed, 1 valid password found Hydra (https://github.com/vanhauser-thc/thc-hydra) finished at 2019-11-27 11:33: t@kali:~#

Figura 4.9: Ataque de fuerza bruta exitoso.

SYN-FLOOD

Este ataque aprovecha el enlace de 3 vías para el establecimiento de una conexión TCP. Consiste en enviar una gran cantidad de segmentos TCP con la bandera SYN habilitada y direcciones de origen falsas para abrir conexiones con un servidor. Por cada segmento SYN recibido, el servidor responderá con un segmento SYN-ACK y generará una conexión a medio abrir esperando un acuse de recibo por parte del cliente. Debido a que las direcciones de origen son falsas, el servidor nunca recibirá un acuse de recibo, por lo que llegará a saturarse el número de conexiones disponibles que el servidor puede atender (Ariganello, 2014).

Se utilizará la topología de la figura 4.2.

Kali Linux dispone de hping3, la cual es una herramienta que permite realizar un ataque SYN-FLOOD (Kali, Kali Tools, s.f.).

Algunas herramientas que se pueden utilizar dentro de hping3 son las siguientes:

Opciones para host

- -c: Cantidad de paquetes a enviar (-c X donde X es la cantidad de paquetes).
- -i: Intervalo de tiempo en el que se envía cada paquete (-i uX donde X es el tiempo en microsegundos).
- --flood: Enviar paquetes a la máxima velocidad posible.

Modo

• El modo por defecto es TCP.

IP

- --rand-source: Los paquetes se envían con direcciones IP de origen aleatorias.
- -a: Permite modificar la dirección IP de origen (-a X donde X es la dirección IP a suplantar).

UDP/TCP

- -p: Puerto de destino (-p X donde X es el número de puerto).
- -S: Establece la bandera SYN.

Se utilizará metasploitable 2, como un servidor web, para probar los efectos de un ataque SYN FLOOD y validar las configuraciones, en un router, que permitan mitigar el ataque.

Se puede acceder al servidor web por medio del puerto 80 y la dirección IP 10.10.2.2.

S Metasploitable2 - Linux	× +			-	-		×
\leftrightarrow \rightarrow C (1) No es segu	uro 10.10.2.2	Gr	☆	\bigcirc	×	۲	:
Warning: Never expose this V Contact: msfdev[at]metasploi Login with msfadmin/msfadmin							
• <u>TWiki</u> • <u>phpMyAdmin</u> • <u>Mutillidae</u> • <u>DVWA</u> • <u>WebDAV</u>							

En la figura 4.10 se puede observar el acceso al servidor a través de un navegador web.

Figura 4.10: Acceso al servidor web de Metasploitable 2.

Desde la computadora, con dirección IP 10.10.3.254, se intenta acceder al servidor, a través del navegador web, y se establece la conexión de forma exitosa. En la figura 4.11, mediante Wireshark, se visualizan los paquetes que conforman el enlace de 3 vías.

-			Capturing from eth0 (tcp)			×
Ei	le <u>E</u> dit <u>V</u> iew <u>G</u> o	<u>Capture</u> <u>Analyze</u> <u>Statistics</u>	s Telephon <u>y W</u> ireless <u>T</u> ools	<u>H</u> elp		
	1 🗖 🙋 🔍 🗋		> % K K 📜 🖻	- 1	<u>#</u>	
	Apply a display filt	er <ctrl-></ctrl->			Expression	F
	Time	Source	Destination	Protocol	Length Info	
	10.00000000	10.10.3.254	10.10.2.2	TCP	74 51416 → 80 [SYN] Seq=	
2	2 0.002075625	10.10.2.2	10.10.3.254	TCP	74 80 → 51416 [SYN, ACK]	
14 13	2 0.002075625 3 0.002148698	10.10.2.2 10.10.3.254	10.10.3.254 10.10.2.2	TCP TCP	74 80 \rightarrow 51416 [SYN, ACK] 66 51416 \rightarrow 80 [ACK] Seq=	Ŧ

Figura 4.11: Intento de conexión, desde un cliente legítimo, al servidor web.

Desde la computadora del atacante, mediante la terminal de Kali Linux, se realiza un ataque SYN FLOOD desde la dirección IP falsa 10.10.3.3, al puerto 80 de la dirección IP 10.10.2.2 y con una velocidad de 100 p/s (intervalo de tiempo de 10000 us). Los comandos se pueden examinar en la figura 4.12.

8				root(@kali: ~		¢	0
File Edit	View	Search	Terminal	Help				
<mark>root@kali</mark> HPING 10.	:~# hp 10.2.2	ing3 -9 (eth0	5 -p 80 - 10.10.2.	a 10.10.3.3 2): S set,	40 headers	10.10.2.2 + 0 data bytes	s	

Figura 4.12: Ataque SYN FLOOD mediante hping3.

En la figura 4.13 se encuentra la ventana de monitoreo de las interfaces del router. Se puede observar que la interfaz *ethernet 1* recibe paquetes a una velocidad de 104 p/s y se transmiten por la interfaz *ethernet 2* a una velocidad de 98 p/s. Esto quiere decir que el router permite el paso de los paquetes.

Inter	ace List														
Inte	face Interfa	ace List	Ethernet	EoIP Tunnel	IP Tunnel	GRE Tunne	VLAN	VRRP	Bondir	ng LTE					
+	. – 🦉	88	6 7	Detect Inte	emet									Find	_
	Name	1	Туре		Actual MTU	L2 MTU	Tx		V F	λx		Tx Packet (p/s)	Rx	Packet (p/s)	Ŀ
R	ether1		Ethernet		1500	1598		94.2	kbps		56.7 kbps		12	10)4
R	ether2		Ethemet		1500	1598		51.4	kbps		5.6 kbps		98		11
•															*
6 ite	ns														-

Figura 4.13: Monitoreo de tráfico en la ventana Interface List.

En la figura 4.14, mediante Wireshark, se puede notar que al servidor ingresa una gran cantidad de paquetes SYN provenientes de la dirección IP 10.10.3.3.

	Capturing from Ether	net (tcp)				<u>20</u> %		2	×
<u>F</u> il	e <u>E</u> dit <u>V</u> iew <u>G</u> o	<u>Capture</u> <u>Analyze</u>	Statistics Telephony Wire	less <u>T</u> ools	<u>H</u> elp				
	ten flans sum at and te		> ≊ 1 ⊻ _ = ⊂.	લ લ ∰		n a i	Typrac	sion	1
	Time	p.nags.ack==0	Destination	Dratacal	Longth I		-xpies	5011	т
10.	2660 24 297909	10 10 2 2	10 10 2 2	TCP	Lengui I	1017	. 90	[CVM]	10
	3671 34 298922	10.10.3.3	10.10.2.2	TCP	60 1	1017	- 80	[SVN]	
	3673 34, 309726	10.10.3.3	10.10.2.2	TCP	60 1	1019	+ 80	[SYN]	
	3674 34.320877	10.10.3.3	10.10.2.2	TCP	60 1	1020	÷ 80	[SYN]	
	3675 34.331801	10.10.3.3	10.10.2.2	TCP	60 1	1021	+ 80	[SYN]	
	3676 34.342653	10.10.3.3	10.10.2.2	TCP	60 1	1022	→ 80	[SYN]	
	3677 34.354000	10.10.3.3	10.10.2.2	TCP	60 1	1023	→ 80	[SYN]	
	3678 34.364613	10.10.3.3	10.10.2.2	TCP	60 1	1024	+ 80	[SYN]	v
<								,	2

Figura 4.14: Monitoreo de tráfico, mediante Wireshark, en el servidor.

Desde la computadora con dirección IP 10.10.3.254 se intenta acceder al servidor, a través del navegador web, pero no se obtiene respuesta porque el servicio ha sido denegado. En la figura 4.15, mediante Wireshark, se comprueba que se envía el paquete SYN, pero no se recibe el paquete SYN-ACK.

		Capturing from eth0 (tcp)		×
<u>File Edit View Go</u>	Capture Analyze Statistics	Telephony Wireless Tools	<u>H</u> elp	
		% K X 🔳 🖻	- 1	
Apply a display filter	<ctrl-></ctrl->			Expression +
Time	Source	Destination	Protocol	Length Info
10.00000000	10.10.3.254	10.10.2.2	TCP	74 51438 → 80 [SYN] Seq=
2 0.250895876	10.10.3.254	10.10.2.2	TCP	74 51440 → 80 [SYN] Seq=
3 1.011674081	10.10.3.254	10.10.2.2	TCP	74 [TCP Retransmission]
4 1.251656536	10.10.3.254	10.10.2.2	TCP	74 [TCP Retransmission]
5 3.091620852	10.10.3.254	10.10.2.2	TCP	74 [TCP Retransmission]
6 3.331664141	10.10.3.254	10.10.2.2	TCP	74 [TCP Retransmission]
7 7.171658718	10.10.3.254	10.10.2.2	TCP	74 [TCP Retransmission]
8 7.411689353	10.10.3.254	10.10.2.2	TCP	74 [TCP Retransmission]
9 15.571673506	10.10.3.254	10.10.2.2	TCP	74 [TCP Retransmission] 🗸
4				•

Figura 4.15: Intento de conexión, desde un cliente legítimo, al servidor web.

IP SPOOFING

El SPOOFING se conoce en español como suplantación y consiste "en que una entidad finge ser otra" (Stallings, 2004).

"El IP SPOOFING consiste en la creación de paquetes IP en los que se modifica la dirección IP de origen con el objetivo de ocultar la identidad del atacante, hacerse pasar por otra computadora o ambos. Esta técnica es muy utilizada en ataques DDOS (Distributed Denial of Service)" (CLOUDFLARE, s.f.).

Se utilizará la topología de la figura 4.2.

La técnica de SPOOFING está disponible en una gran cantidad de herramientas de ataque dentro de Kali Linux. Debido a que se requiere la creación de paquetes IP, se puede utilizar la herramienta hping 3, como se vio en la sección de SYN FLOOD.

Para realizar la suplantación de la dirección IP de origen se pueden utilizar los dos siguientes comandos:

- --rand-source: Los paquetes se envían con direcciones IP de origen aleatorias.
- -a: Permite modificar la dirección IP de origen (-a X donde X es la dirección IP a suplantar).

En esta primera prueba se utilizará la técnica de SPOOFING para vulnerar las configuraciones de seguridad realizadas en la sección SYN FLOOD y se comprobará que el servidor deja de responder.

Las reglas de firewall de protección contra SYN FLOOD están activas.

Mediante la terminal de Kali Linux se realiza un ataque SYN FLOOD generando paquetes con direcciones IP de origen aleatorias, al puerto 80 de la dirección IP 10.10.2.2 y con una velocidad de 5000 p/s (intervalo de tiempo de 200 us). La velocidad puede variar. Los comandos se pueden examinar en la figura 4.16.

Figura 4.16: Ataque SYN FLOOD mediante hping3.

Las configuraciones de seguridad, para el ataque SYN FLOOD, limitan el número de paquetes consecutivos que ingresan al router desde una misma dirección IP. Es posible vulnerar estas configuraciones al generar cada paquete con una dirección suplantada aleatoria.

En la figura 4.17 se encuentra la ventana de monitoreo de las interfaces del router. Se puede observar que la interfaz *ethernet 1* recibe paquetes a una velocidad de 2960 p/s y se transmiten por la interfaz *ethernet 2* a una velocidad de 2526 p/s. Esto quiere decir que el router no descarta los paquetes del ataque SYN FLOOD.

Interf	ace List	-					(Saver)					- S			×
Inter	face In	terface List	Ethemet	EoIP Tunnel	IP Tunnel	GRE Tunne	VLAN	VRRP	Bondi	ng LTE					
+-		0	• 7	Detect Inte	ernet									Find	
	Name		Туре		Actual MTU	L2 MTU	Tx		/ F	λx		Tx Packet (p/s)	Rx Pack	et (p/s)	-
R	ether	r1	Ethemet		1500	1598		113.2	kbps		1519.9 kbps		16	2 960	•
R	ether	r2	Ethernet		1500	1598		1304.0	kbps		48.3 kbps	2 5	26	95	٠
+														*	
6 iter	ns														

Figura 4.17: Monitoreo de tráfico en ventana Interface List.

En la figura 4.18 se verifica que no se ha agregado ninguna dirección IP a la lista de bloqueo, debido a que cada paquete, que ingresa al router, tiene una dirección IP de origen diferente.

Filter Rules	NAT	Mangle	Raw	Service Ports	Connections	Address Lists	Layer7 Protocols		
+ -		3	T				Find	all	Ŧ
Name		Address		∇ Timeou	t	Creation Time			-

Figura 4.18: Pestaña Address Lists.

En la figura 4.19, mediante Wireshark, se comprueba que al servidor ingresa una gran cantidad de paquetes SYN provenientes de direcciones IP diferentes.

6	Capturing from E	thernet (tcp)				<u>300</u> 91		×	ŝ
File	e Edit View	Go Capture Analyze	Statistics Telephony	Wireless Tools	Help				
M	E 🙋 🖲 📃	🖹 🕅 🖉 🔍 👄	⇒ 🕾 🕈 🛓 📃 📃	ର୍ ର୍ 🖽					
	tcp.flags.syn==1 ar	nd tcp.flags.ack==0			×	•	Express	sion	+
lo.	Time	Source	Destination	Protocol	Length	Info			^
122	2466 1739.5914	17 16.234.196.18	1 10.10.2.2	TCP	60	55930	→ 80	[SYN]	
2	2466 1739.5914	418 148.211.207.1	99 10.10.2.2	TCP	60	55931	→ 80	[SYN]	
2	2466 1739.5920	55.210.15.231	10.10.2.2	TCP	60	55932	→ 80	[SYN]	
1	2466 1739.5920	70.100.189.17	9 10.10.2.2	TCP	60	55933	→ 80	[SYN]	
2	2466 1739.5923	348 5.14.118.55	10.10.2.2	TCP	60	55934	→ 80	[SYN]	
1	2466 1739.5929	902 183.241.93.11	5 10.10.2.2	TCP	60	55936	→ 80	[SYN]	
1	2466 1739.5929	004 153.124.242.2	08 10.10.2.2	TCP	60	55937	→ 80	[SYN]	
2	2466 1739.5933	339 59.145.160.61	10.10.2.2	TCP	60	55938	→ 80	[SYN]	v
<								>	

Figura 4.19: Monitoreo de tráfico, mediante Wireshark, en el servidor.

Desde la computadora, con dirección IP 10.10.3.254, se intenta acceder al servidor, a través del navegador web, pero no se obtiene respuesta porque el servicio ha sido denegado. En la figura 4.20, mediante Wireshark, se verifica que se envía el paquete SYN, pero no se recibe el paquete SYN-ACK.

		Capturing from eth0 (tcp)		_ = ×
<u>File Edit View Go</u>	Capture Analyze Statistics	Telephony <u>W</u> ireless <u>T</u> ools	<u>H</u> elp	
	(+ +) Q (2) X (2)	* K: XI 📕 🖻 🗗		
Apply a display filter .	<ctrl-></ctrl->			Expression +
Time	Source	Destination	Protocol	Length Info
1 0.00000000	10.10.3.254	10.10.2.2	TCP	74 51450 → 80 [SYN] Seq
2 0.250762185	10.10.3.254	10.10.2.2	TCP	74 51452 → 80 [SYN] Seq
3 1.051074180	10.10.3.254	10.10.2.2	TCP	74 [TCP Retransmission]
4 1.291093721	10.10.3.254	10.10.2.2	TCP	74 [TCP Retransmission]
5 3.131090432	10.10.3.254	10.10.2.2	TCP	74 [TCP Retransmission]
6 3.371086484	10.10.3.254	10.10.2.2	TCP	74 [TCP Retransmission]
7 7.211064723	10.10.3.254	10.10.2.2	TCP	74 [TCP Retransmission]
8 7.451079993	10.10.3.254	10.10.2.2	TCP	74 [TCP Retransmission]
9 15.531109265	10.10.3.254	10.10.2.2	TCP	74 [TCP Retransmission]
10 15.531170567	10.10.3.254	10.10.2.2	TCP	74 [TCP Retransmission] -

Figura 4.20: Intento de conexión, desde un cliente legítimo, al servidor web.

En esta segunda prueba se mostrará que se puede acceder al servidor usando una dirección IP de origen suplantada.

En las pruebas de la sección SYN-FLOOD ya se suplantó una dirección IP mediante el comando –a. Se generó el ataque con paquetes cuya dirección IP era 10.10.3.3, la cual no corresponde a la red de dirección 10.10.1.0/24 donde está conectado el atacante. Las configuraciones de seguridad limitaban un flujo excesivo de paquetes, pero no controlaban el origen de los mismos.

Mediante la terminal de Kali Linux se envían paquetes con la dirección IP de origen 10.10.3.3 al puerto 80 de la dirección IP 10.10.2.2. Los comandos se pueden analizar en la figura 4.21.

Figura 4.21: Intento de establecer una conexión, con dirección IP suplantada, al servidor.

En la figura 4.22 se encuentra la ventana de monitoreo de las interfaces del router. Se puede observar que la interfaz *ethernet 1* recibe paquetes y se transmiten por la interfaz *ethernet 2*. Esto quiere decir que el router permite el paso de los paquetes con direcciones IP suplantadas.

	e List														×
Interfac	ce Interface List	Ethemet	EoIP Tunnel	IP Tunnel	GRE Tunne	VLAN	VRRP	Bondi	ng LTE						
+ -		a 7	Detect Inte	ernet									Find	1	
N	ame /	Туре		Actual MTU	L2 MTU	Tx		/ F	Rx		Tx Packet (p/s)	T	Rx Packet (p/s)		•
R 4	≱ether2	Ethemet		150	1598		9.3 k	bps		11.6 kbps		16		23	٠
R 4	>ether1	Ethernet		150	1598		83.9 k	bps		15.0 kbps		10		22	+
•														٠	
6 items															_

Figura 4.22: Monitoreo de tráfico en ventana Interface List.

En la figura 4.23, mediante Wireshark, se comprueba que los paquetes, con direcciones IP suplantadas, ingresan al servidor.

6	*Ethernet (tcp)				<u>195</u> 8		>	<
<u>F</u> ile	e <u>E</u> dit <u>V</u> iew <u>G</u> o	<u>C</u> apture <u>A</u> nalyze	Statistics Telephony Wirele	ss <u>T</u> ools <u>H</u>	lelp			
1	📕 🧟 🛞 📗 🖪	R C 9 0 0) 😤 🖗 🛓 📃 🗮 🔍 G	0 🎹				
	tcp.flags.syn==1 and t	cp.flags.ack==0			X => •	Expres	sion	+
No.	Time	Source	Destination	Protocol	Length Info			^
	1815 51.214727	10.10.3.3	10.10.2.2	TCP	60 1807	→ 80	[SYN]	
	1821 51.314946	10.10.3.3	10.10.2.2	TCP	60 1808	→ 80	[SYN]	
	1823 51.416874	10.10.3.3	10.10.2.2	TCP	60 1809	→ 80	[SYN]	
	1828 51,517702	10.10.3.3	10.10.2.2	TCP	60 1810	→ 80	[SYN]	
	1834 51.619971	10.10.3.3	10.10.2.2	TCP	60 1811	+ 80	[SYN]	
	1836 51.719281	10.10.3.3	10.10.2.2	TCP	60 1812	→ 80	[SYN]	
	1843 51.823434	10.10.3.3	10.10.2.2	TCP	60 1813	→ 80	[SYN]	
	1845 51.921396	10.10.3.3	10.10.2.2	ТСР	60 1814	→ 80	[SYN]	~
<							>	R.

Figura 4.23: Monitoreo de tráfico, mediante Wireshark, en el servidor.

ESCANER DE RED

Un escaneo de red es un ataque en el que se realiza un descubrimiento de red con el objetivo de obtener información de la misma. Algunas de las técnicas que se utilizan son las siguientes (Ariganello, 2014) (Kali, Nmap Package Description, s.f.) (Hart, Network Scanning With Nmap, s.f.):

- Barridos de ping: "Determina qué rango de direcciones IP corresponde a los hosts activos".
- Escaneo de puertos: "Escaneo de un rango de números de puerto TCP o UDP en un host para detectar servicios abiertos".

• Escaneo de servicios: Determina versiones de software de los equipos analizados.

Se utilizará la topología de la figura 4.2.

Kali Linux dispone de Nmap, la cual es una herramienta que permite realizar un escaneo de red (Kali, Nmap Package Description, s.f.).

Algunas herramientas que se pueden utilizar dentro de Nmap son las siguientes (Nmap):

Descubrimiento de hosts

- -sn: Escaneo de hosts mediante mensajes ICMP echo y timestamp (-sn X donde X es una dirección IP). Adicionalmente se envía un paquete SYN al puerto 443 y un paquete ACK al puerto 80.
- -Pn: Escaneo de puertos, versión o sistema operativo asumiendo que todos los hosts están activos.

Técnicas de escaneo

- -sS: Escaneo TCP SYN (no se establece una conexión TCP completa). Se envía un paquete SYN y se espera un paquete SYN/ACK si el puerto está abierto o un paquete RST si el puerto está cerrado. Posteriormente se envía un paquete RST.
- -sT: Escaneo TCP de puertos mediante enlace de 3 vías (se establece una conexión completa). La conexión puede ser registrada por el sistema operativo de destino.
- -sA: Permite detectar si se utiliza un filtrado de paquetes o firewall mediante el envío de un paquete ACK. Si el puerto está abierto o cerrado responderá con un paquete RST. Si el puerto está filtrado, no responderá o enviará un mensaje ICMP de error.
- -sU: Escaneo UDP mediante el envío de una cabecera a un puerto. El puerto está cerrado si se recibe un mensaje de error ICMP de destino inalcanzable (puerto inalcanzable). El puerto está abierto o filtrado si no se recibe respuesta.
- -sN: Escaneo TCP Null. Se envía un paquete sin las banderas SYN, RST o ACK. Un puerto cerrado responderá con un paquete RST, un puerto abierto o

filtrado no responderá y un puerto filtrado responderá con un mensaje de error ICMP.

- -sF: Escaneo TCP FIN. Se envía un paquete con la bandera FIN. Las respuestas del destino son iguales que en el escaneo TCP Null.
- -sX: Escaneo TCP Xmas. Se envía un paquete con las banderas FIN, PSH y URG. Las respuestas del destino son iguales que en el escaneo TCP Null.

Especificación de puertos

 -p: Establece los puertos de destino (-p X donde X es el número de puerto o -p X-Y donde X-Y es un rango de puertos).

Detección de servicios

• -sV: Determina el servicio y versión disponible en un puerto.

Detección de sistema operativo

• -o: Habilita la detección del sistema operativo.

Control de tiempo y rendimiento

 --scan-delay: Establece el tiempo de demora entre cada paquete que se envía (--scan-delay X donde X es el tiempo).

En esta prueba se utilizará Nmap para obtener información sobre la red a la que está conectado el servidor.

En la figura 4.24 se puede observar que, mediante la terminal de Kali Linux, se realiza un descubrimiento de hosts en la red 10.10.2.0/24. Se descubrió que 3 hosts están activos (un host corresponde a la computadora donde se está ejecutando la máquina virtual).

Figura 4.24: Descubrimiento de hosts exitoso.

Con los comandos de la figura 4.25 se verifica, en los hosts activos, si los puertos están protegidos por un firewall o filtrados. En este caso se analiza del puerto 21 al 80. Se descubrió que los puertos no están protegidos.

Figura 4.25: Descubrimiento exitoso de filtrado en puertos.

En la figura 4.26 se realiza un escaneo TCP SYN para identificar los puertos que están abiertos. En este caso se analiza del puerto 21 al 80.

Figura 4.26: Escaneo TCP SYN exitoso.

Con los comandos de la figura 4.27 se identifican los servicios y versiones en cada puerto analizado. Se excluye del análisis la dirección IP 10.10.2.3, porque no tiene puertos abiertos. Los resultados también indican que la dirección IP 10.10.2.1 corresponde a una interfaz del router y la dirección IP 10.10.2.2 corresponde al servidor.

```
root@kali: ~
                                                                       00
                                                                              8
File Edit View Search Terminal Help
     kali:~# nmap -sV -p 21-80 10.10.2.1 10.10.2.2
Starting Nmap 7.80 ( https://nmap.org ) at 2020-01-21 18:46 EST
Nmap scan report for 10.10.2.1
Host is up (0.00045s latency).
Not shown: 56 closed ports
PORT
      STATE SERVICE VERSION
21/tcp open ftp
                    MikroTik router ftpd 6.45.7
                    MikroTik RouterOS sshd (protocol 2.0)
22/tcp open ssh
23/tcp open
            telnet Linux telnetd
80/tcp open http
                    MikroTik router config httpd
Service Info: OSs: Linux, RouterOS; Device: router; CPE: cpe:/o:mikrotik:routero
s, cpe:/o:linux:linux kernel
Nmap scan report for 10.10.2.2
Host is up (0.0031s latency).
Not shown: 54 closed ports
PORT STATE SERVICE VERSION
21/tcp open ftp
                    vsftpd 2.3.4
                    OpenSSH 4.7pl Debian 8ubuntul (protocol 2.0)
22/tcp open ssh
23/tcp open telnet Linux telnetd
25/tcp open smtp
                    Postfix smtpd
53/tcp open
            domain ISC BIND 9.4.2
80/tcp open http
                    Apache httpd 2.2.8 ((Ubuntu) DAV/2)
Service Info: Host: metasploitable.localdomain; OSs: Unix, Linux; CPE: cpe:/o:l
inux:linux kernel
Service detection performed. Please report any incorrect results at https://nmap
.org/submit/ .
Nmap done: 2 IP addresses (2 hosts up) scanned in 34.64 seconds
     kali:~#
```

Figura 4.27: Descubrimiento exitoso de servicios y versiones en puertos.

En la figura 4.28 se realiza un escaneo UDP para identificar los puertos que están abiertos. En este caso se analiza del puerto 21 al 80.

Figura 4.28: Escaneo UDP exitoso.

4.2.3. Configuraciones de seguridad

Cambiar el nombre de usuario (admin) y contraseña (vacío) por defecto.

Como se puede ver en la figura 4.29, en la ventana User List y la pestaña Users se pueden administrar los usuarios que tengan acceso al router. El usuario que tiene acceso total es el administrador y se debe cambiar su nombre de usuario y contraseña por defecto para evitar accesos no autorizados (Higgins) (Mikrotik, Manual:Securing Your Router, s.f.). Se recomienda usar una contraseña que contenga letras mayúsculas, minúsculas, números, símbolos, etc. Se pueden utilizar herramientas que generan contraseñas seguras (Mikrotik, Manual:Securing Your Router, s.f.).

User List			
Users Groups SSH Keys SSH Private Keys A	ctive Users		Find
Name / Group Allowed Address .:: system default user å admin full User <admin></admin>	Last Logg	ed In	•
Name: usuario_1	OK	Change Password	
Allowed Address:	Apply	New Password:	OK
Last Logged In:	Disable	Confirm Password:	Cancel
	Comment		
	Сору		
	Remove		
	Password		
enabled			

Figura 4.29: Cambio de nombre de usuario y contraseña del administrador.

Asignación de grupos

"No todos los administradores requieren los mismos roles y privilegios de acceso a los dispositivos de la infraestructura" (Ariganello, 2014). Por esto es necesario crear usuarios para todos los administradores y asignarlos a grupos de acuerdo a los niveles y privilegios que estos tengan (Takeuchi).

Por defecto existen 3 grupos (Mikrotik, Manual:Router AAA, s.f.):

• Full: Acceso total.

- Write: No tiene acceso vía ftp, no puede administrar usuarios, no tiene acceso al servidor dude.
- Read: No tiene acceso vía ftp, no puede administrar usuarios, no tiene acceso al servidor dude y no puede modificar configuraciones.

Se pueden crear grupos en los que se realice una configuración personalizada de privilegios. En la figura 4.30 se encuentran los privilegios que se pueden asignar.

Name:	group 1		OK
Policies:	local	telnet	Cancel
	ssh reboot	l ftp read	Apply
	write test	policy winbox	Comment
	password	web	Сору
	sniff api dude	sensitive romon tikapp	Remove
Skin:	default	₹	

Figura 4.30: Creación de grupo con privilegios personalizados.

En la figura 4.31 se puede notar que, en la ventana User List y la pestaña Users, se puede crear un nuevo usuario y asignarlo a un grupo con privilegios limitados.

User List				
Users Groups SSH Keys	SSH Private Keys	Active Users		
• - 🖉 🗶 🗗	AAA			Find
Name / Group Allow	ved Address	Last	Logged In	-
usuario_1 full			Nov/06/2019 14	1:20:31
New User				
1	Name: usuario_2		ОК	
G	aroup: read	1	Cancel	
Allowed Add	dress:		Apply	
Last Logg	ed In:		Disable	
Pass	word:		Comment	
Confirm Pass	word:		Сору	
1 item			Remove	4
enabled				

Adicionalmente se puede configurar una dirección IP permitida para cada usuario.

Figura 4.31: Creación de usuario y asignación a grupo.

Uso de servicios seguros

Los dispositivos deben ser administrados a través de servicios seguros como SSH o secured Winbox. Se recomienda desactivar el resto de servicios (Higgins) (Mikrotik, Manual:Securing Your Router, s.f.) (Hart, MikroTik Router Hardening).

En la figura 4.32 se puede verificar que, en la ventana IP Service List, se pueden desactivar los servicios que no son seguros.

Adicionalmente, en cada servicio, se puede cambiar el puerto por defecto y asignar una dirección IP permitida desde la cual se debería conectar (Mikrotik, Manual:Securing Your Router, s.f.).

~	× 7			Fir	nd
	Name /	Port	Available From	Certificate	
Х	 api 	8728			
χ	api-ssl	8729		none	
Х	@ ftp	21			
	ssh sh sh	22			
X	9 teinet	23			
	winbox	8291			
Х	@ www	80			
Х	@ www-ssl	443		none	

Figura 4.32: Habilitación solo de servicios seguros.

Activación solo de servicios que se van a utilizar

Acceso por MAC

Existen algunos servicios que permiten acceder a un dispositivo de red mediante direcciones MAC en lugar de direcciones IP. Se recomienda desactivarlos (Higgins) (Mikrotik, Manual:Securing Your Router, s.f.) (Takeuchi) (Hart, MikroTik Router Hardening).

Estos servicios son (Mikrotik, Manual:Securing Your Router, s.f.):

- MAC Telnet Server.
- MAC Winbox Server.
- MAC Ping Server.

En la figura 4.33 se puede observar que, en la ventana de MAC Server, se desactivan los servicios de acceso por MAC.

	MAC Server			×
	MAC Telnet Sen	ver MAC WinBox Server	MAC Ping Server Find	
	Interface / Sr	c. Address Uptime		-
MAC Te	Inet Server		WinBox Server	
Allowed	d Interface List: none	▼ OK Allow	ved Interface List: none	ОК
		Cancel		Cancel
		Apply		Apply
	0.5ems	MAC Ping Server	OK Cancel Apply	

Figura 4.33: Desactivación de servicios de acceso por direcciones MAC.

Neighbor Discovery

Se recomienda desactivar el protocolo Neighbor Discovery, debido a que este permite que otros dispositivos detecten al router y obtengan información del mismo (Higgins) (Mikrotik, Manual:Securing Your Router, s.f.) (Takeuchi) (Hart, MikroTik Router Hardening). Como se puede ver en la figura 4.34, en la ventana Neighbor List se puede desactivar este protocolo.

T Discov	ery Settings		F	ind
Interface	/ IP Address	MAC Address	Identity	Plat
Discovery S	Settings		C	
Interface:	1 none		Г ОК	
			Cance	k
			Apply	e
4				
T.				

Figura 4.34: Desactivación del protocolo Neighbor Discovery.

Bandwidth server

Se recomienda desactivar Bandwidth server, porque es un servicio que no se utiliza seguido e implica un puerto abierto innecesariamente (Higgins) (Mikrotik, Manual:Securing Your Router, s.f.) (Takeuchi) (Hart, MikroTik Router Hardening).

En la ventana BTest Server Settings se puede desactivar este servicio, como se puede ver en la figura 4.35.

b rest berver bettings		
	Enabled	OK
	 Authenticate 	Cancel
Allocate UDP Ports From: Max Sessions:	2000	
	100	Apply
	h	Sessions

Figura 4.35: Desactivación de servicio Bandwidth Server.

Servidor DNS

Un servidor DNS puede ser un blanco de ataques, por lo que se recomienda desactivarlo si no se requiere tenerlo configurado en el router (Mikrotik, Manual:Securing Your Router, s.f.) (Takeuchi) (Hart, MikroTik Router Hardening).

En la figura 4.36 se puede notar que, en la ventana DNS Settings, se puede desactivarlo (Allow Remote Requests).

DNS Settings			
Servers:	l	\$	OK
Dynamic Servers:	192.168.0.1		Cancel
	Allow Remote Reg	uests	Apply
Max UDP Packet Size:	4096		Static
Query Server Timeout:	2.000	8	Cache
Query Total Timeout:	10.000	s	
Max. Concurrent Queries:	100		
Max. Concurrent TCP Sessions:	20		
Cache Size:	2048	KiB	
Cache Max TTL:	7d 00:00:00		
Cache Used:	9 KiB		

Figura 4.36: Desactivación de servidor DNS.

Desactivar Cloud Update Time

Es importante que los dispositivos de una red estén sincronizados y tengan la hora precisa y actualizada para el análisis de registros. Se recomienda utilizar servidores NTP en lugar del servicio, de sincronización de relojes, que ofrece Mikrotik (Hart, Network Scanning With Nmap, s.f.).

Como se puede observar en la figura 4.37, en la ventana Cloud se puede desactivar Update Time.

	DDNS Enabled		OK
DDNS Update Interval:		•	Cancel
	Update Time		Apply
Public Address:			-
DNS Name:			Force Update

Figura 4.37: Desactivación de Cloud Update Time.

Para utilizar el protocolo NTP, en routers Mikrotik, se debe instalar el paquete ntp.

Aumentar seguridad en acceso SSH

Se recomienda habilitar la opción de encriptación fuerte (Higgins) (Mikrotik, Manual:Securing Your Router, s.f.) (Hart, MikroTik Router Hardening).

Esta opción permite utilizar algoritmos de encriptación más fuertes.

En la figura 4.38 se puede notar que se debe activar utilizando la terminal.

```
[usuario_1@MikroTik] > ip ssh set strong-crypto=yes
[usuario_1@MikroTik] >
```

Figura 4.38: Activación de encriptado fuerte.

Desactivar interfaces que no se usen

Se recomienda deshabilitar las interfaces que no se utilicen en el router para evitar accesos no autorizados (Mikrotik, Manual:Securing Your Router, s.f.).

Si un atacante tiene acceso físico a los dispositivos, deberá desconectar un cable de una interfaz que esté en uso y llamará la atención (Hart, MikroTik Router Hardening).

En la figura 4.39 se puede verificar que, en la ventana Interface List y la pestaña Interface, se pueden desactivar las interfaces.

Inte	erface	Interface List	Ethemet	EoIP Tunnel	IP Tunnel .	
+	•	💉 🗶	07	Detect Inte	emet Fil	nd
1	Nam	e /	Туре		Actual MTU	L2 M -
R	R <>ether1		Ethemet		1500	159
	4 te	ther2	Ethemet		1500	159
	4 >e	ther3	Ethemet		1500	159
Х	≯ether4</td <td colspan="2">Ethernet</td> <td>1500</td> <td>159</td>		Ethernet		1500	159
Х	≪≫w	lan1	Wireless (Atheros AR9	1500	160
4						

Figura 4.39: Ventana Interface List.

Desactivar LCD (Liquid Crystal Display)

Algunos routers disponen de un LCD para mostrar información. Se recomienda desactivarlo (Mikrotik, Manual:Securing Your Router, s.f.).

En la figura 4.40 se puede ver cómo se desactiva el módulo LCD mediante la terminal.

```
[usuario_1@MikroTik] > lcd set enabled=no
```

Figura 4.40: Desactivación de LCD.

Mantener actualizado el sistema operativo

Los sistemas operativos están en constante actualización con el objetivo de implementar mejoras o corregir vulnerabilidades que puedan tener versiones anteriores.

Se recomienda siempre actualizar a la última versión (Stable o Long Term) (Higgins) (Ariganello, 2014).

En la figura 4.41 se puede observar que, en la ventana Package List, se puede actualizar el sistema operativo (Mikrotik, Manual:Upgrading, s.f.).

Check For Up	odates	Enable Disable	Uninstall	Unschedule	Downgrade	Check Installation	Find
Name	Version	Build Time	Sched	luled			
Check For Update	2 8						
Channel	stable				Ŧ	ок	
Installed Version	6.45.7					Download	
Latest Version	6 46					Download&Install	

Figura 4.41: Actualización del sistema operativo.

Posterior a la actualización del sistema operativo se debe actualizar el firmware. En la figura 4.42 se puede ver que la actualización se realiza en la ventana Routerboard (Mikrotik, Manual:Upgrading, s.f.).

Routerboard		
	Routerboard	ОК
Model:	RB941-2nD	
Revision:		Opgrade
Serial Number:		Settings
	1	
Firmware Type:	qca9531L	
Factory Firmware:	6.42.10	
Current Firmware:	6.45.7	
Upgrade Firmware:	6.45.7	

Figura 4.42: Actualización del firmware.

Respaldo de configuraciones

Se recomienda tener un archivo de respaldo de las configuraciones del router, en caso de que se necesite reconfigurar el mismo o uno nuevo (Ariganello, 2014).

En la figura 4.43 se puede notar que, en la ventana File List, se puede realizar un respaldo de la configuración actual del router y asignarle una contraseña.

	6	Backup	Restore	Upload	Find	
Backup					ze	
					12.9	K
Name:	[-	Backup	20.2	K
					26.4	K
Password:			•	Cancel		
Encryption:	aes-sha25	6	Ŧ			

Figura 4.43: Respaldo de la configuración del router.

Limitar el número de intentos de ingreso fallidos

Una forma de protección contra ataques de contraseña es bloquear al usuario que supere un número de intentos fallidos de ingreso, pero en los parámetros de configuración del router no existe una herramienta específica que permita realizar esta detección.

En la figura 4.44, mediante Wireshark, se analizan los paquetes que se generan con un ataque de este tipo y se puede identificar un patrón en los paquetes TCP:

- Se abre una conexión.
- Se termina la conexión después de un número determinado de intentos fallidos de descifrar el nombre de usuario y contraseña.

		Capturing from e	th0		00(
<u>F</u> ile <u>E</u> dit <u>V</u> iew	<u>G</u> o <u>C</u> apture <u>A</u> nalyze <u>S</u>	tatistics Telephony <u>W</u> in	eless <u>T</u> ools	s <u>H</u> elp	
📕 📕 🙋 🎯	P 2 8 1 0	* *		१ ९ ९ 🎹	
p.addr==10.10.	1.1 and tcp.port = = 22 and (tc	p.flags.syn==1 and tcp.flag	js.ack==0) c	or (tcp.flags.fin==1) 🛛	Expression
Time	Source	Destination	Protocol	Length Info	
78.209676847	10.10.1.245	10.10.1.1	TCP	74 47324 - 22	[SYN] Seq=0 Win=
79.470915329	10.10.1.245	10.10.1.1	TCP	66 47324 - 22	[FIN, ACK] Seq=14
79.472024109	10.10.1.1	10.10.1.245	TCP	66 22 → 47324	[FIN, ACK] Seq=10
79.686921240	10.10.1.245	10.10.1.1	TCP	74 47326 - 22	[SYN] Seq=0 Win=
80.998678067	10.10.1.1	10.10.1.245	TCP	66 22 → 47326	[FIN, ACK] Seq=20
80.998679303	10.10.1.245	10.10.1.1	TCP	66 47326 → 22	[FIN, ACK] Seg=1
113.030478657	10.10.1.245	10.10.1.1	TCP	74 47328 → 22	[SYN] Seg=0 Win=0
114.368940587	10.10.1.245	10.10.1.1	TCP	66 47328 - 22	[FIN, ACK] Seq=1
114.369666657	10.10.1.1	10.10.1.245	TCP	66 22 → 47328	[FIN, ACK] Seq=20
4					•

Figura 4.44: Análisis de paquetes durante un ataque de contraseña.

Firewall es una herramienta que permite realizar un filtrado de paquetes, por lo tanto, provee opciones de seguridad que permiten controlar el tráfico en el router. Sirve para prevenir accesos no autorizados y minimizar amenazas de seguridad. Su funcionamiento se basa en analizar los paquetes que ingresan al router y compararlos con unas reglas preestablecidas para posteriormente ejecutar una acción sobre esos paquetes, como descartarlos, aceptarlos, etc. (Ariganello, 2014) (Mikrotik, Manual:IP/Firewall/Filter, s.f.)

Se pueden configurar reglas de firewall que realicen lo siguiente: si se abren varias conexiones, en el puerto de SSH, desde una misma dirección IP y en un periodo de tiempo determinado, la IP de origen se agrega a una lista de bloqueo (Mikrotik, Bruteforce login prevention, s.f.).

Se necesitan 5 reglas de firewall.

La primera regla de Firewall tiene como objetivo descartar todos los paquetes provenientes de las direcciones IP de la lista de bloqueo.

En la figura 4.45 se encuentran las configuraciones realizadas en la pestaña General, las cuales establecen que los paquetes entrantes deben estar dirigidos al router (Chain: input).

General	Advanced Extra	Action Statistics		OK
	Chain: input			Cancel
	Src. Address:		•	Apply
	Dst. Address:			Disable
	Protocol:		•	Comment
	Src. Port:		*	Сору
	Dst. Port:		*	Remove
	Any. Port:			Reset Counters
	In. Interface:		•	Reset All Counters
	Out. Interface:		•	

Figura 4.45: Configuraciones en la pestaña General.

Como se puede ver en la figura 4.46, las configuraciones realizadas en la pestaña Advanced establecen que las direcciones IP de origen deben pertenecer a la lista BruteForceAttacker (Src. Address List: BruteForceAttacker).

irewall Rule ⇔	
General Advanced Extra Action Statistics	ОК
Src. Address List: 🖸 BruteForceAttacker	Cancel
Dst. Address List:	- Apply
Layer7 Protocol:	✓ Disable
0	Comment
Content:	Сору
Connection Bytes:	Remove
Connection Rate:	Reset Counters
Per Connection Classifier:	Reset All Counter
Src. MAC Address:	▼

Figura 4.46: Configuraciones en la pestaña Advanced.

En la figura 4.47 se pueden observar las configuraciones realizadas en la pestaña Action, las cuales establecen que los paquetes se descarten (Action: drop).

Firewall Rule ⇔	
General Advanced Extra Action Statistics	ОК
Action: drop	Cancel
	Apply
Log Prefix:	Disable
	Comment
	Сору
	Remove
	Reset Counters
	Reset All Counters

Figura 4.47: Configuraciones en la pestaña Action.

La segunda regla de Firewall tiene como objetivo determinar si los paquetes entrantes corresponden a un intento de abrir una conexión mediante el protocolo SSH y enviarlos a las reglas de Firewall 3, 4 y 5.

Como se puede ver en la figura 4.48, las configuraciones realizadas en la pestaña General establecen que los paquetes entrantes deben estar dirigidos al router (Chain: input), el protocolo debe ser TCP (Protocol: 6(tcp)), el puerto de destino debe corresponder a SSH (Dst. Port: 22) y la conexión debe ser nueva (Connection State: new).

rewall Rule <22>		
General Advanced Extra Action Statistics		ОК
Chain: input		Cancel
Src. Address:	•	Apply
Dst. Address:	▼	Disable
Protocol: 0 (6 (tcp)		Comment
Src. Port:	•	Сору
Dst. Port: 22	▲	Remove
Any. Port:	▼	Reset Counters
In. Interface:		Reset All Counters
Out. Interface:		
In. Interface List:	•	
Out. Interface List:		
Packet Mark:	•	
Connection Mark:		
Routing Mark:		
Routing Table:	•	
Connection Type:	•	
Connection State: invalid established related related related	untracked 🔺	
onnection NAT State:	•	

Figura 4.48: Configuraciones en la pestaña General.

En la figura 4.49 se encuentran las configuraciones realizadas en la pestaña Action, las cuales establecen que los paquetes pasen (Action: jump) a una nueva cadena llamada SSHCon (Jump Target: SSHCon).

Firewall Rule <22>	
General Advanced Extra Action Statistics	ОК
Action: jump	Cancel
	Apply
Log Prefix:	Disable
Jump Target: SSHCon	Comment
	Сору
	Remove
	Reset Counters
	Reset All Counters

Figura 4.49: Configuraciones en la pestaña Action.

La tercera regla de Firewall tiene como objetivo agregar a la lista de bloqueo las direcciones IP de la lista auxiliar 2.

Como se puede ver en la figura 4.50, las configuraciones realizadas en la pestaña General establecen que los paquetes entrantes deben venir de la primera regla de Firewall (Chain: SSHCon).

irewall Rule 🔿	
General Advanced Extra Action Statistics	ок
Chain: SSHCon	▼ Cancel
Src. Address:	- Apply
Dst. Address:	▼ Disable
Protocol:	✓ Comment
Src. Port:	Сору
Dst. Port:	Remove
Any. Port:	Reset Counters
In. Interface:	✓ Reset All Counter
Out. Interface:	•

Figura 4.50: Configuraciones en la pestaña General.

Como se puede observar en la figura 4.51, las configuraciones realizadas en la pestaña Advanced establecen que las direcciones IP de origen deben pertenecer a la lista Con2SSH (Src. Address List: Con2SSH).

irewall Rule <>	
General Advanced Extra Action Statistics	ОК
Src. Address List: 🖾 Con2SSH	Tancel
Dst. Address List:	▼ Apply
Layer7 Protocol:	- Disable
	Comment
Content:	Сору
Connection Bytes:	▼ Remove
Connection Rate:	Reset Counter
Per Connection Classifier:	▼ Beset All Count
Src. MAC Address:	

Figura 4.51: Configuraciones en la pestaña Advanced.

En la figura 4.52 se pueden examinar las configuraciones realizadas en la pestaña Action, las cuales establecen que la dirección IP de origen se agregue (Action: add src to address list) a la lista BruteForceAttacker (Address List: BruteForceAttacker) por un día (Timeout: 1d 00:00:00).

Firewall Rule <	>	
General Adv	anced Extra Action Statistics	ОК
Action:	add src to address list	Cancel
	🗌 Log	Apply
Log Prefix:		▼ Disable
Address List:	BruteForceAttacker	T Comment
Timeout: 1d 00:00:00	1d 00:00:00	ж Сору
		Remove
		Reset Counters
		Reset All Counters

Figura 4.52: Configuraciones en la pestaña Action.

La cuarta regla de Firewall tiene como objetivo agregar, durante 1 minuto, a la lista auxiliar 2 las direcciones IP de la lista auxiliar 1.

Las configuraciones son similares a las de la tercera regla de firewall. Los parámetros que cambian son los siguientes: (Src. Address List: Con1SSH), (Address List: Con2SSH) y (Timeout: 00:01:00).
La quinta regla de Firewall tiene como objetivo agregar, durante 1 minuto, a la lista auxiliar 1 las direcciones IP de origen de los paquetes.

Las configuraciones son similares a las de la cuarta regla de firewall. Los parámetros que cambian son los siguientes: (Src. Address List: vacío), (Address List: Con1SSH).

Firewall para el router

Para la protección del router, Mikrotik recomienda agregar las siguientes reglas de Firewall:

La primera regla tiene como objetivo aceptar (Action: accept) los paquetes, dirigidos al router (Chain: input), relacionados o que pertenezcan directamente a conexiones ya establecidas (Connection State: established, related). Estos paquetes ya no pasaran por las siguientes reglas, ayudando a reducir la carga del router (Mikrotik, Manual:Securing Your Router, s.f.).

La segunda regla tiene como objetivo aceptar (Action: accept) los paquetes, dirigidos al router (Chain: input), cuyas direcciones IP de origen pertenezcan a una lista de direcciones permitidas (Src. Address List: AllowedIP). Estas direcciones IP deben corresponder a los equipos de las personas que tienen autorización para acceder al router (Mikrotik, Manual:Securing Your Router, s.f.).

En la figura 4.53 se puede verificar que, en la ventana Firewall y la pestaña Address Lists, se puede crear una lista de direcciones IP.

Firewall													
Filter Rules	NAT	Mangle	Raw	Servic	e Ports	Connect	ions	Addr	ess Lists	Laye	r7 Protocols		
+ - [1	3 🖆	T								Find	all	₹
Name	ij.	Address		Ţ	Timeou	ıt 🛛	(Creation	n Time				
		Nev	w Firewal	I Addre	ess List				[×	1		
			Nan	ne: A	lowedIF	1		Ŧ	ОК				
			Addre	ss:		5.			Canc	el			
			Timeo	ut: [•	Apply	/			
		Cre	eation Tin	ne:					Disab	le			
									Comme	ent			
									Сору	r			
									Remo	ve			
		ena	ibled										
0 items											-		

Figura 4.53: Creación de listas de direcciones IP.

La tercera regla tiene como objetivo aceptar (Action: accept) los paquetes, dirigidos al router (Chain: input), que pertenezcan al protocolo ICMP (Protocol: icmp) (Mikrotik, Manual:Securing Your Router, s.f.).

La cuarta regla tiene como objetivo descartar todo paquete (Action: drop), dirigido al router (Chain: input), que no haya cumplido con ninguna de las reglas anteriores (Mikrotik, Manual:Securing Your Router, s.f.).

Limitar el número de nuevas conexiones sucesivas en el router

Mikrotik establece que no hay solución perfecta contra ataques DoS (Denial of Service), sin embargo, existen maneras de mitigarlos. Se recomienda limitar el número de nuevas conexiones sucesivas solicitadas por una misma dirección IP (Mikrotik, DoS attack protection, s.f.).

El objetivo de esta política de seguridad es establecer un límite de solicitudes de conexión (paquete SYN) sucesivas. En el caso de que el router reciba una gran cantidad de paquetes SYN que supere el límite, la dirección IP de origen se agregará a una lista

de bloqueo. Los paquetes provenientes de direcciones IP de esta lista, serán descartados (Mikrotik, DoS attack protection, s.f.) (Mikrotik, Manual:IP/Firewall/Filter, s.f.).

Se necesitarán 2 reglas de Firewall.

La primera regla de Firewall tiene como objetivo descartar los paquetes provenientes de las direcciones IP que se han agregado a la lista de bloqueo (Mikrotik, DoS attack protection, s.f.) (Mikrotik, Manual:IP/Firewall/Filter, s.f.).

En la figura 4.54 se encuentran las configuraciones realizadas en la pestaña General, las cuales establecen que los paquetes entrantes deben estar dirigidos a un equipo conectado al router (Chain: forward).

irewall R	ule 🗢					
General	Advanced	Extra	Action	Statistics		OK
	Chain	: forw	ard		₹	Cancel
	Src. Address	:			•	Apply
	Dst. Address	:				Disable
	Protocol	: [•	Comment
	Src. Port	: [Сору
	Dst. Port	:			•	Remove
	Any. Port	:			•	Reset Counters
	In. Interface	:			•	Reset All Counters
	Out. Interface				•	

Figura 4.54: Configuraciones en la pestaña General.

Como se puede ver en la figura 4.55, las configuraciones realizadas en la pestaña Advanced establecen que las direcciones IP de origen deben estar en la lista SynFlooder (Src. Address List: SynFlooder).

irewall Rule 🔿		
General Advanced Extra Action Statistics	ОК	
Src. Address List: 🖾 SynFlooder	Canc	:el
Dst. Address List:	- Appl	ly
Layer7 Protocol:	- Disab	ole
	Comm	ent
	Cop	у
Connection Bytes:	Remo	ve
Connection Rate:	▼ Reset Co	unters
Per Connection Classifier:	Reset All C	ounter
Src. MAC Address:	·	

Figura 4.55: Configuraciones en la pestaña Advanced.

En la figura 4.56 se pueden observar las configuraciones realizadas en la pestaña Action, las cuales establecen que los paquetes, que cumplieron con los parámetros de las figuras anteriores, se descarten (Action: drop).

irewall Rule 🔿	
General Advanced Extra Action Statistics	ок
Action: drop	▼ Cancel
Log	Apply
Log Prefix:	Disable
	Comment
	Сору
	Remove
	Reset Counters
	Reset All Counte

Figura 4.56: Configuraciones en la pestaña Action.

La segunda regla de Firewall tiene como objetivo realizar un filtrado para determinar si los paquetes son TCP, corresponden a una nueva conexión, si provienen de una misma dirección IP y si el número de paquetes recibidos de forma consecutiva está dentro del límite. En el caso de que se supere el límite, la dirección IP de origen se agrega a una lista de bloqueo (Mikrotik, DoS attack protection, s.f.) (Mikrotik, Manual:IP/Firewall/Filter, s.f.).

Como se puede ver en la figura 4.57, las configuraciones realizadas en la pestaña General establecen que los paquetes entrantes deben estar dirigidos a un equipo conectado al router (Chain: forward), el protocolo debe ser TCP (Protocol: 6(tcp)) y la conexión debe ser nueva (Connection State: new).

rewall Rule 🔿			
ieneral Advanced E	Extra Action Statistics		ОК
Chain:	forward	Ŧ	Cancel
Src. Address:		•	Apply
Dst. Address:		•	Disable
Protocol:	🗌 6 (tcp) 🛛 🖛	•	Comment
Src. Port:		•	Сору
Dst. Port:		•	Remove
Any. Port:		•	Reset Counters
In. Interface:		•	Reset All Counte
Out. Interface:		•	
In. Interface List:		-	
Out. Interface List:	(•	
Packet Mark:		-	
Connection Mark:		•	
Routing Mark:		•	
Routing Table:		•	
Connection Type:		-	
Connection State:	□□ invalid □ established □ related ☑ new □ untracked	•	
onnection NAT State:		-	

Figura 4.57: Configuraciones en la pestaña General.

En la figura 4.58 se encuentran las configuraciones realizadas en la pestaña Extra, las cuales establecen que el límite de paquetes SYN por IP es de 150 [Connection Limit (Limit: 150 Netmask: 32)].

Firewall Rule-⇔	
General Advanced Extra Action Statistics	ОК
Connection Limit	Cancel
Limit: 150	Apply
-v-Limit	Disable
-▼- Dst. Limit	Comment
·▼ Nth	Copy
Time	
Src. Address Type Type Type	Piemove
· ▼ PSD -	Reset Counters
- V- Hotspot	Reset All Counters
·▼· IP Fragment	

Figura 4.58: Configuraciones en la pestaña Extra.

En la figura 4.59 se pueden observar las configuraciones realizadas en la pestaña Action, estas establecen que, si se superó el límite, la dirección IP de origen se agregará (Action: add src to address list) a la lista de bloqueo SynFlooder (Address List: SynFlooder) durante 1 día (Timeout: 1d 00:00:00).

rewall Rule <	>				
General Adv	vanced Extra	Action	Statistics		OK
Action:	add src to add	ress list		•	Cancel
	Log				Apply
Log Prefix:				· · · · · · · · · · · · · · · · · · ·	Disable
Address List:	SynFlooder				Comment
Timeout:	1d 00:00:00			•	Сору
					Remove
					Reset Counters
					Reset All Counter

Figura 4.59: Configuraciones en la pestaña Action.

Estas configuraciones protegen a equipos conectados al router. Para protección de ataques dirigidos al router se debe cambiar únicamente (Chain: forward) por (Chain: input).

Reverse Path Forwarding

En RFC 3704 se recomienda el uso de Reverse Path Forwarding para limitar el impacto del uso de SPOOFING en ataques DDos, obtención de acceso a equipos de red, etc. (Baker, Cisco Systems, & Savola, 204)

Es una herramienta que permite evitar que el tráfico tome una ruta de salida diferente a la ruta que tomó para el ingreso. Si la entidad 1 intenta comunicarse con la entidad 2, a través de la interfaz 1, la respuesta deberá realizarse a través de la misma interfaz, caso contrario no se permitirá la conexión (Hat, s.f.).

Esta herramienta dispone de 2 modos, que son los siguientes:

- Strict: La dirección IP de origen se busca en la FIB (Forwarding Information Base), la cual es una tabla que contiene información para realizar el reenvío de paquetes, y se comprueba que el paquete ingrese por la interfaz que se utilizaría para responder a la IP en cuestión (Baker, Cisco Systems, & Savola, 204) (Trotter & Agilent Technologies, 2001).
- Loose: Se busca si existe una ruta, mas no se considera la dirección a la cual apunta la ruta. Se recomienda utilizar este modo para routing asimétrico, el cual se refiere a que el envío y respuesta de paquetes se dan por diferentes rutas. (Baker, Cisco Systems, & Savola, 204).

Para habilitar Reverse Path Forwarding, en un router Mikrotik, se debe acceder a IP/Settings y realizar la configuración (RP Filter: strict), como se puede ver en la figura 4.60.

IP Settings			
	✓ IP Forward		OK
	Send Redirects		Cancel
	Accept Redirects		Apply
	Secure Redirects		
	Accept Source Rou	.te	
	Route Cache		
RP Filter:	strict	Ŧ	
	TCP SynCookies		
Max Neighbor Entries:	8192		
ARP Timeout:	00:00:30		
ICMP Rate Limit:	10		
	IPv4 Fast Path Acti	ve	
IPv4 Fast Path Packets:	0		
IPv4 Fast Path Bytes:	0 B		
	IPv4 Fasttrack Acti	ve	
IPv4 Fasttrack Packets:	0		
IPv4 Fasttrack Bytes:	0 B		

Figura 4.60: Ventana IP Settings.

PSD (Port Scan Detection)

Es una técnica que permite detectar un escaneo de puertos al descubrir anomalías en los paquetes TCP. Se analizan los números de puertos y las banderas de los paquetes (Rong-sheng, Xiao-yong, & LI, 2004).

Para utilizar esta técnica se deben configurar los siguientes parámetros (Mikrotik, Manual:IP/Firewall/Filter, s.f.):

- Weight Threshold: Máximo valor de la suma total de pesos de los paquetes TCP/UDP con diferente puerto de destino y provenientes de la misma dirección IP.
- Delay Threshold: Tiempo en el que se obtiene la suma total de pesos de los paquetes TCP/UDP con diferente puerto de destino y provenientes de la misma dirección IP.
- Low Port Weight: Peso que se le asigna al rango de puertos bien conocidos.

• High Port Weight: Peso que se asigna al rango restante de puertos.

Durante un periodo de tiempo (Delay Threshold) se van a recibir paquetes TCP. Por cada paquete que llegue al equipo, se incrementará un contador (el valor a incrementar sería de Low Port Weight para puertos de destino menores a 1024 y High Port Weight para puertos de destino desde 1024 en adelante). Al final, si el contador supera al valor de Weight Threshold, se procederá a ejecutar una acción, la cual podría ser: agregar la dirección IP de origen a una lista de bloqueo y descartar los paquetes que se originen de la misma (Mikrotik, Manual:IP/Firewall/Filter, s.f.).

Se necesitarán 4 reglas de Firewall.

En las dos primeras reglas de firewall se establece que se descartará todo paquete proveniente de una dirección IP de la lista Port Scanner (Mikrotik, Drop port scanners, s.f.). La primera regla se encargará de los escaneos dirigidos a través del router y la segunda se encargará de los dirigidos al router.

Como se puede ver en la figura 4.61, las configuraciones de la pestaña General establecen que los paquetes entrantes deben estar dirigidos a un equipo conectado al router (Chain: forward).

3eneral	Advanced E	Extra Action	Statistics		OK
	Chain:	forward		T	Cancel
	Src. Address:	[•	Apply
	Dst. Address:			•	Disable
	Protocol:			•	Comment
	Src. Port:			•	Сору
	Dst. Port:			•	Remove
	Any. Port:			· ·	Reset Counters
	In. Interface:			•	Reset All Counter
C	Out. Interface:			•	

Figura 4.61: Configuraciones en la pestaña General.

En la figura 4.62 se encuentran las configuraciones de la pestaña Advanced, las cuales establecen que las direcciones IP de origen deben estar en la lista Port Scanner (Src. Address List: Port Scanner).

ìrewall Rule ⇔	
General Advanced Extra Action Statistics	ок
Src. Address List: 🖸 Port Scanner	Cancel
Dst. Address List:	✓ Apply
Layer7 Protocol:	✓ Disable
	Comment
Content:	Сору
Connection Bytes:	Remove
Connection Rate:	Reset Counter
Per Connection Classifier:	Reset All Counte
Src. MAC Address:	▼

Figura 4.62: Configuraciones en la pestaña Advanced.

En la figura 4.63 se visualizan las configuraciones de la pestaña Action, las cuales establecen que los paquetes, que cumplieron con los parámetros de las figuras anteriores, se descarten (Action: drop).

Firewall Ru	le ⇔					
General	Advanced	Extra	Action	Statistics		ОК
Act	ion: drop				.	Cancel
	Log					Apply
Log Pr	efix:				~	Disable
						Comment
						Сору
						Remove
						Reset Counters
						Reset All Counters

La segunda regla es similar a la primera. Solo se cambia (Chain: forward) por (Chain: input).

En la tercera y cuarta regla de Firewall se configura PSD y se agrega la dirección IP de origen a una lista de bloqueo durante 1 día (Mikrotik, Drop port scanners, s.f.). La

tercera regla se encargará de los escaneos dirigidos a través del router y la cuarta se encargará de los dirigidos al router.

Como se puede ver en la figura 4.64, las configuraciones realizadas en la pestaña General establecen que los paquetes entrantes deben estar dirigidos a un equipo conectado al router (Chain: forward) y el protocolo debe ser TCP (Protocol: 6(tcp)).

Firewall R	le ⇔		
General	Advanced Extra Action Statistics		ОК
	Chain: forward	Ŧ	Cancel
	Src. Address:	•	Apply
	Dst. Address:	•	Disable
	Protocol: 6 (tcp)	₹.	Comment
	Src. Port:	•	Сору
	Dst. Port:	•	Remove
	Any. Port:	•	Reset Counters
	In. Interface:		Reset All Counters

Figura 4.64: Configuraciones en la pestaña General.

En la figura 4.65 se muestran las configuraciones de PSD en la pestaña Extra. Se asignan los siguientes valores: (Weight Threshold: 12), (Delay Threshold: 00:00:03), (Low Port Weight: 4) y (High Port Weight: 1).

Firewall Rule 🗢	
General Advanced Extra Action Statistics	ОК
- Connection Limit	Cancel
·▼ Limit	Apply
·▼ Nth	Disable
Time	Comment
Src. Address Type Type Type	Copy
- PSD	Bemove
Weight Threshold: 12	Reset Counters
Delay Threshold: 00:00:03	Reset All Counters
Low Port Weight: 4	
High Port Weight: 1	
 ✓ Hotspot ✓ IP Fragment 	

Figura 4.65: Configuraciones en la pestaña Extra.

Como se puede notar en la figura 4.66, las configuraciones de la pestaña Action establecen que la dirección IP de origen se agregará (Action: add src to address list) a la lista de bloqueo Port Scanner (Address List: Port Scanner) durante 1 día (Timeout: 1d 00:00:00).

Firewall Rule <		
General Adv	anced Extra Action Statistics	ОК
Action:	add src to address list	₹ Cancel
	Log	Apply
Log Prefix:	C	Disable
Address List:	Port Scanner	Comment
Timeout:	1d 00:00:00	Т Сору
		Remove
		Reset Counters
		Reset All Counters

Figura 4.66: Configuraciones en la pestaña Action.

La cuarta regla es similar a la tercera. Solo se cambia (Chain: forward) por (Chain: input).

4.3. Seguridad de capa 2

4.3.1. Topología

En la figura 4.67 se encuentra la primera topología de la red en la que se realizarán pruebas. Se utilizará el switch Mikrotik RB260GSP.

Figura 4.67: Topología N° 1 de la red de pruebas.

En la figura 4.68 se puede observar la segunda topología de la red en la que se realizarán pruebas. Para el switch 1, 2 y 3, se utilizará el router Mikrotik hAP LITE TC (RB941-2Nd-TC) configurado como bridge.

Figura 4.68: Topología N° 2 de la red de pruebas.

En la figura 4.69 se encuentra la tercera topología de la red en la que se realizarán pruebas. Para el switch 1, 2 y 3, se utilizará el router Mikrotik hAP LITE TC (RB941-2Nd-TC) configurado como bridge y para el switch 4 se utilizará el switch Mikrotik RB260GSP.

Figura 4.69: Topología N° 3 de la red de pruebas.

En la figura 4.70 se puede ver la cuarta topología de la red en la que se realizarán pruebas. Para el switch 1 y 2 se utilizará el switch Mikrotik RB260GSP.

Figura 4.70: Topología Nº 4 de la red de pruebas.

4.3.2. Pruebas en la red vulnerable

Falsificación de direcciones MAC

Los switches tienen un proceso de aprendizaje que utilizan para llenar la tabla de direcciones MAC. Cuando el switch recibe una trama, coloca, en la tabla, el puerto por el cual la recibió y la dirección MAC del dispositivo que la envió. Si un atacante envía una trama, en la que cambia su dirección MAC por la de un host legítimo de la red, el switch sobrescribirá la información de la tabla de direcciones MAC y ahora la información destinada al host legítimo, se enviará por el puerto al que está conectado el atacante (Ariganello, 2014).

Existe macchanger, la cual es una herramienta que permite modificar la dirección MAC de un host (Rendek, 2017).

Para las pruebas se utilizará la topología de la figura 4.67.

En la figura 4.71 se puede comprobar que, en la tabla de direcciones MAC, se han registrado los 2 hosts legítimos.

Port	MAC	
Port2	f4:	
Port3	d8:	

Figura 4.71: Tabla de direcciones MAC.

En la figura 4.72 se pueden examinar los comandos ejecutados para cambiar la dirección MAC del host del atacante (-m) en la interfaz *ethernet* (eth0). La nueva dirección MAC pertenece a la PC1.

Se debe apagar la interfaz *ethernet* del host antes de cambiar la dirección MAC y se debe encender después del cambio.

pi@raspberrypi: ~			×
File Edit Tabs Help			
pi@raspberrypi:~ \$ sudo ifconfig eth0 down pi@raspberrypi:~ \$ sudo macchanger -m f4: Current MAC: b8: Permanent MAC: b8: New MAC: f4:	eth0		*
pi@raspberrypi:~ \$ sudo ifconfig eth0 up pi@raspberrypi:~ \$			l

Figura 4.72: Cambio de dirección MAC en el host del atacante.

Se conecta el host del atacante al switch y se realiza ping a la PC2 para que se sobrescriba la información en la tabla de direcciones MAC.

En la figura 4.73 se puede verificar que, en la tabla de direcciones MAC, se sustituyó el puerto 2, que corresponde a la PC1, por el puerto 4 que corresponde al atacante.

Port	MAC	
Port3	d8:	
Port4	f4:	

Figura 4.73: Cambio de puerto en la tabla de direcciones MAC.

Desde la PC2 se realiza ping a la PC1.

En el host del atacante se realiza la captura de paquetes mediante Wireshark y se comprueba, en la figura 4.74, que se reciben algunos paquetes correspondientes al ping que estaba dirigido hacia la PC1.

1		Contraction of the second s		10				
	*eth0 _ 🗆 ×							
<u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>G</u> o <u>C</u> apture	<u>Analyze</u> <u>Statistics</u>	Telephony Wireless Tools Help	5				
	🗖 🖉 💿 🛄 🖡		% K; f] 🔁 🖻 🖻					
📕 ip	.addr==192.168.88.2 and i	cmp			× ⇒	Expre	ession +	
No.	Time	Source	Destination	Protocol	Length Info			
100	37 29.831632853	192.168.88.3	192.168.88.2	ICMP	74 Echo	(ping)	request	
	180 117.742983913	192.168.88.3	192.168.88.2	ICMP	74 Echo	(ping)	request	
	201 122.694926828	192.168.88.3	192.168.88.2	ICMP	74 Echo	(ping)	request	
	222 128.730470628	192.168.88.3	192.168.88.2	ICMP	74 Echo	(ping)	request	
4							F	

Figura 4.74: Recepción de paquetes dirigidos a la PC1.

Tormenta de LAN

"Este tipo de ataque se da cuando se crea un exceso de tráfico en la red LAN y se degrada el desempeño de la misma. Se puede producir por errores en la configuración de la red, por tormentas de broadcast, por ataques DoS (Denial of Service), etc." (Ariganello, 2014).

"Una tormenta de broadcast se produce cuando existen tantas tramas de broadcast, atrapadas en un bucle de capa 2, que se consume todo el ancho de banda disponible" (CISCO, CCNA 3: Scaling Networks).

Para este ataque se utilizará la topología de la figura 4.67.

Para la primera prueba se realizará un bucle en el switch, conectando el puerto 1 y el puerto 5 con el mismo cable. Esto provocará una tormenta de broadcast.

En la figura 4.75 se puede notar que, en la pestaña Statistics, las tasas de transmisión y recepción de los puertos suben de forma excesiva.

AikroTik SwOS							
Link SFP For	warding	Statistics	Errors VLAN	/LANs Hosts	IGMP Groups SNMP	ACL System	
Upgrade							
	Devet	Dent2	Davit2	Denta	Deate	CER	
	Porti	Portz	Port3	POFL4	PORS	SFP	
Rate							
Rx Rate	48. <mark>4</mark> 2M	0	0	0	48.43M	0	
Rx Packet Rate	38.99k	2	0	14	38.99k	0	
Tx Rate	50.34M	89.95M	89.95 <mark>M</mark>	90M	50.34M	0	
Tx Packet Rate	38.99k	57k	57k	57.01k	38.98k	0	

Figura 4.75: Tasas de transmisión y recepción de los puertos.

En la figura 4.76 se comprueba que no puede comunicarse la PC2 con la PC1.

📾 Seleccionar Símbolo del sistema - ping 192.168.88.2	9 <u>899</u> 5		×
Microsoft Windows [Versión 10.0.18362.476] (c) 2019 Microsoft Corporation. Todos los derechos res	ervado	os.	^
C:\Users\Luis Miguel≻ping 192.168.88.2			
Haciendo ping a 192.168.88.2 con 32 bytes de datos: Tiempo de espera agotado para esta solicitud. Tiempo de espera agotado para esta solicitud. Respuesta desde 192.168.88.3: Host de destino inaccesi	ble.		
			~

Figura 4.76: Intento de comunicación entre la PC2 y la PC1.

Manipulación STP

Cuando se analizan los identificadores de puente, para determinar el switch que será puente raíz, se le da mayor importancia al valor de prioridad. En caso de que todos los switches tengan el mismo valor de prioridad, se analiza la dirección MAC (CISCO, CCNA 3: Scaling Networks).

Este ataque se realiza en una red redundante en la que se utilice STP o RSTP. Consiste en conectar, entre 2 switches, un switch adicional que tenga configurado este protocolo y al que se le haya asignado la prioridad más baja posible. Este nuevo switch se convertirá en el nuevo puente raíz. Esto significa que todo el tráfico pasará por el nuevo switch y el atacante, conectado a una de sus interfaces, puede utilizar Port Mirroring para obtener una copia de todo el tráfico que pasa por el switch (Ariganello, 2014). En la topología de la figura 4.68 se puede observar la red redundante sobre la cual se realizará el ataque.

El puente raíz es el switch 3.

En la topología de la figura 4.69 se puede observar la red modificada con la conexión del nuevo switch del atacante (switch 4).

En la figura 4.77 se puede observar que, en la pestaña RSTP del switch del atacante, se asigna la prioridad más baja posible (Bridge Priority (hex): 0000) para asegurar que el switch sea el puente raíz.

General		
Bridge Priority (hex)	0000	
Port Cost Mode	short 🔻	
Root Bridge	0000.74:	
		Discard Changes Apply All

Figura 4.77: Configuración de prioridad en el switch del atacante.

En la figura 4.78 se puede ver que, en la pestaña Forwarding, se configura Port Mirroring de forma que se envíe al puerto 3 (Mirror To) una copia de todo el tráfico que ingrese al switch por los puertos 1 y 2 (Mirror Ingress:).

Port Mirroring							
Mirror Ingress							
Mirror Egress							
Mirror To	Q	Q	۲	Q	Q	Q	

Figura 4.78: Configuración de Port Mirroring.

En la figura 4.79 se encuentra la ventana Bridge y la pestaña Bridge. En esta última se puede ingresar a las configuraciones del switch 3. En la pestaña Status se puede observar que se identifica como puente raíz al switch de prioridad 0000 (Root Bridge ID), el cual corresponde al atacante.

Bridge			
Bridge Ports VLA	Ns MSTIs Port MST Overric	des Filters NAT Hosts MDB	
	Settings		
Name R 4 Noridae 3	/ Interface <bridge3></bridge3>		
n - Dhuges	General STP VLAN	Status Traffic	OK
	Last Link Down Time:		Cancel
•	Last Link Up Time:	Jan/07/2020 10:58:44	Apply
1 item out of 6	Link Downs:	0	
		Peet Pridee	Disable
	Past Bridge ID:		Comment
	Hoot Bridge ID.	00.74	Сору
	Root Path Cost:	10	Remove
	Root Port:	ether4	Torch
	Port Count:	4	
	Designated Port Count:	3	
	enabled	running	5

Figura 4.79: Pestaña Status del switch 3.

Se realiza ping de la PC1 a la PC2.

En la figura 4.80, utilizando Wireshark, el atacante puede ver el tráfico generado entre la PC1 y la PC2.

			Capturing from eth0 (icmp)			00	8
File	<u>E</u> dit <u>V</u> iew <u>G</u> o <u>C</u> ap	oture <u>A</u> nalyze <u>S</u> tatist	ics Telephony <u>W</u> ireless <u>T</u> ools <u>H</u> elp				
	🛛 🖉 💿 🗖 🗍) 🕅 🖉 🔍 🔶	★) * *				
Арр	oly a display filter <c< td=""><td>trl-/></td><td></td><td></td><td></td><td>Expression</td><td>+</td></c<>	trl-/>				Expression	+
No.	Time	Source	Destination	Protocol	Length ID	Info	_
	1 0.000000000	192.168.88.2	192.168.88.3	ICMP	74	Echo (ping) reques	t i
4-	2 0.000408516	192.168.88.3	192.168.88.2	ICMP	74	Echo (ping) reply	i
1	3 0.994747243	192.168.88.2	192.168.88.3	ICMP	74	Echo (ping) request	t i
	4 0.995007940	192.168.88.3	192.168.88.2	ICMP	74	Echo (ping) reply	i
	5 1.994724709	192.168.88.2	192.168.88.3	ICMP	74	Echo (ping) request	t i
	6 1.994973460	192.168.88.3	192.168.88.2	ICMP	74	Echo (ping) reply	i
	7 2.994796500	192.168.88.2	192.168.88.3	ICMP	74	Echo (ping) request	t i
L.	8 2.995083766	192.168.88.3	192.168.88.2	ICMP	74	Echo (ping) reply	i
4							Þ

Figura 4.80: Visualización de tráfico en la computadora del atacante.

VLAN hopping

Cuando se van a utilizar VLANs en un switch, es muy común que se configuren los puertos de acceso, que se van a utilizar, con sus respectivas VLANs, los puertos troncales y se mantenga el resto de configuraciones por defecto. Los puertos de enlace troncal se mantendrán en la VLAN 1 (VLAN nativa) al igual que los puertos de acceso que no se han utilizado.

Las tramas que se envían desde la VLAN nativa no se etiquetan. Si el switch recibe una trama etiquetada, proveniente de un puerto de la VLAN nativa, retira la etiqueta para enviar la trama por el enlace troncal. Si se agregan dos etiquetas, el switch solamente quitará una de ellas y la trama pasará por el enlace troncal con la segunda etiqueta intacta. Si en el otro extremo del enlace troncal se encuentra un segundo switch, este recibirá la trama y la enviará a la VLAN especificada en la segunda etiqueta. Con este método se puede comunicar de forma unidireccional a cualquier VLAN de la red (CISCO, CCNA 2: Routing and Switching Essentials).

Las pruebas se realizarán con la topología de la figura 4.70.

Para realizar el proceso de doble etiquetado se utilizará Yersinia, la cual es una herramienta que permite realizar ataques de capa 2. Está diseñada para aprovechar las vulnerabilidades que pueden presentar algunos protocolos (Kali, Yersinia Package Description, s.f.).

El atacante está conectado en un puerto de la VLAN nativa.

Para iniciar Yersinia en Kali Linux, desde la computadora del atacante, se debe ejecutar el comando de la figura 4.81.

Figura 4.81: Comando para iniciar Yersinia.

En la figura 4.82 se encuentra la pestaña 802.1Q, en la cual se establecen los valores de VLAN para el doble etiquetado (VLAN: 1 y VLAN2: 10), una dirección IP de origen falsa (Src IP: 10.10.0.2) y la dirección IP de destino perteneciente a la PC3 de la VLAN 10 (Dst IP: 192.168.88.2).

(Ye	rsinia O	.8.2				0	•	0
File Pro	tocols Ac	tions Op	tions Help												
Launch at	ttack Edit	interfaces	/ Load default	 List attack	s Clear stats	▼ Ca	D _₽ pture	₹ Ed		Exit					
Protocols	Packets	4	CDP DHCP	802.1Q	802.1X DTP	HSRP	ISL	MPLS	STP VTP	Yersinia log					
CDP	2		VLAN L2Pro	to1 Src IP	Dst IP IP Prot	Interf	ace C	ount La	ast seen						
DHCP	0	_													
802.1Q	0														
802.1X	0	_													
DTP	0														
HSRP	0														
ISL	0														
MPLS	0														
STP	36	*													
Field Va	lue Descri	ption													
			IEEE 802.1Q												
			Source MAC	0E:		De	stinati	on MAC	FF:FF:	FF:FF:FF:FF					
			VLAN 1	Pric	ority 7	CFI	00	L2Pr	oto1 086	0 VLAN2	10 Priority	7 CFI	00		
			L2Proto2	0800	Src IP 10.1	0.0.2		Ds	t IP 192	.168.88.2	IP Prot 01				
			Payload Y	ERSTNTA											

Figura 4.82: Configuración de parámetros en Yersinia.

Se presiona Launch attack, se abre la ventana de la figura 4.83 y se elige la opción sending 802.1Q double enc. packet.

	Choose protocol attack 🗧 🔕											
CDP	DHCP	802.1Q	802.1X	DTP	HSRP	ISL	MPLS	STP	VTP			
Choo	ose attac	k			Dec							
O s	ending 8 ending 8	302.1Q pa	cket uble enc.	packe								
() s	ending 8	302.1Q ar	p poisonii	ng								
		1.27.27 HI										
		Cancel					OK					

Figura 4.83: Configuración del tipo de ataque.

En la figura 4.84, utilizando Wireshark, se comprueba que la PC3, de la VLAN 10, recibió los datos enviados por el atacante.

Figura 4.84: Captura de datos mediante Wireshark en la PC3.

4.3.3. Configuraciones de seguridad

Las configuraciones en el switch se deben realizar, mediante un navegador web, utilizando el servicio http.

Configuraciones básicas de seguridad en un switch

Se deben realizar ciertas configuraciones de seguridad básicas en un switch. Este tipo de configuraciones ya se trataron en la sección de seguridad en un router.

En las figuras 4.85 y 4.86 se puede observar que, en la pestaña System, se pueden realizar las siguientes configuraciones (Mikrotik, SwOS/CSS106, s.f.):

• Configurar una dirección IP al switch para el acceso al servicio de configuración (Static IP Address).

- Configurar las direcciones IP desde las cuales se puede acceder al servicio de configuración (Allow From).
- Configurar los puertos desde los cuales se puede acceder al servicio de configuración (Allow From Ports).
- Configurar la VLAN desde la cual se puede acceder al servicio de configuración (Allow From VLAN).
- Deshabilitar el servicio Mikrotik Discovery Protocol.
- Cambiar la contraseña por defecto (Usuario: admin y Contraseña: vacío).
- Respaldar la configuración del switch.

MikroTik SwOS Logout											
Link SFP Forwarding RSTP 5 Upgrade	statistics Errors VLAN VLANS Hosts IGMP Groups SNMP ACL Sy	ystem									
General											
Address Acquisition	static 🔹										
Static IP Address	192.168.88.5										
Identity	MikroTik										
Allow From											
Allow From Ports	✓1 √2 ✓3 √4 ✓ 5 ✓ SFP										
Allow From VLAN											
Watchdog											
Independent VLAN Lookup											
IGMP Snooping											
Mikrotik Discovery Protocol											
Port1 PoE In Long Cable											

Figura 4.85: Configuraciones básicas de seguridad en el switch.

	old Provide					
	Old Password					
	New Password					
	Confirm Password					
						Change Password
						L
Backup						
		0.10	Nin artis	archivo selecciona	do	
	Backup to Restore	Seleccionar arcr	iivo Ningun	0101110 301000010		

Figura 4.86: Configuraciones básicas de seguridad en el switch.

En la figura 4.87 se puede ver que, en la pestaña Link, se pueden desactivar los puertos que no se utilicen.

Mikr	oTil	(SWOS											
Link	SFP	Forwarding	RSTP	Statistics	Errors	VLAN	VLANs	Hosts	IGMP Groups	SNMP	ACL	System	Upg
		Port1		Port2		Poi	t3		Port4		Port5	{	
Ena	bled												

Figura 4.87: Configuración de puertos.

Como se puede observar en la figura 4.88, en la pestaña Upgrade se puede actualizar el firmware.

MikroTik SwOS Logout
Link SFP Forwarding RSTP Statistics Errors VLAN VLANs Hosts IGMP Groups SNMP ACL System
Upgrade
Firmware
Current Installed Version 2.7 (built at Fri Dec 15 2017 03:42:48 GMT-0500 (hora de Ecuador))
Latest Available Version 2.10 (built at Thu Aug 22 2019 07:27:34 GMT-0500 (hora de Ecuador))
Changelog
<pre>what's new in v2.10: *) do not ignore RSTP port state when forwarding DHCP, PPPoE or IGMP snooped packets; *) IGMP snooping: send out IGMPv3 queries by default; *) IGMP snooping: handle IGMPv3 leaves much better; *) IGMP snooping: handle dropped IGMP reports much better; *) IGMP Snooping: handle dropped IGMP reports much better; *) IGM9, CRS312, CRS317, CRS326Q: fixed ACL matching by ip destination port; *) CRS305, CSS106: make ACL work again; *) CSS106: improve packet forwarding between different speed interfaces; *) restart RSTP on LACP ports that got disbundled; *) made disabling of flow-control work as expected; *) do not account rx-overflows twice in SNMP ifInErrors; *) CRS328-24P-45+: make auto upgrade work; *) make DHCP & PPPoE snooping work correctly on port trunks; *) make DHCP & PPPoE snooping work correctly on port trunks; *) make DHCP & PPPoE snooping work correctly on port trunks; *) fixed problem where disabled autonegotiation on some SFP modules became effective only after reboot; *) CRS326, CRS326, CRS328: improved switch-chip resource allocation; What's new in v2.9: *) CRS326 & CRS328 & CRS317: make sure that RSTP BPDU packets are always untagged; */ *) CRS326 & CRS328 & CRS317: make sure that RSTP BPDU packets are always untagged; */ */ */ CRS326 & CRS328 & CRS317: make sure that RSTP BPDU packets are always untagged; */ */ */ CRS326 & CRS328 & CRS317: make sure that RSTP BPDU packets are always untagged; */ */ */ CRS326 & CRS328 & CRS317: make sure that RSTP BPDU packets are always untagged; */ */ */ CRS326 & CRS328 & CRS317: make sure that RSTP BPDU packets are always untagged; */ */ CRS326 & CRS328 & CRS317: make sure that RSTP BPDU packets are always untagged; */ */ CRS326 & CRS328 & CRS317: make sure that RSTP BPDU packets are always untagged; */ */ CRS326 & CRS328 & CRS317: make sure that RSTP BPDU packets are always untagged; */ */ CRS326 & CRS328 & CRS317: make sure that RSTP BPDU packets are always untagged; */ */ CRS326 & CRS328 & CRS317: make sure that RSTP BPDU packets are alw</pre>
*) CK5326 & CK5328 & CK5317: make sure that RSTP BPDU packets are always untagged:
New version is available for upgrade Download & Upgrade

Figura 4.88: Actualización del firmware.

Se recomienda desactivar el servicio SNMP, si no se necesita utilizarlo, debido a que este modelo de switch solo soporta la versión 1, la cual no implementa seguridad (Mikrotik, SwOS/CSS106, s.f.).

En la figura 4.89 se encuentra la pestaña SNMP, desde la cual se puede desactivar este servicio.

Mikro	oTik	(SwOS											Logout
Link	SFP	Forwarding	RSTP	Statistics	Errors	VLAN	VLANs	Hosts	IGMP Groups	SNMP	ACL	System	
Upgrad	le												
			Enabled	I 🔲									
		Co	mmunity	public									
		Con	tact Info										
			Location										
								Pe	nding changes	Disc	ard Cha	anges	Apply All

Figura 4.89: Desactivación del servicio SNMP.

Seguridad de puertos

La seguridad de puertos consiste en desactivar el proceso de aprendizaje y llenar de forma manual y estática la tabla de direcciones MAC del switch (Ariganello, 2014).

En la figura 4.90 se puede observar que, en la pestaña Forwarding, se encuentra la opción Port Lock. Se debe habilitar, en cada puerto, para desactivar el proceso de aprendizaje (Mikrotik, SwOS/CSS106, s.f.).

MikroTik SwOS Logout										
Link SFP F Upgrade	orwarding F	RSTP Statistics	Errors VLAN	VLANs Hosts I	GMP Groups SNM	IP ACL System				
Forwarding	D-141	De 142		Dente	Dente					
From Port1		Portz		Port4		SFP Ø				
From Port2										
From Port3										
From Port4										
From Port5										
From SFP										
Port Lock										
Port Lock										
Lock On First										

Figura 4.90: Desactivación del proceso de aprendizaje en los puertos del switch.

Como se puede ver en la figura 4.91, en la pestaña Hosts se puede asignar una dirección MAC a uno de los puertos del switch.

Mik	roTik	Swos	5											Logout
Link	SFP	Forwardin	g RSTP	Statis	tics	Errors	VLAN	VLANs	Hosts	IGMP Gr	oups	SNMP	ACL	System
Upgra	ade													
Static	Hosts	;												
Port1	Port2	Port3	Port4	Port5	SFP	MAC			1	VLAN ID	Drop	Mirr	or	
						f4:								Cut Insert
						d8:								Cut Insert
									A	ppend	Sort	Discard	Chang	es Apply All

Figura 4.91: Configuración estática de la tabla de direcciones MAC.

Estas configuraciones se mantendrán incluso si el switch se reinicia.

STP o RSTP

Se debe configurar STP o RSTP en los puertos del switch para evitar que se formen bucles y que se generen tormentas de broadcast (CISCO, CCNA 3: Scaling Networks).

En la pestaña RSTP se puede habilitar este protocolo en cada puerto del switch, como se puede apreciar en la figura 4.92 (Mikrotik, SwOS/CSS106, s.f.).

MikroTik	Swos					Logout
Link SFP	Forwarding R	STP Statistics E	rrors VLAN VL	ANS Hosts IGM	P Groups SNMP	ACL System
Per Port						
	Port1	Port2	Port3	Port4	Port5	SFP
RSTP						
Mode	RSTP	RSTP	RSTP	RSTP	RSTP	RSTP
Role	designated	designated	designated	designated	designated	designated
Root Path Cost						
Туре	edge	edge	edge	edge	edge	edge
State	forwarding	forwarding	forwarding	forwarding	forwarding	forwarding
					Discard	Changes Apply All

Figura 4.92: Configuración de RSTP en los puertos del switch.

Limitar el ancho de banda

Se puede limitar el ancho de banda en cada puerto para que no se puedan generar tasas de tráfico excesivas que consuman todos los recursos de la red.

ACL (Access Control List) es una herramienta que permite controlar el flujo de paquetes analizando valores como etiquetas VLAN, direcciones MAC, direcciones IP, interfaces del switch, etc. (Mikrotik, SwOS/CSS106, s.f.)

En la figura 4.93 se puede ver que, en la pestaña ACL, se limita, en el puerto 1 (From:), el ancho de banda de ingreso a 5 Mbps (Rate: 5 M).

Esta configuración también limitará el tráfico de broadcast.

Se recomienda repetir esta configuración para todos los puertos del switch de forma individual (Mikrotik, SwOS/CSS106, s.f.).

MikroTik SwOS											
Link SFP Forwarding RSTP	Statistics Errors		ANs Hosts	IGMP Groups	SNMP	ACL					
System Upgrade											
From: Clear Cut											
MAC Src:	MAC Dst:			Ethertype:	hex						
VLAN: any	VLAN ID:			Priority:							
IP Src:	IP Dst:			Protocol:	DS	SCP:					
Redirect To	Mirror	Rate: 5M		Set VLAN ID:	Prio	rity:					

Figura 4.93: Configuración del límite de tasa de tráfico de ingreso en el puerto 1 del switch.

Seguridad en STP

El principio de funcionamiento, de este protocolo, se basa en la comunicación entre switches, por lo que los puertos que están destinados para hosts no deben recibir BPDUs.

BPDU Guard es una opción que desactiva el puerto por el cual reciba una BPDU. Se debe habilitar en los puertos destinados para hosts (Ariganello, 2014).

En la figura 4.94 se puede observar que, en la ventana Bridge y la pestaña Ports, se encuentra la lista de interfaces. Al ingresar a las configuraciones de cada interfaz, se puede configurar BPDU Guard en la pestaña STP.

Figura 4.94: Configuración de BPDU Guard en cada puerto.

Seguridad del enlace troncal

Se recomienda cambiar los valores por defecto, utilizar la VLAN nativa solo en los puertos destinados para puertos troncales, asignar los puertos de acceso, que se vayan a utilizar, a sus respectivas VLANs y asignar los puertos restantes a una VLAN que no se vaya a utilizar (Ariganello, 2014).

Como se puede apreciar en la figura 4.95, en la pestaña VLAN y la opción Default VLAN ID se realizan las siguientes configuraciones:

- Los puertos 3 y 4 son de acceso y se asignan a las VLANs 10 y 20 respectivamente.
- El puerto 2 es troncal y se asigna a la VLAN 9 (VLAN nativa).
- El resto de puertos no serán utilizados, por lo que se los asigna a la VLAN 5, la cual no se utiliza en la red.

MikroT	MikroTik SwOS Logout											
Link	FP Forwarding F	STP Statistics	Errors VLAN VL	ANS Hosts IGMF	Groups SNMP	ACL System						
Upgrade												
	Port1	Port2	Port3	Port4	Port5	SFP						
Ingress												
VLAN Mode	optional 🔻	strict 🔻	strict 🔻	strict 🔻	optional 🔻	optional 🔻						
VLAN Receive	any 🔻	any 🔻	any 🔻	any 🔻	any 🔻	any 🔻						
Default VLAN ID	5	9	10	20	5	5						
Force VLAN ID												

Figura 4.95: Configuración segura de VLANs.

4.4. Túnel IPsec

4.4.1. Topología

En la figura 4.96 se encuentra la primera topología de la red en la que se realizaran pruebas. Se utilizará el router Mikrotik hAP LITE TC (RB941-2Nd-TC).

Figura 4.96: Topología N° 1 de la red de pruebas.

En la figura 4.97 se encuentra la segunda topología de la red en la que se realizarán pruebas. Se utilizará el router Mikrotik hAP LITE TC (RB941-2Nd-TC) y el switch Mikrotik RB260GSP.

Figura 4.97: Topología N° 2 de la red de pruebas.

4.4.2. Pruebas en la red vulnerable

Se realizará la configuración de un túnel IPsec en la red de la topología de la figura 4.96.

Todas las configuraciones se deben realizar en la ventana IPsec tanto en el router 1 como en el router 2.

En la figura 4.98 se agrega un nuevo perfil en la pestaña Profiles. Aquí se especifican los parámetros de hashing (Hash Algorithms: sha1), encriptación (Encryption Algorithm: 3des) y grupo DH (DH Group: modp1024) que se utilizarán en la fase 1 de IKE (Mikrotik, Manual:IP/IPsec, s.f.).

IPsec				
Policies Proposals Groups Peers Id	Ientities Profiles Activ	e Peers Mode Config	s Installed SAs	Keys
+ - 7			Find	d.
Name / Hash Algorithms	Encryption Algorithm	DH Group	Proposal Ch	-
* default New IPsec Profile				
	Name: profile1		ок	
Hash Algo	rithms: sha1	•	Cancel	
Encryption Alg	orithm: 🗌 des	✓ 3des	Apply	
	aes-128	aes-192	Сору	
	camellia-128	camellia-192	Remove	
1 item	Group: modp768 [ec2n155] modp1536] modp3072] modp6144] ecp256] ecp521	 ✓ modp1024 ec2n185 modp2048 modp4096 modp8192 ecp384 		
Proposal (Check: obey	Ŧ		
L	fetime: 1d 00:00:00			
Life	ebytes:	•		
	NAT Traversa	al		
DPD In	terval: 120	₹ s		
DPD Maximum F	ailures: 5			

Figura 4.98: Configuraciones para la fase 1 de IKE.

En la figura 4.99 se crea una nueva propuesta en la pestaña Proposals, en la que se configuran los parámetros de hashing (Auth. Algorithms: sha1) y encriptación (Encr. Algorithms: 3des) para la fase 2 de IKE (Mikrotik, Manual:IP/IPsec, s.f.).

IPsec .					
Policies Proposals Groups Peers la	dentities Profiles	Active Peers	Mode Configs	Installed SAs	Keys
+ - / * 7				Fit	nd
Name / Auth. Algorithms	Encr. Algorithms	Lifetime	PFS Group		-
* default sha1 New IPsec Propo	sal			×	
Name:	proposal1		ОК		
Auth. Algorithms:	🗌 md5 🛛 🗹 s	ha1	Cancel		
	null sha512	ha256	Apply		
Encr. Algorithms:		des	Disable	e	
	✓ 3des aes-192 cbc	aes-128 cb	c Copy	Ē.	
	blowfish	twofish	Remove	Ī	
	camellia-120	aes-128 ctr			
	aes-192 ctr	aes-256 ctr			
1 item	aes-128 gcm aes-256 gcm	aes-192 gc	m		
Lifetime:	00:30:00		•		
PFS Group:	none	:	Ŧ		
enabled				-	

Figura 4.99: Configuraciones para la fase 2 de IKE.

En la figura 4.100, en la pestaña Peers, se configura la dirección IP del peer con el que se desea establecer el túnel (Address: 209.165.200.226/32), el perfil que se configuró anteriormente (Profile: profile1) y el modo de fase 1 (Exchange Mode: aggressive) (Mikrotik, Manual:IP/IPsec, s.f.).

IPsec									
Policies	Proposals 0	Groups Peers	Identities	Profiles	Active Peers	Mode	Configs	Installed SA	s Keys
+		- 7						F	ind
#	Name	Address	i Lo	cal Addres	ss Profile		Б	change	-
	New	IPsec Peer							
		Name:	peer2				OK		
		Address:	209.165.20	09.165.200.226/32			Cancel	el	
		Port:				•	Appl	y	
	L	ocal Address:				•	Disab	ble	
		Profile:	profile1			Ŧ	Comm	ent	
	Exc	hange Mode:	aggressive			₹	Сор	v	
			Passive Send IN	ITIAL_CO	NTACT		Remo	ve	
0 items	enab	oled		D.	esponder				

Figura 4.100: Configuraciones para la comunicación con el peer remoto.

Como se puede ver en la figura 4.101, en la pestaña Identities, se configuran los parámetros relacionados con la identificación y autenticación de los peers.

Clave precompartida o PSK (Pre Shared Key) es un método de autenticación en el que se configura un valor secreto (contraseña) en ambos extremos que participan en la comunicación (Ariganello, 2014). Se utiliza este método de autenticación de autenticación (Auth. Method: pre shared key) y se establece la contraseña (Secret: ****) (Mikrotik, Manual:IP/IPsec, s.f.).

IPsec										
Policies	Proposals	Groups	Peers	Identitie	Profiles	Active Peers	Mod	le Configs	Installed SAs	Keys
+ -			7	Settings					Fit	nd
# 1	Peer	A	uth. Met	hod U	semame	Remote ID		Mode C	onfiguration	-
		New IF	^s sec Ider	ntity					×	
				Peer:	peer2		Ŧ	ОК		
			Auth.	Method:	pre shared	key	Ŧ	Cancel		
				Secret:	•••••			Apply		
		Paliny Tamalata Groups		default	1	Ŧ	Disable			
			Notrac	k Chain:			Ŧ	Commen	t	
		-			-	1		Сору		
			My	ID Type:	auto		Ŧ	Remove		
0 items			Remote	ID Type:	auto		Ŧ			
N.			N	latch By:	remote id		Ŧ			
		Mo	de Confi	iguration:			•			
			General	te Policy:	no		Ŧ			
		enable	d							

Figura 4.101: Configuración del método de autenticación y asignación de una contraseña.

Como se puede observar en las figuras 4.102 y 4.103, en la pestaña Policies, se crea una nueva política en la que se especifican las redes que se pueden comunicar por medio del túnel (Src. Address: 10.10.1.0/24) (Dst. Address: 10.10.2.0/24), el modo de IPsec (Tunnel), la acción a realizar con los datos (Action: encrypt), el protocolo IPsec a utilizar (IPsec Protocols: ah) y la propuesta configurada anteriormente (Proposal: proposal1) (Mikrotik, Manual:IP/IPsec, s.f.).

1Psec									
Policies	Proposals	Groups	Peers	Identities	Profiles	Active Peers	Mode Configs	Installed SAs	Keys
+ -	× ×		7	Statistics]			Fi	nd
#	Peer		Tunr	nel Src. Ad	dress	Src. Po	rt Dst. Address	Dst	Port 🔻
0 "T			IPs	ec Policy <	:10.10.1.0	/24:0->10.10.2.	0/24:0>		255
	peer2		G	eneral Ac	tion Stat	us		OK	200
				Peer	; peer2		Ŧ	Cancel	1
					Tunn	el		Apply	1
			Si	rc. Address	: 10.10.1	.0/24		Diaphla	
				Src. Port	:		•	Disable	
			D	st. Address	: 10.10.2	.0/24		Comment	1
				Dst. Port			•	Сору	
•			_	Protocol	: 255 (all)		.	Remove]
2 items (1	selected)				Tem	olate			
									16
			ena	abled		Template	Active		-

Figura 4.102: Configuración de las políticas IPsec.

1Psec											
Policies	Proposals	Groups	Pee	ers Ide	ntities P	rofiles	Active Pe	eers Mode	e Configs	Installed SAs	Keys
+ -	🖌 🗙		7	Statis	tics					Fil	nd
#	Peer		I	unnel S	irc. Addre:	ss	Sn	c. Port Dst.	Address	Dst.	Port 🔻
0 °T				IPsec P	olicy <10.	10.1.0/	/24:0->10.	10.2.0/24:0			255
	peerz		1	Genera	Action	Stat	us			OK	200
					Action:	encry	ypt		Ŧ	Cancel	
					Level:	requi	re		Ŧ	Apply]
				IPsec I	Protocols:	ah			₹	Disable	
					Proposal:	propo	osal1		Ŧ	Comment	i
										Сору	
										Remove	
•	a classical)										+
Z items (1	selected)		_								_
			Ť	enabled		1	Template		Active		-

Figura 4.103: Configuración de las políticas IPsec.

Debido a que NAT (Network Address Translation) traduce las direcciones antes de que ingresen a las políticas IPsec, no se podrá establecer una comunicación a través

del túnel, por lo que se debe agregar una regla de firewall para que no se traduzcan las direcciones que se configuraron en las políticas IPsec (Mikrotik, Manual:IP/IPsec, s.f.).

Las configuraciones realizadas en la pestaña General establecen las direcciones IP de origen (Src. Address: 10.10.1.0/24) y destino (Dst. Address: 10.10.2.0/24), como se puede ver en la figura 4.104 (Mikrotik, Manual:IP/IPsec, s.f.).

IAT Rule	<10.10.1.0/24->10.10	0.2.0/24>		
General	Advanced Extra	Action		OK
	Chain: srcnat		Ŧ	Cancel
Src	Address: 10.10.1	.0/24]▲	Apply
Dst	Address: 10.10.2	.0/24] •	Disable
	Protocol:	1	•	Comment
	Src. Port:		-	Сору
	Dst. Port:		-	Remove
	Any. Port:		-	Reset Counters
In.	Interface:		-	Reset All Counters

Figura 4.104: Configuraciones en la pestaña General.

En la figura 4.105 se muestran las configuraciones realizadas en la pestaña Action, las cuales establecen que se debe aceptar (Action: accept) el tráfico de las direcciones especificadas en la figura 4.104 (Mikrotik, Manual:IP/IPsec, s.f.).

VAT Rule <10.10.1.0/24->10.10.2.0/24>	
Advanced Extra Action Statistics	ОК
Action: accept	Cancel
🗌 Log	Apply
Log Prefix:	Disable
	Comment
	Сору
	Remove
	Reset Counters
	Reset All Counter

Figura 4.105: Configuraciones en la pestaña Action.

En la red de la figura 4.97 un atacante conecta un switch entre el router 1 y 2 para poder analizar el tráfico que se produce entre estos 2 equipos.

En el switch se configura Port Mirroring para que el atacante, conectado al puerto 3 (Mirror To), reciba una copia del tráfico que ingresa por el puerto 1 o 2 (Mirror Ingress:). En la figura 4.106 se pueden ver las configuraciones realizadas en la pestaña Forwarding.

Port Mirroring								
Mirror Ingress								
Mirror Egress								
Mirror To	Q	Q	۲	Q	Q	Q		

Figura 4.106: Configuración de Port Mirroring en el switch.

No confidencialidad del protocolo AH

Debido a que el protocolo AH no encripta los datos, es posible ver la información que pasa a través del túnel IPsec.

Se realiza ping desde la PC1 a la PC2.

En la figura 4.107 se analiza el tráfico, utilizando Wireshark, desde la computadora del atacante. Se comprueba que la información es visible cuando se usa el protocolo AH.

6		*eth0				0 0
<u>File Edit View G</u>	o <u>C</u> apture <u>A</u> nalyze <u>S</u>	tatistics Telephon	<u>y</u> <u>W</u> ireless	<u>T</u> ools <u>H</u> elp		
🔳 🛃 💿 🗆		* * .J *	*	. Q 0	R 🎹	
ah 📕					Expres	ssion +
Time	Source	Destination	Protocol	Length ID	Info	
29 25.275376093	10.10.1.2	10.10.2.2	ICMP	118	Echo (ping) request
30 25.276352965	10.10.2.2	10.10.1.2	ICMP	118	Echo (ping) reply
32 26.289410003	10.10.1.2	10.10.2.2	ICMP	118	Echo (ping)) request
33 26.290454638	10.10.2.2	10.10.1.2	ICMP	118	Echo (ping) reply
37 27.305573105	10.10.1.2	10.10.2.2	ICMP	118	Echo (ping) request
43 31.980492135	10.10.1.2	10.10.2.2	ICMP	118	Echo (ping) request
44 31.980497383	10.10.2.2	10.10.1.2	ICMP	118	Echo (ping) reply
4						×

Figura 4.107: Análisis de tráfico del protocolo AH.

Ataque de contraseña fuera de línea

Este ataque está orientado a los túneles IPsec que utilizan el modo aggressive en la fase 1 de IKE y que utilizan el método de autenticación de clave precompartida (PSK).

Cuando se produce la autenticación de la fase 1 de IKE, en modo aggressive, uno de los peers envía un hash, sin encriptar, de la contraseña (PSK) y de otros valores conocidos que se utilizan dentro de la comunicación. Es posible capturar los paquetes
de la fase 1 y realizar un ataque de diccionario para intentar descubrir la contraseña de autenticación.

El ataque consiste en que se obtiene un hash de cada palabra del diccionario y se compara con el hash de los paquetes capturados. Si ambos coinciden, se descubrió la contraseña (Pitts, 2004).

Para la captura de datos y el ataque de diccionario se utilizará Cain & Abel, que es una herramienta que permite capturar tráfico y realizar ataques de contraseña. Dispone de una característica específica para la captura y análisis de tráfico de la fase 1 de IKE en modo aggressive (Pitts, 2004).

En las figuras 4.108 y 4.109 se muestra que, en la pestaña Sniffer de Cain & Abel, se pueden capturar los datos que intercambian los peers en la fase 1 de IKE.

Figura 4.108: Captura de datos de la fase 1 de IKE mediante Cain & Abel.

Eile View Con	figure Tools H	-					- • •		
<u>Flie view Con</u>	ingure loois r	Jeib		1 - 1 - 1					
🔄 🔄 🏟 🚱 NUM SEEF SI	lik 📮 🛛 🕂 🤇	🖉 😼 🖥 🖧 🎦 🌆 🖁	2 😥 🖬 🖬 🔁	0 ? 1					
💰 Decoders 🔮 Network	c 🔹 Sniffer 🥃	🕈 Cracker 🧕 Traceroute	CCDU 💱 Wireless	s 🚯 Query					
MSKerb5-PreAuth A		R-DH PubKey	I-DH PubKey	I-SA Payload	R-ID Payload	R-Hash	Hash-Algo		
Radius-Keys (0)	F1BCE969CFA	0D2704DD66993AAA76B	B395D1CA86657DA62BE	00000001000000100000	011101F4D1A5C8E1	FC06B3E106195E45E0D6	SHA-1		
Radius-Users (0)									
	<						>		
< > >	S IKE-PSK								
Hosts APK T	outing no Pass	swords 69 VOIP							
Lost packets: 0%									

Figura 4.109: Captura de datos de la fase 1 de IKE mediante Cain & Abel.

En estos datos se realiza click derecho/Send to Cracker y esta información pasará a la pestaña Cracker que se puede ver en la figura 4.110. Aquí se puede realizar el ataque de contraseña.

Eile View Config	gure Tools <u>H</u> elp						
	😨 🛛 🕂 🚱 🛛 📓	er 🙆 Tracerou	📟 🖬 📾 🚍	🕅 😻 🙆 🚺 🕅	1		
Strain SHA-1 Hashes (0) ∧ Strain SHA-2 Hashes (0) ∧ Strain SHA-2 Hashes (0) → Ro RIPEMD-160 Hashes → Kerb5 PreAuth Hash ■ Radius Shared-Key H	Identification	PSK	R-Hash FC06B3E10619	INonce+RNonce A34A6C90F1BCE96	PacketBytes 0D2704DD6699	Note	1
Lost packets: 0%	KE-PSK Hashes						

Figura 4.110: Pestaña Cracker de Cain & Abel.

En los datos se realiza click derecho/Dictionary Attack y se abre la ventana de la figura 4.111. En esta ventana se agrega una lista de palabras (diccionario) y se ejecuta el ataque.

File	Pos	ition	
III C:\Program Files (x86)\Cain\Wordlists\Wordlist.txt			
Key Rate	Options		
Dictionary Position	V As Is V Reve	(Password) rse (PASSW le (Pass - Pa rcase (PASS rcase (Pass sub perms)	ORD - DROWSSAP) ssPass) WORD - password) word - PASSWORD) Pass Pass Pa5s - P45s - P455
Current password	☐ Case I Two	perms (Pass numbers Hyb	.pAss.paSsPaSsPASS) rid Brute (Pass0Pass99)
1 hashes of type IKE-PSK loaded. Press the Start button to begin o	lictiona	ry attac	k

Figura 4.111: Configuraciones del ataque de diccionario.

File		Position		
C:\Program Files (x86)\Cain\Wordlists\Wordlist.txt	t	302		
(ey Rate		ons As Is (Passworr		
Jictionary Position	বিব্	Reverse (PASS)ouble (Pass - .owercase (PA Jppercase (Pa	-/ WORD - DROWS PassPass) SSWORD - passwo ssword - PASSWOF to (Pass Pass	5AP) ord) RD) 8450 8455
Current password		Case perms (Pa wo numbers H	is (Pass, Pass, Pass, Pass, Iss,pAss,paSs,Pa Iybrid Brute (Pass0.	P4551 455, SsPASS) Pass99)
Plaintext of user N¥Eå is 13579 Attack stopped! 1 of 1 hashes cracked				

En la figura 4.112 se muestra la contraseña (PSK) obtenida.

Figura 4.112: Ataque de diccionario exitoso.

4.4.3. Configuraciones de seguridad

ESP

Este protocolo ofrece las mismas características de seguridad que AH y adicionalmente encripta la información (UCF, The VPN gateway must use ESP tunnel mode for establishing secured paths to transport traffic between the organization's sites or between a gateway and remote end-stations., 2015).

En la ventana IPsec y la pestaña Policies se encuentran las configuraciones de políticas. Aquí se puede elegir el protocolo ESP (IPsec Protocols: esp), como se puede notar en la figura 4.113.

Polic	cies	Pro	posals	Gro	oups	Pe	ers	dentitie	s P	rofiles	Active	Peers	Mode	Configs	Installed	SAs	Keys
÷	-		/ ×	. 1		7	Sta	atistics								Fin	d
#			Peer			1	unnel	Src. A	ddre	ss		Src. Po	rt Dst. A	ddress		Dst.	Port -
0	•T						IPsec	Policy	(10.1	0.1.0/	24:0->1	0.10.2.0	/24:0>			×	25
-	A		peer2				Gene	eral Ad	tion	Statu	IS				ОК		25
								Ac	tion:	encry	pt			Ŧ	Cance	əl	8
								Le	evel:	requir	e			Ŧ	Apply	r.	
							IPse	c Protoc	cols:	esp				Ŧ	Disabl	e	
								Prop	sal:	propo	sal1			₹	Comme	ent	
															Сору		
															Remov	/e	
+						ſ	enable	ed		- [-	emolati			Active		_	•
e 2 iter	ns (1	sele	ected)				enable	ed			emplat	ė		Active			

Modo Main

El modo main encripta la información relacionada con la autenticación, como el hash donde está incluida la contraseña (PSK) (UCF, The VPN gateway must use IKE main mode for the purpose of negotiating an IPSec security association policy when preshared keys are used for authentication, 2015). En la ventana IPsec y la pestaña Peers se encuentran las configuraciones para la comunicación con el peer remoto. Aquí se puede elegir el modo main (Exchange Mode: main), como se puede notar en la figura 4.114.

Data	100	Denne	a de la	Course	Pe	ore	I.I. author	222	Desfiles	Antium	Deeres	Made Carf	ne les	-	- 4-	Varia
FOIL	aes	Flope	Isais	Groups	10		Identitu	es	Fronies	ACTIVE	reels	Mode Conni	as un	stalled -	ons	ney
+	-	-	*		T										Find	Ε.
#		Name			Add	ress		Loc	al Addres	ss	Profile		Excha	ange	1	
0	3	peer2			209.	165	200				profile1		aggre	ssive		
					IP	sec	Peer <pe< td=""><td>eer2</td><td>></td><td></td><td></td><td></td><td></td><td></td><td></td><td>×</td></pe<>	eer2	>							×
							Na	me:	peer2						ЭК	
							Addre	ess:	209.16	5.200.22	26		•	Ca	ancel]
						Port:]•	A	pply	
						Loc	al Addre	ess:					•	Die	sable	1
							Pro	file:	profile1				Ŧ	Con	nment	1
					E	xcha	ange Mo	de:	main				₹	C	ору	Ī
									Pass	ive HINITIA	L_CON	TACT		Re	move	Ī
					en	able	d				resp	ionder				
					3 1	-		_			-		_	_	_	-

Figura 4.114: Configuración del modo main.

PFS (Perfect Forward Secrecy)

PFS es una característica que se puede configurar en la fase 2 de IKE. Su función es generar nuevas llaves de encriptación cada vez que se produzca la fase 2 en lugar de generar llaves derivadas de las que se generaron en la fase 1, por lo tanto, las llaves de cada fase son independientes entre sí. Si un atacante obtiene las llaves de encriptación de la fase 1, no podrá desencriptar los datos que se generen en la fase 2. Con PFS se generan nuevas llaves con el mismo método que en la fase 1, mediante el grupo DH (UCF, The VPN gateway must specify Perfect Forward Secrecy during IKE negotiation., 2018).

En la figura 4.115 se muestra la ventana IPsec y la pestaña Proposals. Aquí se puede configurar PFS (PFS Group: modp2048).

olicies Propo	sals Grou	os Peers	Identities	Profiles	Active Peers	Mode Configs	Installed S	As Key
	* 7]						Find
Name /	Auth. Algor	ithms	Encr. Alg	gorithms	Lifetime	PFS Group		
default	sha1		IPsec	Proposal q	proposal1>			
proposal I	sha l		1	Name	proposal 1			ОК
			Auth.	Algorithms	md5	✔ sha1	Γ	Cancel
					null sha512	sha256		Apply
			Encr.	Algorithms	: null	des		Disable
					aes-192 c	bc aes-256	6 cbc	Сору
					blowfish	28 camellia	-192	Remove
					camellia-2	256 aes-128 tr aes-256 cm aes-192 cm	8 ctr 6 ctr 2 gcm	
				Lifetime	: 00:30:00		-	
			F	PFS Group	modp2048		Ŧ	
				4				

Figura 4.115: Configuración de PFS.

Algoritmos recomendados

Algunos algoritmos de hashing, encriptación y grupo DH todavía se incluyen en las configuraciones de dispositivos, pero no se consideran seguros. Se recomienda utilizar nuevas versiones.

No se recomienda utilizar algoritmos de encriptación como des o 3des. En su lugar se recomienda utilizar AES o superiores (CISCO, Configuring Internet Key Exchange for IPsec VPNs, 2018) (UCF, The VPN gateway must use AES for IPSec cryptographic encryption operations required to ensure privacy of the IPSec session., 2018).

No se recomienda utilizar algoritmos de hashing como md5 o sha1. En su lugar se recomienda utilizar sha256 o superiores (CISCO, Configuring Internet Key Exchange for IPsec VPNs, 2018) (UCF, The VPN gateway must use Secure Hash Algorithm for IPSec cryptographic hashing operations required for authentication and integrity verification., 2018) (Stevens, y otros, 2017).

No se recomienda utilizar grupos DH como modp768 o modp1024. En su lugar se recomienda utilizar modp 2048 o superiores (CISCO, Configuring Internet Key

Exchange for IPsec VPNs, 2018) (UCF, The VPN gateway must use a key size from Diffie-Hellman Group 14 or larger during IKE Phase 1., 2018) (UCF, The VPN gateway must use a key size from Diffie-Hellman Group 14 or larger during IKE Phase 2., 2020).

Para la configuración de los algoritmos recomendados, se debe acceder a la ventana IPsec, la pestaña Profiles (fase 1) y Proposals (fase 2), como se vio en las figuras 4.98 y 4.99.

4.5. Conclusiones

Se realizaron ataques para demostrar las vulnerabilidades que pueden presentarse en las redes de computadoras.

La idea principal es comprender en que consiste el ataque para saber cómo defenderse del mismo, debido a esto, se explicaron los conceptos, protocolos y servicios en los que se basan los ataques y las herramientas que se utilizan. También se plantearon las configuraciones y las buenas prácticas de seguridad que ayuden a mitigar estos ataques.

5. CAPÍTULO 5: RESULTADOS

5.1. Introducción

En este capítulo se validarán las configuraciones de seguridad, para lo cual se volverán a realizar los ataques de la sección de desarrollo, pero en esta ocasión la red estará protegida por las configuraciones de seguridad planteadas anteriormente.

5.2. Seguridad en un router

5.2.1. Validaciones

SSH en lugar de Telnet

Se desactiva el servicio de Telnet.

Se inicia la captura de datos, mediante Wireshark, en la computadora.

En la figura 5.1 se pueden analizar los comandos que se deben utilizar para conectarse, mediante SSH, a la interfaz *ethernet* con dirección IP 10.10.1.1.

En la terminal se ingresa el nombre de usuario y contraseña para acceder al router.

				root@	kali: ~				C		0
File Edit	view Se	arch Ter	minal Hel	р							
root@kali: usuario_1@	~# ssh u 10.10.1	usuario_ .l's pas	1@10.10.: sword:	1.1							
MMMM I	MMM I	ккк II ккк	KKK RRI	RRR	000	000		III	ккк ккк к	кк	
MMM MM	MMM I	ІІ КККК	K RRI	RRR	000	000	TTT	III	KKKKK		
BABABA				REE						N	

Figura 5.1: Acceso al router por SSH.

En la figura 5.2, mediante Wireshark, se realiza un filtrado de los paquetes del protocolo SSH.

			Capturing from eth0			000
<u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>G</u> o <u>C</u> ap	oture <u>A</u> nalyze <u>S</u> tatis	tics Telephon <u>y W</u> ireless <u>T</u> o	ols <u>H</u> elp		
	📕 🧟 🛞 🛅 🗍	• ~ 3 🕅	★ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	ତ୍ତ୍ ପ୍	11	
SS SS	ĥ				Expr	ession +
No.	Time	Source	Destination	Protocol	Length Info	-
	35 3.967441727	10.10.1.245	10.10.1.1	SSHv2	98 Client:	Protocol
	37 4.003267236	10.10.1.1	10.10.1.245	SSHv2	82 Server:	Protocol
	39 4.003622326	10.10.1.245	10.10.1.1	SSHv2	1458 Client:	Key Exch
	40 4.007003311	10.10.1.1	10.10.1.245	SSHv2	506 Server:	Key Exch
	42 4.007214196	10.10.1.245	10.10.1.1	SSHv2	90 Client:	Diffie-H
	43 4.008654059	10.10.1.1	10.10.1.245	SSHv2	346 Server:	Diffie-H
	45 4.009940212	10.10.1.245	10.10.1.1	SSHv2	338 Client:	Diffie-H
	66 5.303583148	10.10.1.1	10.10.1.245	SSHv2	898 Server:	Diffie-H-
4				h		•

Figura 5.2: Filtrado de paquetes del protocolo SSH.

En cualquier paquete se hace click derecho/Follow/TCP Stream y se obtiene información encriptada, como se puede ver en la figura 5.3.

Figura 5.3: Datos encriptados por SSH.

Defensa contra Winbox exploit

La mejor defensa contra Winbox Exploit es actualizar el sistema operativo a una versión en la que se haya corregido esta vulnerabilidad.

Para esta prueba se instaló, en el router, la versión del sistema operativo RouterOS, 6.45.7 (Stable). La vulnerabilidad CVE-2018-14847 se corrigió desde la versión 4.42.1 (Stable).

En la figura 5.4 se puede comprobar que no se obtiene ni el nombre de usuario ni la contraseña al ejecutar la herramienta WinboxExploit. El ataque está dirigido a la interfaz *ethernet* con dirección IP 10.10.1.1.

Figura 5.4: Intento fallido de obtención de nombre de usuario y contraseña mediante WinboxExploit.

Suponiendo que no existiera una actualización del sistema operativo en la que se corrija esta vulnerabilidad, se recomienda desactivar el servicio de Winbox y utilizar el servicio SSH para la configuración de dispositivos.

En el caso de que sea realmente necesario utilizar Winbox para configuración, se recomienda (BasuCert, s.f.):

- Cambiar el puerto por defecto de Winbox.
- Bloquear el acceso por MAC.
- Permitir la conexión a Winbox solo desde una dirección IP específica.
- Si el router está conectado a internet, bloquear el acceso a Winbox por esa interfaz.

En la figura 5.5 se puede verificar que no se obtiene ni el nombre de usuario ni la contraseña al ejecutar la herramienta Winbox Exploit. Este resultado se obtiene desactivando el servicio Winbox o con las 4 configuraciones explicadas anteriormente.

Figura 5.5: Intento fallido de obtención de nombre de usuario y contraseña mediante Winbox Exploit.

Uso de contraseñas seguras

La protección más básica contra ataques de contraseña es utilizar contraseñas seguras que no incluyan información personal, sucesiones simples de números, etc.

En la figura 5.6 se muestra que se utiliza la herramienta pwgen para generar una contraseña.

Generated password		
3ytFRNjTmYrv	•••	Generate
	71 bits / 12 charact	ers

Figura 5.6: Generador de contraseñas seguras.

En el router se cambia el nombre de usuario por defecto y se le asigna la contraseña de la figura 5.6. Con estas configuraciones, el atacante tendrá dos incógnitas por descifrar.

Para el ataque de diccionario se deberá usar una lista de palabras tanto para el nombre de usuario como para la contraseña. Los comandos se pueden examinar en la figura 5.7.

El ataque no tiene éxito y se tardará demasiado tiempo en probar todos los nombres de usuario y contraseñas del diccionario.

Figura 5.7: Intento fallido de descifrar el nombre de usuario y contraseña.

Para el ataque de fuerza bruta se deberá conocer el nombre de usuario y para la contraseña se tendrán que generar todas las posibles combinaciones, con 12 caracteres, que incluyan letras mayúsculas, minúsculas y números. Los comandos se pueden analizar en la figura 5.8.

No se puede generar el ataque porque existe un número demasiadamente alto de posibles contraseñas.

Figura 5.8:: Intento fallido de descifrar el nombre de usuario y contraseña.

Limitar el número de intentos de ingreso fallidos

Otro mecanismo de defensa contra ataques de contraseña es limitar la cantidad de ingresos fallidos en el router.

Se activan las reglas de firewall correspondientes.

Al realizar un ataque de diccionario y de fuerza bruta, como los de las figuras 4.8 y 4.9, se obtiene lo siguiente:

En la primera conexión, la dirección IP se agrega a la lista auxiliar SSHCon por 1 minuto.

En la segunda conexión, la dirección IP se agrega a la lista Auxiliar SSHCon2 por 1 min.

En la tercera conexión, la dirección IP se agrega a la lista de bloqueo BruteForceAttacker por 1 día. Se descarta todo paquete proveniente de esta dirección IP. En la figura 5.9 se puede verificar que la dirección IP de origen se agregó a las 3 listas.

Fil	ter Rules	NAT	Mangle	Raw	Service Ports	Connections	Addr	ess Lists	Layer7 Pro	otocols	
4		1		7				1	ind	all	Ŧ
	Name		1	Address	V	Timeout		Creation	Time		
D	 BruteF 	orceAtta	acker	10.10.1.1	245	23	59:54	Nov/27	/2019 15:		
D	● Con19	SSH		10.10.1.1	245	00	00:52	Nov/27.	/2019 15:		
D	Con29	SSH		10.10.1.	245	00	:00:54	Nov/27	/2019 15:		

Figura 5.9: Dirección IP agregada a lista de bloqueo.

En la figura 5.10 se puede notar que la primera regla de firewall está descartando paquetes.

Firewall Rul	e 🗢				
General	Advance	d Extra	Action	Statistics	ОК
Byt	es: 26.2	KiB	Cancel		
Packe	Packets: 428				Apply
Rate: 1920 bps					Disable
Packet Rate: 4 p/s				Comment	

Figura 5.10: Estadísticas de la primera regla de Firewall.

Defensa contra SYN-FLOOD

Con esta prueba se comprobará que, con las configuraciones para limitar el número de nuevas conexiones sucesivas en el router, el servidor responderá a solicitudes de conexión y se mitigará el ataque SYN FLOOD. Mediante la terminal de Kali Linux se realiza un ataque SYN FLOOD similar al de la figura 4.12, pero con la excepción de que la velocidad de los paquetes se aumenta a la máxima posible (la velocidad puede variar con el transcurso del tiempo). Los comandos se pueden examinar en la figura 5.11.

Figura 5.11: Ataque SYN FLOOD mediante hping3.

En la figura 5.12 se encuentra la ventana de monitoreo de las interfaces del router. Se puede notar que la interfaz *ethernet 1* recibe paquetes a una velocidad de 27138 p/s y no se transmiten por la interfaz *ethernet 2*. Esto quiere decir que el router no permite el paso de los paquetes.

Interface Li	st												[
Interface	Interface List	Ethemet	EoIP Tunnel	IP Tunnel	GRE Tunne	VLAN	VRRP	Bondin	ng LTE					
+-		67	Detect Inte	emet									Find	_
Name	e /	Туре		Actual MTU	L2 MTU	Tx		R	bx		Tx Packet (p/s)		Rx Packet (p/s)	
R +>et	her1	Ethemet		150	0 1598		96.3 k	bps		13.8 Mbps		10	27 13	8 4
R (>et	her2	Ethemet		150	1598		0	bps		520 bps		0		1 -
•									1				6	•
6 items														-

Figura 5.12: Monitoreo de tráfico en ventana Interface List.

En la figura 5.13 se verifica que la dirección IP 10.10.3.3 se añadió a la lista de bloqueo SynFlooder.

Filter Rules	NAT	Mangle	Raw	Service	Ports	Connections	Address Lists	Laye	r7 Protoco	ls	
+ -	1	8	7						Find	all	Ŧ
Name		Address		TZ	imeout		Creation Time				-
D SynFl	ooder	10.10.3.3				23:58:37	Jan/20/2020 10:				

Figura 5.13: Lista de bloqueo SynFlooder.

En la figura 5.14 se encuentran las estadísticas de la primera regla de firewall y se puede ver que descarta paquetes a una velocidad de 27491 p/s.

irewall Rule «	>	
General Ad	vanced Extra Action Statistics	ОК
Bytes	104.6 MiB	Cancel
Packets	2 741 916	Apply
Rate	8.7 Mbps	Disable
Packet Rate	27 491 p/s	Comment

Figura 5.14: Estadísticas de la primera regla de firewall.

Desde la computadora, con dirección IP 10.10.3.254, se intenta acceder al servidor, a través del navegador web, y se establece la conexión de forma exitosa. En la figura 5.15, mediante Wireshark, se comprueban los paquetes que conforman el enlace de 3 vías.

		Capturing from eth0 (tcp)					_ = ×
<u>File Edit View Go</u>	<u>Capture</u> <u>Analyze</u> <u>S</u> ta	itistics Telephon <u>y W</u> ireless <u>T</u> ool	s <u>H</u> elp				
		- 수 🐁 [다 원] 📃 🖸 🛛		9 8			
Apply a display filt	er <ctrl-></ctrl->				• •	xpressio	n +
Time	Source	Destination	Protocol	Length	Info		
10.00000000	10.10.3.254	10.10.2.2	TCP	74	51444 → 80	[SYN]	Seq=0
2 0.001287336	10.10.2.2	10.10.3.254	TCP	74	80 → 51444	[SYN,	ACK]
3 0.001354680	10.10.3.254	10.10.2.2	TCP	66	51444 → 80	[ACK]	Seq=1.
4							•

Figura 5.15: Intento de conexión, desde un cliente legítimo, al servidor web.

La defensa mediante reglas de firewall provoca que la carga del CPU sea del 75%, como se puede observar en la figura 5.16.

Resources		
Uptime:	00:06:42	ОК
Free Memory:	8.9 MiB	CPU
Total Memory:	32.0 MiB	IRQ
CPU:	MIPS 24Kc V7.4	
CPU Count:	1	
CPU Frequency:	650 MHz	
CPU Load:	75 %	
Free HDD Space:	6.7 MiB	
Total HDD Size:	16.0 MiB	
Sector Writes Since Reboot:	73	
Total Sector Writes:	24 863	
Bad Blocks:	0.0 %	
Architecture Name:	smips	
Board Name:	hAP lite	
Version:	6.45.7 (stable)	
Build Time:	Oct/24/2019 08:44:35	
Factory Software:	6.42.1	

Figura 5.16: Recursos del router.

Defensa contra SPOOFING

Con esta primera prueba se comprobará que, utilizando Reverse Path Forwarding, el servidor responde a solicitudes de conexión, se contrarresta el SPOOFING y por consiguiente se mitiga el ataque SYN FLOOD.

Se activa Reverse Path Forwarding en modo strict.

Mediante la terminal de Kali Linux se realiza un ataque SYN FLOOD generando paquetes con direcciones IP de origen aleatorias, al puerto 80 de la dirección IP 10.10.2.2 y con la máxima velocidad posible (la velocidad puede variar con el transcurso del tiempo). Los comandos se pueden examinar en la figura 5.17.

Figura 5.17: Ataque SYN FLOOD mediante hping3.

En la figura 5.18 se encuentra la ventana de monitoreo de las interfaces del router. Se puede observar que la interfaz *ethernet 1* recibe paquetes a una velocidad de 27500 p/s y no se transmiten por la interfaz *ethernet 2*. Esto quiere decir que el router descarta los paquetes provenientes de direcciones IP suplantadas.

	ce List												[] >
Interf	ace Interface L	ist Ethernet	EoIP Tunnel	IP Tunnel	GRE Tunne	VLAN	VRRP	Bondir	ng LTE					
+-	- 🖌 🗙	a 7	Detect Inte	emet									Find	
	Name	/ Туре		Actual MTU	L2 MTU	Tx		/ F	3x		Tx Packet (p/s)		Rx Packet (p/s)	
R	ether1	Ethemet		150	0 1598		80.4 k	dps		14.0 Mbps		11	27 50	0 .
R	ether2	Ethemet		150	0 1598		0	bps		0 bps		0		0 .
•									1					•
6 item	s (1 selected)													

Figura 5.18: Monitoreo de tráfico en ventana Interface List.

Desde la computadora con dirección IP 10.10.3.254 se intenta acceder al servidor, a través del navegador web, y se establece la conexión de forma exitosa. En la figura 5.19, mediante Wireshark, se verifican los paquetes que conforman el enlace de 3 vías.

		Capturing from eth0 (tcp)					_ 0	×
<u>File E</u> dit <u>V</u> iew <u>G</u> o	o <u>C</u> apture <u>A</u> nalyze <u>S</u> ta	tistics Telephony <u>W</u> ireless <u>T</u> o	ols <u>H</u> elp					
		- 수 🗞 않 왜 📃 📃		<u>*</u>				
Apply a display fil	ter <ctrl-></ctrl->				- 🖬	Expressi	on	+
Time	Source	Destination	Protocol	Length	Info			-
10.00000000	10.10.3.254	10.10.2.2	TCP	74	51478 → 80	[SYN]	Seq=	=0
2 0.002239153	10.10.2.2	10.10.3.254	TCP	74	80 → 51478	[SYN,	ACK]	
3 0.002360194	10.10.3.254	10.10.2.2	TCP	66	51478 → 80	[ACK]	Seq=	=1-
4								•

Figura 5.19: Intento de conexión, desde un cliente legítimo, al servidor web.

Con esta segunda prueba se comprobará que, utilizando Reverse Path Forwarding, el atacante no podrá conectarse al servidor con una dirección suplantada.

Mediante la terminal de Kali Linux se envían paquetes, con la dirección IP de origen 10.10.3.3, al puerto 80 de la dirección IP 10.10.2.2. Los comandos se pueden observar en la figura 5.20.

Figura 5.20: Intento de establecer una conexión, con dirección IP suplantada, al servidor.

En la figura 5.21 se encuentra la ventana de monitoreo de las interfaces del router. Se puede observar que la interfaz *ethernet 1* recibe paquetes, pero no se transmiten por la interfaz *ethernet 2*. Esto quiere decir que el router no permite el paso de paquetes con direcciones IP suplantadas.

Inter	ace List														×
Inte	face Interface	List Ethemet	EoIP Tunnel	IP Tunnel	GRE Tunne	VLAN	VRRP	Bondin	g LTE						
+		K 🖸 🍸	Detect Inte	emet									Find	Į.	
	Name	/ Type		Actual MTU	L2 MTU	Tx		R	x		Tx Packet (p/s)		Rx Packet (p/s)		•
R	ether1	Ethernet		150) 1598		81.9 k	bps		11.0 kbps		10		17	٠
R	ether2	Ethemet		150	1598		01	bps		0 bps		0		0	+
+														٠	
6 iter	ms (1 selected)													and the second second	_

Figura 5.21: Monitoreo de tráfico en ventana Interface List.

En la figura 5.22, mediante Wireshark, se comprueba que no ingresan paquetes al servidor.

6	Capturing from Et	hernet (tcp)			<u>,050</u> 8		×
<u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>(</u>	<u>5</u> o <u>C</u> apture <u>A</u> nalyze	<u>Statistics</u> Telephon <u>y</u> <u>W</u> ir	eless <u>T</u> ools <u>H</u>	elp		
1	 	🖺 🕅 🖾 🔍 👄	● 🖀 🗿 🞍 🚍 🔍	ର୍ ବ୍ 🎹			
to	p.flags.syn==1 an	d tcp.flags.ack==0				Expression	+
No.	Time	Source	Destination	Protocol	Length Info		
<							>

Figura 5.22: Monitoreo de tráfico, mediante Wireshark, en el servidor.

Defensa contra Escáner de red

En esta prueba se comprobará que, con Port Scan Detection, se puede detectar y mitigar el escaneo de red.

Las reglas de firewall de protección contra escáneres están activadas.

En la figura 5.23 se puede observar que se realiza un escaneo TCP SYN desde el puerto 21 hasta el 80. Solo se obtiene la información de, máximo, 3 puertos por cada host, debido a que las reglas de firewall bloquean los paquetes a partir de 4 escaneos consecutivos a puertos bien conocidos.

root@kali: ~	0	•	0
File Edit View Search Terminal Help			
<pre>root@kali:~# nmap -sS -p 21-80 10.10.2.1 10.10.2.2 10.10.2.3 Starting Nmap 7.80 (https://nmap.org) at 2020-01-21 16:19 EST Nmap scan report for 10.10.2.1 Host is up (0.00031s latency). Not shown: 58 filtered ports PORT STATE SERVICE 23/tcp open telnet 25/tcp closed smtp</pre>			ĺ
Nmap scan report for 10.10.2.2 Host is up (0.0050s latency). Not shown: 57 filtered ports PORT STATE SERVICE 21/tcp open ftp 23/tcp open telnet 25/tcp open smtp			
Nmap scan report for 10.10.2.3 Host is up (0.0010s latency). Not shown: 58 filtered ports PORT STATE SERVICE 23/tcp closed telnet 25/tcp closed smtp			I
Nmap done: 3 IP addresses (3 hosts up) scanned in 39.80 seconds root@kali:~#			

Figura 5.23: Escaneo TCP SYN fallido.

En la figura 5.24 se intenta identificar los servicios y versiones en cada puerto analizado, pero no se obtiene información.

Figura 5.24: Descubrimiento fallido de servicios y versiones en puertos.

En la figura 5.25 se realiza un escaneo TCP completo desde el puerto 21 hasta el 80. Solo se obtiene la información de, máximo, 3 puertos por cada host. Debido a que las reglas de firewall bloquean los paquetes a partir de 4 escaneos consecutivos a puertos bien conocidos.

root@kali: ~	0	Θ	0
File Edit View Search Terminal Help			
<pre>root@kali: # nmap -sT -p 21-80 10.10.2.1 10.10.2.2 10.10.2.3 Starting Nmap 7.80 (https://nmap.org) at 2020-01-21 16:23 EST Nmap scan report for 10.10.2.1 Host is up (0.00045s latency). Not shown: 58 filtered ports PORT STATE SERVICE 21/tcp open ftp 53/tcp closed domain</pre>			
Nmap scan report for 10.10.2.2 Host is up (0.0020s latency). Not shown: 57 filtered ports PORT STATE SERVICE 21/tcp open ftp 22/tcp open ssh 53/tcp open domain			l
Nmap scan report for 10.10.2.3 Host is up (0.00100s latency). Not shown: 58 filtered ports PORT STATE SERVICE 21/tcp closed ftp 53/tcp closed domain			l
Nmap done: 3 IP addresses (3 hosts up) scanned in 40.60 seconds <pre>root@kali:~#</pre>			

Figura 5.25: Escaneo TCP completo fallido.

En la figura 5.26 se puede ver que se realiza un escaneo TCP Null, desde el puerto 21 hasta el 80, pero no se obtiene información.

root@kali: ~ 0 Ξ 0 File Edit View Search Terminal Help **ali:**~# nmap -sN -p 21-80 10.10.2.1 10.10.2.2 10.10.2.3 Starting Nmap 7.80 (https://nmap.org) at 2020-01-21 16:24 EST Nmap scan report for 10.10.2.1 Host is up (0.00029s latency). All 60 scanned ports on 10.10.2.1 are open filtered Nmap scan report for 10.10.2.2 Host is up (0.0012s latency). All 60 scanned ports on 10.10.2.2 are open filtered Nmap scan report for 10.10.2.3 Host is up (0.00099s latency). Not shown: 58 open filtered ports PORT STATE SERVICE 21/tcp closed ftp 23/tcp closed telnet Nmap done: 3 IP addresses (3 hosts up) scanned in 31.41 seconds oot@kali:~#

Figura 5.26: Escaneo TCP Null fallido.

Como se puede ver en la figura 5.27, se realiza un escaneo TCP FIN, desde el puerto

21 hasta el 80, pero no se obtiene información.

root@kali: ~	0	•	0
File Edit View Search Terminal Help			
root@kali:-# nmap -sF -p 21-80 10.10.2.1 10.10.2.2 10.10.2.3 Starting Nmap 7.80 (https://nmap.org) at 2020-01-21 16:26 EST Nmap scan report for 10.10.2.1 Host is up (0.00029s latency). All 60 scanned ports on 10.10.2.1 are open filtered			
Nmap scan report for 10.10.2.2 Host is up (0.0020s latency). All 60 scanned ports on 10.10.2.2 are open filtered			
Nmap scan report for 10.10.2.3 Host is up (0.00080s latency). Not shown: 58 open filtered ports PORT STATE SERVICE 22/tcp closed ssh 23/tcp closed telnet			
Nmap done: 3 IP addresses (3 hosts up) scanned in 34.92 seconds root@kali:~#			

Figura 5.27: Escaneo TCP FIN fallido.

En la figura 5.28 se puede observar que se realiza un escaneo TCP Xmas, desde el puerto 21 hasta el 80, pero no se obtiene información.

0 Ξ root@kali: ~ 0 File Edit View Search Terminal Help ali:~# nmap -sX -p 21-80 10.10.2.1 10.10.2.2 10.10.2.3 Starting Nmap 7.80 (https://nmap.org) at 2020-01-21 16:27 EST Nmap scan report for 10.10.2.1 Host is up (0.00036s latency). Not shown: 59 open|filtered ports PORT STATE SERVICE 53/tcp closed domain Nmap scan report for 10.10.2.2 Host is up (0.0013s latency). All 60 scanned ports on 10.10.2.2 are open filtered Nmap scan report for 10.10.2.3 Host is up (0.00098s latency). Not shown: 58 open|filtered ports PORT STATE SERVICE 21/tcp closed ftp 53/tcp closed domain Nmap done: 3 IP addresses (3 hosts up) scanned in 34.24 seconds root@kali:~#

Figura 5.28: Escaneo TCP Xmas fallido.

Las reglas de firewall también bloquean escaneos UDP, pero se debe cambiar (Protocol: 6(tcp)) por (Protocol: 17(udp)).

En la figura 5.29 se realiza un escaneo UDP, desde el puerto 21 hasta el 80, pero no se obtiene información.

root@kali: ~	0	•	0
File Edit View Search Terminal Help			
<pre>root@kali:-# nmap -sU -p 21-80 10.10.2.2 Starting Nmap 7.80 (https://nmap.org) at 2020-01-21 16:29 EST Nmap scan report for 10.10.2.2 Host is up (0.0047s latency). Not shown: 57 open filtered ports PORT STATE SERVICE 32/udp closed unknown 61/udp closed ni-mail 62/udp closed acas</pre>			
Nmap done: 1 IP address (1 host up) scanned in 21.43 seconds root@kali:~#			

Figura 5.29: Escaneo UDP fallido.

En la figura 5.30 se verifica que, cuando se realiza cualquiera de estos escaneos, se agrega la dirección IP del atacante a la lista Port Scanner y se bloquea todo tipo de comunicación proveniente de la misma.

Filter Ru	les NAT	Mangle	Raw	Service P	orts	Connections	Address Lists	Lay	er7 Proto	cols	
+		3	7					[Find	all	Ŧ
Name		Addres	s	7	Time	out	Creation Time				-
D O Po	ort Scanner	10.10.1	.235			23:59:32	Nov/13/2019	10:			

Figura 5.30: Lista de bloqueo Port Scanner.

5.3. Seguridad de capa 2

5.3.1. Validaciones

Defensa contra falsificación de direcciones MAC

Las configuraciones de seguridad de puertos están activadas en el switch y se realizó el cambio de dirección MAC en el host del atacante. La nueva dirección MAC pertenece a la PC1.

Se procede a realizar ping a la PC2 desde el host del atacante para que se sobrescriba la información en la tabla de direcciones MAC.

En la figura 5.31 se verifica que no se puede realizar ping desde el host del atacante.

pi@raspberrypi. ~		×
File Edit Tabs Help		
<pre>pi@raspberrypi:~ \$ ping 192.168.88.3 PING 192.168.88.3 (192.168.88.3) 56(84) bytes of data. From 192.168.88.4 icmp_seq=9 Destination Host Unreachable From 192.168.88.4 icmp_seq=10 Destination Host Unreachable From 192.168.88.4 icmp_seq=11 Destination Host Unreachable From 192.168.88.4 icmp_seq=12 Destination Host Unreachable From 192.168.88.4 icmp_seq=13 Destination Host Unreachable From 192.168.88.4 icmp_seq=14 Destination Host Unreachable From 192.168.88.4 icmp_seq=15 Destination Host Unreachable From 192.168.88.4 icmp_seq=15 Destination Host Unreachable From 192.168.88.4 icmp_seq=16 Destination Host Unreachable From 192.168.88.4 icmp_seq=17 Destination Host Unreachable From 192.168.88.4 icmp_seq=17 Destination Host Unreachable</pre>		•

Figura 5.31: Ping fallido desde el host del atacante.

En la figura 5.32 se comprueba que, en el switch, no se registra ninguna dirección MAC para el puerto donde está conectado el atacante (Puerto 4).

Port	MAC	
Port2	f4:	
Port3	d8:	

Figura 5.32: Tabla de direcciones MAC del switch.

Defensa contra tormenta de LAN

Se configuró RSTP en los puertos del switch.

Se realiza un bucle en el switch, conectando el puerto 1 y el puerto 5 con el mismo cable.

En la figura 5.33 se verifica que, en la pestaña Statistics, las tasas de transmisión y recepción de los puertos disminuyen.

MikroTik SwOS								
Link SFP Fo	rwarding RSTP	Statistics Errors	VLAN VLANS	Hosts IGMP Group	SNMP ACL	System		
	Port1	Port2	Port3	Port4	Port5	SFP		
Rate								
Rx Rate	0	1.27k	0	1.27k	0	0		
Rx Packet Rate	0	2	0	2	0	0		
Tx Rate	0	1.27k	0	2.55k	0	0		
Tx Packet Rate	0	2	0	3	0	0		

Figura 5.33: Tasas de transmisión y recepción de los puertos.

En la figura 5.34 se comprueba que puede comunicarse la PC2 con la PC1.

Símbolo del sistema	100		×
Microsoft Windows [Versión 10.0.18362.476] (c) 2019 Microsoft Corporation. Todos los derecho	os reser	vados.	^
C:\Users\Luis Miguel>ping 192.168.88.2			
Haciendo ping a 192.168.88.2 con 32 bytes de dato	os:		
Respuesta desde 192.168.88.2: bytes=32 tiempo<1m	TTL=64		
Respuesta desde 192.168.88.2: bytes=32 tiempo<1m	TTL=64		
Respuesta desde 192.168.88.2: bytes=32 tiempo<1m	TTL=64		
Respuesta desde 192.168.88.2: bytes=32 tiempo<1m	TTL=64		
Estadísticas de ping para 192.168.88.2:			
Paquetes: enviados = 4, recibidos = 4, perdio (0% perdidos)	1os = 0		
Tiempos aproximados de ida y vuelta en miliseguno	tos:		
Mínimo - Ame Mávimo - Ame Madia - Ame	105.		
			¥ .

Figura 5.34: Intento de comunicación entre la PC2 y la PC1.

Se deshabilita RSTP y se activan las configuraciones para limitar el ancho de banda.

En la figura 5.35 se puede observar que, en la pestaña Statistics, las tasas de transmisión y recepción se mantienen por debajo del límite establecido (5 Mbps).

MikroTik SwOS								
Link SFP For	warding RSTP	Statistics	Errors VLAN	VLANs Hosts	IGMP Groups	SNMP ACL		
System Upgrad	le							
	Port1	Port2	Port3	Port4	Port5	SFP		
Rate								
Rx Rate	1.63M	0	1.9k	14.29k	1.63M	0		
Rx Packet Rate	1.22k	0	3	13	1.23k	0		
Tx Rate	1.68M	3.25M	3.25M	3.27M	1.68M	0		
Tx Packet Rate	1.23k	2.22k	2.22k	2.23k	1.22k	0		

Figura 5.35: Tasas de transmisión y recepción de los puertos.

Defensa contra manipulación STP

Se configuró BPDU Guard en las interfaces destinadas para hosts.

Se conecta nuevamente el switch del atacante en la red redundante.

En la figura 5.36 se puede ver que, en la ventana Bridge y la pestaña Bridge, se puede ingresar a las configuraciones del switch 3. En la pestaña Status se puede observar que este switch se mantiene como el puente raíz.

Bridge				
Bridge Ports VLANs	MSTIs Port MST Overrid	les Filters NAT Hosts M	IDB	
+ - 🖌 🗶 🖒	Settings			Find
Name /	Interface <bridge3></bridge3>		[🗆 🗙 🗽 🖛
R 4-xbndge3	General STP VLAN	Status Traffic	ОК	
	Last Link Down Time:		Canc	el
	Last Link Up Time:	Jan/07/2020 10:02:16	Appl	y h
1 item out of 6 (1 selected)	Link Downs:	0	Diask	
		Root Bridge	Disac	
	Boot Bridge ID:	0x7000 CC:	Comm	ent
	Root Path Cost	0		<u>y</u>
	Boot Port:	none	Remo	ve
			Torc	h
	Port Count:	4		
	Designated Port Count:	3		
	enabled	running	slave	_

Figura 5.36: Pestaña Status del switch 3.

Como se puede notar en la figura 5.37, en la ventana Bridge y la pestaña Ports se encuentra desactivado el puerto 4 donde está conectado el switch del atacante.

Bridge	Ports	VLANs	MSTIs	Port MST Overrid	es Filte	ns NAT	Hosts	MDB		
- 1	• •	* (7						Fin	d
#	Interf	ace	Bri	dge	Horizon	Trusted	Priority (h	Path Cost	Role	R
0 H	11et	her1	bri	dge3		no		80 10	designated port	
1 H	ttet	her2	bri	dge3		no		80 10	designated port	
2 H	11et	her3	bri	dge3		no		80 10) designated port	
3 H	11et	her4	bri	dge3		no		80 10) disabled port	
						in a station of the second second				_

Figura 5.37: Estado de puertos.

Defensa contra VLAN hopping

Se aplicaron las configuraciones de seguridad del enlace troncal en los 2 switches y se realiza nuevamente el doble etiquetado con Yersinia.

En la figura 5.38, utilizando Wireshark, se comprueba que la PC3 no recibe los datos enviados por el atacante.

Figura 5.38: Captura de datos, mediante Wireshark, en la PC3.

5.4. Túnel IPsec

5.4.1. Validaciones

ESP en lugar de AH

Como protocolo IPsec, se configuró ESP en lugar de AH.

Se realiza ping desde la PC1 a la PC2.

En la figura 5.39 se analiza el tráfico, utilizando Wireshark, desde la computadora del atacante. Se comprueba que, con el protocolo ESP, no se puede visualizar la información de la comunicación entre las 2 computadoras.

		Capturing fro	om eth0			000
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>G</u>	io <u>C</u> apture <u>A</u> nalyze	Statistics Telephony	Wireless	s <u>T</u> ools <u>H</u> elp		
 • •<	• 3 × 1	* *) * :	+	@ Q	۵ 🎹	
esp						Expression +
Time	Source	Destination	Protocol	Length ID	Info	
7 1.168656705	209.165.200.225	209.165.200.226	ESP	126	ESP	(SPI=0x05308a35)
8 1.169830680	209.165.200.226	209.165.200.225	ESP	126	ESP	(SPI=0x0dee8184)
9 2.184501737	209.165.200.225	209.165.200.226	ESP	126	ESP	(SPI=0x05308a35)
10 2.184514841	209.165.200.226	209.165.200.225	ESP	126	ESP	(SPI=0x0dee8184)
12 3.198798800	209.165.200.225	209.165.200.226	ESP	126	ESP	(SPI=0x05308a35)
13 3.199771912	209.165.200.226	209.165.200.225	ESP	126	ESP	(SPI=0x0dee8184)
14 4.214920262	209.165.200.225	209.165.200.226	ESP	126	ESP	(SPI=0x05308a35)
15 4.215846312	209.165.200.226	209.165.200.225	ESP	126	ESP	(SPI=0x0dee8184)
4						Þ

Figura 5.39: Análisis de tráfico del protocolo ESP.

Defensa contra ataque de contraseña fuera de línea

Se configuró el modo main en lugar del modo aggressive para la fase 1 de IKE.

Desde la computadora del atacante se intentan capturar los datos.

Cain & Abel no detecta los datos de la fase 1 en modo main, como se puede ver en la figura 5.40.

					- • ×
<u>File View Configure Tools Help</u>					
	😼 P64 🕙 🚥 I	🎫 🚾 📼	9 😵 💋 🚺	?	
🎉 Decoders 🔮 Network 🟟 Sniffer 🥑 C	racker 🔯 Tracerout	e 🔝 CCDU 🧌	💕 Wireless 🚯	Query	
ICQ (0) ^ Timestamp	Responder	Initiator	Identification	R-Cookie	I-Cookie
					>
S CPE (DDD (0) S IKE-PSK					
Hosts 🚱 APR 🕂 Routing 🎢 Password	ds 🌠 VolP				
Lost packets: 0%					li.

Figura 5.40: Pestaña Sniffer de Cain & Abel.

En la figura 5.41, mediante Wireshark, se capturan los paquetes generados en la fase 1.

8		Cap	turing fron	n ethO		• •	8
<u>File Edit View Go</u>	<u>C</u> apture <u>A</u> nalyze <u>S</u> t	atistics Telephony	<u>W</u> ireless	Tools	<u>H</u> elp		
📶 📕 🔬 🎯 👘	P Z Z Q	+ +) + +	H 🔲 🛛	€	Q Q 1	F	
isakmp						Expression	+
Time	Source	Destination	Protocol	Length	ID	Info	-
72 50.084026341	209.165.200.225	209.165.200.226	ISAKMP	278		Identity Protection (Main Mode)	
75 50.161251514	209.165.200.226	209.165.200.225	ISAKMP	278		Identity Protection (Main Mode)	
76 50.243066757	209.165.200.225	209.165.200.226	ISAKMP	110		Identity Protection (Main Mode)	
77 50.244163844	209.165.200.226	209.165.200.225	ISAKMP	110		Identity Protection (Main Mode)	
4							•

Figura 5.41: Captura de paquetes de la fase 1 mediante Wireshark.

En la figura 5.42 se comprueba que los datos, que se utilizan para la autenticación, están encriptados.

 Internet Security Association and Key Management Protocol
Initiator SPI: 8d0993a158970c13
Responder SPI: fe97dc67dc990caf
Next payload: Identification (5)
Version: 1.0
Exchange type: Identity Protection (Main Mode) (2)
Flags: 0x01
Message ID: 0x00000000
Length: 68
Encrypted Data (40 bytes)

Figura 5.42: Información encriptada de la autenticación.

5.5. Conclusiones

Se comprobó que las configuraciones de seguridad permiten mitigar los ataques realizados en las redes de pruebas. En muchos casos se sacrifican recursos y velocidad en los equipos para poder brindar seguridad.

6. CONCLUSIONES

Siempre se deben utilizar servicios seguros, ya que encriptan la información.

No sirve de mucho utilizar servicios seguros si no se utilizan contraseñas seguras. Algunas recomendaciones, para la generación de contraseñas, son:

- En una contraseña nunca se deben utilizar nombres de personas, nombres de animales, sucesiones de números, frases, etc. debido a que los diccionarios contienen este tipo de palabras comunes.
- Las contraseñas deben ser largas para impedir que un ataque de fuerza bruta pueda generarlas en poco tiempo.

Bloquear las direcciones IP que tienen varios intentos fallidos de autenticación permite contrarrestar los ataques de contraseña.

Algunas buenas prácticas para la protección de servicios son:

- Permitir el acceso al router solo desde las direcciones IP de la red que tenga los privilegios para administrar los equipos.
- Cambiar los puertos por defecto.

Los fabricantes de dispositivos, constantemente, actualizan los sistemas operativos para corregir errores, vulnerabilidades, etc. por lo que es muy importante instalar la última versión.

Muchos servicios como el acceso por MAC, Neighbor Discovery, Bandwidth server, etc. son útiles al momento de las configuraciones iniciales de los dispositivos de red y deben ser desactivados cuando la red esté operando.

Se deben activar solo los servicios que se van a utilizar.

El límite del número de nuevas conexiones sucesivas en el router puede variar dependiendo del tamaño de la red, del tipo de servidor, etc. Para establecer este límite se debe realizar un análisis del tráfico normal dentro de la red. En este caso, como ejemplo, se colocó un valor de 150.

Con las reglas de firewall se mitiga el ataque SYN-FLOOD, pero la carga del CPU se mantiene en un valor alto. Vale recalcar que las pruebas se realizaron en un router que no tiene prestaciones muy altas, por lo que un router más potente podrá tolerar esta carga sin sacrificar demasiados recursos del CPU. Se comprobó que el servidor es vulnerable a un ataque SYN FLOOD con una velocidad relativamente baja (100 p/s) y que las configuraciones de seguridad mitigaron un ataque realizado a la más alta velocidad posible (27138 p/s).

Algunas configuraciones requieren de un reinicio en el router para surtir efecto.

Comprobar en los paquetes, que las direcciones IP de origen corresponden a las interfaces por las cuales ingresan, permite mitigar el SPOOFING.

Reverse Path Forwarding obliga al atacante a utilizar direcciones IP que correspondan a la interfaz donde está conectado.

Las configuraciones de seguridad contra el SPOOFING permiten solventar una vulnerabilidad que tenían las configuraciones que mitigan el SYN FLOOD, por lo que se recomienda utilizarlas en conjunto.

Las configuraciones realizadas con PSD permiten hasta 3 conexiones con puertos bien conocidos diferentes. Estos límites se establecen como un umbral para no bloquear tráfico legítimo. Debido a esto, se obtiene información limitada de la red cuando se realizan ataques como los de las figuras 5.23, 5.24 y 5.25.

Los parámetros de PSD pueden variar dependiendo de la red donde se implemente esta seguridad.

En el caso de los ataques de las figuras 5.26, 5.27 y 5.28, no se obtuvo información debido a las configuraciones de banderas en los paquetes. PSD las detectó inmediatamente como intento de escaneo.

Está técnica es vulnerable a escaneos lentos debido al valor Delay Threshold, sin embargo, se ralentizará al atacante.

Descubrir que alguien está realizando un escaneo de puertos permitirá estar alerta ante otros posibles ataques.

Una solución más drástica sería agregar directamente a la lista Port Scanner las direcciones IP que traten de conectarse a puertos cerrados.

Para bloquear el descubrimiento de hosts se tendrían que bloquear ciertos mensajes del protocolo ICMP (como echo), sin embargo, no es recomendable en todos los casos ya

que esta es una herramienta útil para comprobación de errores y diagnósticos dentro de una red.

Debido a que el switch utilizado no se puede configurar mediante un servicio seguro como SSH o Winbox, se debe considerar desactivar los permisos de configuración en el puerto que se vaya a conectar a un router y por consiguiente a internet.

El proceso de aprendizaje del switch no es seguro, debido a que un atacante puede aprovecharlo para interceptar los datos destinados a un host legítimo de la red.

Realizar la configuración estática de direcciones MAC, en sus respectivos puertos de conexión, permite mitigar ataques de falsificación de direcciones MAC.

Si el atacante intenta reiniciar el switch, las configuraciones de seguridad en puertos no se borrarán.

Una tormenta de broadcast pueden consumir todos los recursos de una red, por lo que se puede utilizar como ataque de denegación de servicios.

Los protocolos STP y RSTP permiten que no se generen bucles de capa 2 y por consiguiente evitan que se produzcan tormentas de broadcast.

Limitar el ancho de banda en los puertos permite disminuir los efectos provocados por tráfico excesivo en la red.

Las prestaciones del switch, utilizado en las pruebas, son limitadas, por lo que en algunas pruebas se utilizó un router configurado como bridge.

Utilizando BPDU Guard se evita que ingresen BPDUs por las interfaces destinadas para hosts. Esto garantiza que no se pueda modificar el puente raíz conectándose en estas interfaces.

La VLAN nativa solo se debe utilizar en puertos troncales y no en puertos de acceso, ya que un atacante puede valerse de esto para enviar información a cualquier VLAN de la red.

Los puertos, que no se utilicen, deben asignarse a una VLAN que tampoco se utilice en la red.

Desactivar los puertos no utilizados es una de las mejores prácticas de seguridad.

IPsec permite implementar seguridad, sin embargo, pueden presentarse vulnerabilidades si no se configura correctamente.

El protocolo AH no encripta la información, por lo que no garantiza la confidencialidad. Se recomienda utilizar ESP en su lugar ya que esté si encripta la información.

El modo aggressive de la fase 1 de IKE es más rápido, pero menos seguro ya que la información, relacionada con la autenticación, se envía sin encriptar y puede ser capturada por un atacante para realizar ataques de contraseña fuera de línea. Se recomienda utilizar el modo main que, aunque sea más demorado, encripta la información relacionada con la autenticación.

Si se desea utilizar PSK como método de autenticación, la configuración de contraseñas fuertes es muy importante para que los ataques de contraseña no tengan éxito.

PFS es una característica de seguridad que obliga a la fase 2 de IKE a generar nuevas llaves de encriptación que sean totalmente independientes de las llaves de la fase 1. De esta forma si se comprometen las llaves de la fase 1, la encriptación de la fase 2 se mantendrá segura.

Muchos algoritmos de encriptación, hashing y grupo DH ya no se consideran seguros, por lo que es necesario mantenerse actualizado acerca de la información sobre los algoritmos que se recomienden en la actualidad.

Se pueden utilizar métodos más seguros de autenticación que PSK.

Existe una versión más moderna de IKE (IKEV2), que presenta algunas ventajas con respecto a la versión anterior.

Las configuraciones recomendadas permiten implementar seguridad, pero pueden tardar más en ejecutarse y consumir más procesamiento.

7. BIBLIOGRAFÍA

- Andreatos, A. S. (2017). Designing educational scenarios to teach network security. *IEEE*, 1606 1610.
- Ariganello, E. (2014). *Redes Cisco Guía de estudio para la certificación CCNA* Security. Ediciones de la U.
- Baker, F., Cisco Systems, & Savola, P. (03 de 204). *RFC 3704*. Recuperado el 05 de 11 de 2019, de https://www.rfc-editor.org/rfc/pdfrfc/rfc3704.txt.pdf
- BasuCert. (s.f.). *WinboxExploit*. (GitHub) Recuperado el 22 de 11 de 2019, de https://github.com/BasuCert/WinboxPoC
- Chiu, S. (2006). *Seguridad en redes inalámbricas 802.11*. Recuperado el 31 de enero de 2019, de http://www.ciens.ucv.ve
- CISCO. (17 de 10 de 2016). *Configuring SNMP*. (CISCO) Recuperado el 11 de 12 de 2019, de https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst2960/software/rel ease/12-2 55 se/configuration/guide/scg 2960/swsnmp.html
- CISCO. (21 de 01 de 2018). Configuring Internet Key Exchange for IPsec VPNs. (CISCO) Recuperado el 08 de 02 de 2020, de https://www.cisco.com/c/en/us/td/docs/iosxml/ios/sec_conn_ikevpn/configuration/xe-3s/sec-ike-for-ipsec-vpns-xe-3sbook/sec-key-exch-ipsec.html
- CISCO. (02 de 09 de 2018). Security for VPNs with IPsec Configuration Guide, Cisco IOS XE Release 3S. (CISCO) Recuperado el 27 de 01 de 2020, de https://www.cisco.com/c/en/us/td/docs/iosxml/ios/sec_conn_vpnips/configuration/xe-3s/sec-sec-for-vpns-w-ipsec-xe-3s-book/sec-cfg-vpn-ipsec.html
- CISCO. (s.f.). CCNA 1: Introduction to Networks. CISCO.
- CISCO. (s.f.). CCNA 2: Routing and Switching Essentials. CISCO. Recuperado el 27 de 11 de 2019, de https://juliorestrepo.files.wordpress.com/2015/03/pdf_ccna2_v5.pdf
- CISCO. (s.f.). CCNA 3: Scaling Networks. CISCO.

- CLOUDFLARE. (s.f.). *What is IP spoofing*? (CLOUDFLARE) Recuperado el 05 de 11 de 2019, de https://www.cloudflare.com/learning/ddos/glossary/ip-spoofing/
- *Criptografia*. (07 de 02 de 2017). (Microsoft) Recuperado el 29 de 01 de 2020, de https://docs.microsoft.com/es-es/windows/uwp/security/cryptography
- Cueva, H., Pozo, F., & Iturralde, D. (2016). Cross-platform Network Virtualization Software for MikroTik Devices. *IEEE*.
- GNS3. (s.f.). What is GNS3? (GNS3) Recuperado el 24 de 11 de 2019, de https://gns3.com/software
- Hart, T. (s.f.). *MikroTik Router Hardening*. Recuperado el 18 de 11 de 2019, de https://www.manitonetworks.com/networking/2017/7/25/mikrotik-router-hardening#neighbor-discovery
- Hart, T. (s.f.). *Network Scanning With Nmap*. (Manito Networks) Recuperado el 10 de 11 de 2019, de https://www.manitonetworks.com/security/2016/11/26/network-scanningwith-nmap
- Hat, R. (s.f.). *REVERSE PATH FORWARDING*. (Red Hat) Recuperado el 05 de 11 de 2019, de https://access.redhat.com/documentation/enus/red_hat_enterprise_linux/6/html/security_guide/sect-security_guideserver security-reverse path forwarding
- Higgins, B. (s.f.). Routerboard Security. Recuperado el 18 de 11 de 2019, de https://mum.mikrotik.com/presentations/UK18/presentation_6165_15391511 16.pdf
- INTEL. (s.f.). Ancho de banda vs rendimiento vs velocidad vs tasa de conexión. (INTEL) Recuperado el 19 de 11 de 2019, de https://www.intel.la/content/www/xl/es/support/articles/000026190/networkand-io/wireless-networking.html
- Kali. (s.f.). *About Kali Linux*. (Kali) Recuperado el 04 de 11 de 2019, de https://www.kali.org/about-us/
- Kali. (s.f.). Hydra Package Description. (Kali) Recuperado el 25 de 11 de 2019, de https://tools.kali.org/password-attacks/hydra
- Kali. (s.f.). *Kali Tools*. (Kali) Recuperado el 20 de Octubre de 2019, de https://tools.kali.org/information-gathering/hping3
- Kali. (s.f.). Nmap Package Description. (Kali) Recuperado el 11 de 10 de 2019, de https://tools.kali.org/information-gathering/nmap
- Kali. (s.f.). Yersinia Package Description. (Kali) Recuperado el 02 de 01 de 2020, de https://tools.kali.org/vulnerability-analysis/yersinia
- Lipták, B., & Eren, H. (2012). *Process Software and Digital Networks*. Boca Raton: CRC Press.
- Marsá-Maestre, I., de la Hoz, E., Giménez-Guzmán, J. M., & López-Carmona, M. (2012). Using a scenario generation framework for education on system and internet security. *IEEE*.
- maslinux. (08 de 02 de 2018). ¿Que es Kali GNU/Linux? (maslinux) Recuperado el 04 de 11 de 2019, de https://maslinux.es/que-es-kali-gnu-linux/
- Mikrotik. (25 de 03 de 2018). *CVE-2018-14847 WINBOX VULNERABILITY*. (Mikrotik) Recuperado el 11 de 21 de 2019, de https://blog.mikrotik.com/security/winbox-vulnerability.html
- Mikrotik. (s.f.). *Bruteforce login prevention*. (Mikrotik) Recuperado el 26 de 11 de 2019, de https://wiki.mikrotik.com/wiki/Bruteforce_login_prevention
- Mikrotik. (s.f.). *DoS attack protection*. (Mikrotik) Recuperado el 20 de 10 de 2019, de https://wiki.mikrotik.com/wiki/DoS_attack_protection
- Mikrotik. (s.f.). *Drop port scanners*. (Mikrotik) Recuperado el 11 de 11 de 2019, de https://wiki.mikrotik.com/wiki/Drop_port_scanners
- Mikrotik. (s.f.). *MAC access*. (Mikrotik) Recuperado el 19 de 11 de 2019, de https://wiki.mikrotik.com/wiki/MAC_access
- Mikrotik. (s.f.). *Manual:Interface/Bridge*. (Mikrotik) Recuperado el 16 de 12 de 2019, de https://wiki.mikrotik.com/wiki/Manual:Interface/Bridge

- Mikrotik. (s.f.). *Manual:IP/Cloud*. (Mikrotik) Recuperado el 19 de 11 de 2019, de https://wiki.mikrotik.com/wiki/Manual:IP/Cloud
- Mikrotik. (s.f.). *Manual:IP/Firewall/Filter*. (Mikrotik) Recuperado el 20 de 10 de 2019, de https://wiki.mikrotik.com/wiki/Manual:IP/Firewall/Filter
- Mikrotik. (s.f.). Manual:IP/IPsec. (Mikrotik) Recuperado el 09 de 02 de 2020, de https://wiki.mikrotik.com/wiki/Manual:IP/IPsec#Internet_Key_Exchange_Pr otocol_.28IKE.29
- Mikrotik. (s.f.). *Manual:Router AAA*. (Mikrotik) Recuperado el 18 de 11 de 2019, de https://wiki.mikrotik.com/wiki/Manual:Router_AAA
- Mikrotik. (s.f.). *Manual:Securing Your Router*. (Mikrotik) Recuperado el 18 de 11 de 2019, de https://wiki.mikrotik.com/wiki/Manual:Securing_Your_Router
- Mikrotik. (s.f.). *Manual:Switch Chip Features*. (Mikrotik) Recuperado el 13 de 12 de 2019, de https://wiki.mikrotik.com/wiki/Manual:Switch_Chip_Features#Port_Mirrorin g
- Mikrotik. (s.f.). *Manual:Tools/Ping*. (Mikrotik) Recuperado el 19 de 11 de 2019, de https://wiki.mikrotik.com/wiki/Manual:Tools/Ping#Mac_Ping
- Mikrotik. (s.f.). *Manual:Upgrading*. (Mikrotik) Recuperado el 09 de 12 de 2019, de https://wiki.mikrotik.com/wiki/Manual:Upgrading
- Mikrotik. (s.f.). *Manual:Winbox*. (Mikrotik) Recuperado el 06 de 11 de 2019, de https://wiki.mikrotik.com/wiki/Manual:Winbox
- Mikrotik. (s.f.). *Neighbor discovery*. (Mikrotik) Recuperado el 19 de 11 de 2019, de https://wiki.mikrotik.com/wiki/Manual:IP/Neighbor_discovery
- Mikrotik. (s.f.). *SwOS/CSS106*. (Mikrotik) Recuperado el 07 de 12 de 2019, de https://wiki.mikrotik.com/wiki/SwOS/CSS106
- Molenaar, R. (s.f.). IPsec (Internet Protocol Security). (NetworkLessons.com) Recuperado el 09 de 02 de 2020, de https://networklessons.com/cisco/ccierouting-switching/ipsec-internet-protocol-security

- Nmap. (s.f.). *Nmap Network Scanning*. Recuperado el 11 de 11 de 2019, de https://nmap.org/man/es/man-port-scanning-basics.html
- Patel, A., Ghaghda, S., & Nagecha, P. (2014). Model for security in wired and wireless network for education. *IEEE*, 699 704.
- Pauzhi, W., & Coronel, J. (2015). Seguridad para WISP mediante equipos MikroTik. *IEEE*, 229 - 233.
- Pitts, S. (29 de 01 de 2004). VPN Aggressive Mode Pre-shared Key Brute Force Attack. Recuperado el 10 de 02 de 2020, de https://www.giac.org/paper/gcih/541/vpn-aggressive-mode-pre-shared-keybrute-force-attack/104625
- Postel, J. (09 de 1981). *RFC792*. Recuperado el 10 de 11 de 2019, de https://www.rfceditor.org/rfc/pdfrfc/rfc792.txt.pdf
- PWGen. (s.f.). *Generator of cryptographically-strong passwords*. (PWGen) Recuperado el 26 de 11 de 2019, de http://pwgen-win.sourceforge.net/
- RAPID7. (s.f.). What is Metasploitable? How does it work? (RAPID7) Recuperado el
 27 de 10 de 2019, de https://information.rapid7.com/metasploitframework.html
- Rendek, L. (06 de 01 de 2017). How to change MAC address using macchanger on Kali Linux. (LINUXCONFIG) Recuperado el 05 de 12 de 2019, de https://linuxconfig.org/how-to-change-mac-address-using-macchanger-onkali-linux
- Rong-sheng, S., Xiao-yong, L., & LI, J.-h. (2004). An Adaptive Algorithm to Detect Port Scans. *Journal of Shanghai University*, 8(3), 328-332.
- Roschke, S., Willems, C., & Meinel, C. (2010). A security laboratory for CTF scenarios and teaching IDS. *IEEE*.
- Rouse, M. (s.f.). *brute force attack*. (SearchSecurity) Recuperado el 26 de 11 de 2019, de https://searchsecurity.techtarget.com/definition/brute-force-cracking
- Rouse, M. (s.f.). *dictionary attack*. (SearchSecurity) Recuperado el 25 de 11 de 2019, de https://searchsecurity.techtarget.com/definition/dictionary-attack

Spurgeon, C. E. (2000). Ethernet: the definitive guide. USA: O'Reilly Media, Inc.

- Stallings, W. (2004). FUNDAMENTOS DE SEGURIDAD EN REDES. APLICACIONES Y ESTÁNDARES. Madrid: PEARSON EDUCACIÓN.
- Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y., Petit Bianco, A., & Baisse, C. (23 de 02 de 2017). *Announcing the first SHA1 collision*. (Google Security Blog) Recuperado el 11 de 02 de 2020, de https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
- Takeuchi, M. (s.f.). *MikroTik Security: The Forgotten Things*. Recuperado el 18 de 11 de 2019, de https://mum.mikrotik.com/presentations/KH19/presentation_6616_15483042 46.pdf
- Tanenbaum, A., & Wetherall, D. (2012). *REDES DE COMPUTADORAS*. México: PEARSON EDUCACIÓN.
- Ternero, M. (s.f.). *Seguridad en redes y protocolos asociados*. Recuperado el 31 de enero de 2019, de http://www.dte.us.es/personal/mcromero/docs/ip/tema-seguridad-IP.pdf
- Trotter, G., & Agilent Technologies. (12 de 2001). *RFC 3222*. Recuperado el 05 de 11 de 2019, de https://www.rfc-editor.org/rfc/pdfrfc/rfc3222.txt.pdf
- UCF. (21 de 09 de 2015). The VPN gateway must use ESP tunnel mode for establishing secured paths to transport traffic between the organization's sites or between a gateway and remote end-stations. (UCF) Recuperado el 11 de 02 de 2020, de https://www.stigviewer.com/stig/ipsec_vpn_gateway/2015-09-21/finding/V-30964
- UCF. (21 de 09 de 2015). The VPN gateway must use IKE main mode for the purpose of negotiating an IPSec security association policy when pre-shared keys are used for authentication. (UCF) Recuperado el 11 de 02 de 2020, de https://www.stigviewer.com/stig/ipsec_vpn_gateway/2015-09-21/finding/V-30957
- UCF. (27 de 11 de 2018). The VPN gateway must specify Perfect Forward Secrecy during IKE negotiation. (UCF) Recuperado el 11 de 02 de 2020, de

https://www.stigviewer.com/stig/ipsec_vpn_gateway/2018-11-27/finding/V-30960

- UCF. (08 de 03 de 2018). The VPN gateway must use a key size from Diffie-Hellman Group 14 or larger during IKE Phase 1. (UCF) Recuperado el 11 de 02 de 2020, de https://www.stigviewer.com/stig/ipsec_vpn_gateway/2018-03-08/finding/V-30959
- UCF. (08 de 03 de 2018). The VPN gateway must use AES for IPSec cryptographic encryption operations required to ensure privacy of the IPSec session. (UCF)
 Recuperado el 11 de 02 de 2020, de https://www.stigviewer.com/stig/ipsec_vpn_gateway/2018-03-08/finding/V-30966
- UCF. (08 de 03 de 2018). The VPN gateway must use Secure Hash Algorithm for IPSec cryptographic hashing operations required for authentication and integrity verification. (UCF) Recuperado el 11 de 02 de 2020, de https://www.stigviewer.com/stig/ipsec_vpn_gateway/2018-03-08/finding/V-30967
- UCF. (11 de 02 de 2020). The VPN gateway must use a key size from Diffie-Hellman Group 14 or larger during IKE Phase 2. (UCF) Recuperado el 08 de 03 de 2018, de https://www.stigviewer.com/stig/ipsec_vpn_gateway/2018-03-08/finding/V-30963
- WIRESHARK. (s.f.). *About Wireshark*. (WIRESHARK) Recuperado el 04 de 11 de 2019, de https://www.wireshark.org/
- Zavarsky, P., Butakkov, S., & Hlyne, C. (2015). SCAP Benchmark for Cisco Router Security. *IEEE*, 270 - 276.