DSpace logo

Por favor, use este identificador para citar o enlazar este ítem: http://dspace.uazuay.edu.ec/handle/datos/14607
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorArévalo Durazno, María Belén-
dc.contributor.authorMuñoz Pauta, Josué Sebastián-
dc.date.accessioned2024-06-27T21:23:20Z-
dc.date.available2024-06-27T21:23:20Z-
dc.date.issued2024-
dc.identifier.urihttp://dspace.uazuay.edu.ec/handle/datos/14607-
dc.description.abstractLa representación adecuada de la precipitación es crucial para el desarrollo de aplicaciones en recursos hídricos, particularmente en la hidrología operacional. Ante la insuficiencia de información in-situ de precipitación, se ha optado por utilizar imágenes satelitales de libre acceso. Sin embargo, la información satelital consultada presenta un tiempo de latencia, lo que constituye una limitación para su implementación. Una solución innovadora es el desarrollo de modelos de predicción de precipitación satelital utilizando otra información satelital de baja latencia, correlacionada con la precipitación. En este estudio, se desarrollaron modelos de predicción para el producto satelital IMERG-ER (latencia de 5 horas) usando información del Advanced Baseline Imager (ABI) del satélite GOES-16 (latencia de 10 minutos). Los modelos de predicción se basaron en un algoritmo de aprendizaje automático, Random Forest, aplicado a la cuenca del río Jubones en el sur de Ecuador. Los modelos se entrenaron con información horaria para un período de 5 años y se evaluó la eficiencia de las predicciones mediante métricas cuantitativas y cualitativas a múltiples escalas temporales. Se encontró una mejora progresiva en la precisión del modelo con la ampliación de la escala temporal, con valores de RMSE (PCC) de 0.44 (0.56) hasta 0.12 (0.83) para escalas variables desde horarias a mensuales. Las métricas cualitativas a través del POD, FAR y CSI confirmaron los hallazgos cuantitativos respecto al efecto de la escala temporal. Los hallazgos de este estudio son prometedores, aunque se sugiere el uso de modelos de aprendizaje automático más complejos para las escalas temporales más finas.es
dc.language.isospaes
dc.publisherUniversidad del Azuayes
dc.rightsopenAccesses
dc.subjectPREDICCIÓN DE PRECIPITACIÓNes
dc.subjectADVANCED BASELINE IMAGE-ABIes
dc.subjectJUBONESes
dc.subjectRANDOM FORESTes
dc.titlePronóstico de imágenes satelitales de precipitación usando productos geoestacionarios GOESes
dc.typebachelorThesises
dc.description.degreeIngeniero Civiles
dc.pagination.pages42 p.es
Aparece en las colecciones: Facultad de Ciencia y Tecnología

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
20125.pdfTrabajo de Graduación36,6 kBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.