Please use this identifier to cite or link to this item:
http://dspace.uazuay.edu.ec/handle/datos/13171
Title: | Análisis del comportamiento de los índices de calidad del aire en la ciudad de Cuenca a través de pronósticos, utilizando técnicas de aprendizaje computacional |
Authors: | Avilés González, Jonnatan Fernando Coronel Alvarado, Ruth Mariela |
Keywords: | MÉTODO DE PRONÓSTICO;CONTAMINACIÓN DEL AIRE;APRENDIZAJE COMPUTACIONAL;MACHINE LEARNING;RED NEURONAL ARTIFICIAL |
Issue Date: | 2023 |
Publisher: | Universidad del Azuay |
Abstract: | La gran preocupación existente por la contaminación del aire y sus graves efectos ha llevado a una búsqueda de soluciones para mitigar dichos efectos. Una forma de hacerlo es a través de información que permita prever los comportamientos futuros de los contaminantes y facilite la toma de decisiones oportunas. Con este fin han sido utilizado ampliamente modelos de pronóstico. En el presente estudio, se propone un modelo de predicción para estimar la concentración de uno de los contaminantes del aire. Los modelos se basan en información histórica, y utiliza técnicas de aprendizaje computacional. Se desarrolla un modelo basado en estadística tradicional y otro utilizando algoritmos de Machine Learning. Ambos modelos fueron entrenados con valores de una base de datos proporcionada por el Instituto de Estudios de Régimen Seccional del Ecuador (IERSE). Los resultados muestran que el modelo basado en Redes Neuronales obtuvo las mejores métricas de desempeño en comparación al modelo tradicional (ARIMA) |
metadata.dc.description.degree: | Magíster en Matemática Aplicada |
URI: | http://dspace.uazuay.edu.ec/handle/datos/13171 |
Appears in Collections: | Posgrados |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
18697.pdf | Trabajo de Graduación | 223,73 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.